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Ionel Şerban and Alexandru Enesca*

Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Brasov, Romania

The present mini review contains a concessive overview on the recent achievement

regarding the implementation of a metal oxide semiconductor (MOS) in biosensors

used in biological and environmental systems. The paper explores the pathway of

enhancing the sensing characteristics of metal oxides by optimizing various parameters

such as synthesis methods, morphology, composition, and structure. Four representative

metal oxides (TiO2, ZnO, SnO2, and WO3) are presented based on several aspects:

synthesis method, morphology, functionalizing molecules, detection target, and limit of

detection (LOD).
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INTRODUCTION

Biosensors represent key components in medical care, environmental processes, energy efficient
systems, food safety, chemical, and agricultural industries. The necessity of using continuous onsite
monitoring with flexible and reliable characteristics have recommended biosensors as an efficient
tool for rapid measurement and analysis. Adapting the biosensors materials to various applications
(quality control, screening methods, safety equipment, environmental evaluation) represents an
important research topic with difficult challenges to overcome. In the last decade there were many
papers presenting materials such as photonic crystals (Hocini et al., 2019), polymers (Gupta et al.,
2020), graphene (Yuan et al., 2019), metals (Rezaei et al., 2019), transition metal dichalcogenties
(Wang et al., 2017), and metal organic frameworks (Osman et al., 2019) as suitable for biosensors
applications. Some of these materials require significant improvement regarding morphologic
optimization, chemical stability, compatibility with different biomolecules, and increase of LOD.

A particular case is represented by MOSmaterials. These have a high potential to become highly
competitive materials in the biosensors market, based on their morphologic versatility (Song et al.,
2020), chemical stability (Hernández-Cancel et al., 2015), physicochemical interfacial properties
(Scognamiglio et al., 2019), and their ability to combine in composite structures (Zheng et al., 2020).
Among others, TiO2 (WangM. et al., 2019), WO3 (Liu et al., 2015), SnO2 (Dong and Zheng, 2014),
and ZnO (Zhang et al., 2019) have attracted considerable attention due to their electrochemical
sensitive properties (Enesca et al., 2012a) and energy band alignment (Enesca et al., 2012b) suitable
for enzyme based biosensors. Another advantage of thesematerials is represented by a large number
of cost effective synthesis methods such as co-precipitation (Dong and Zheng, 2014), sonochemical
precipitation (Zhou et al., 2013), thermal oxidation (Li et al., 2010), chemical etching (Liu et al.,
2010), polyol (Elahi et al., 2019), hydrothermal (Zhou et al., 2017), or sol-gel (Rathinamala et al.,
2019) allowing the formation of various morphologies such as porous quasi-nanospheres (Liu H.
et al., 2017), hollow nano-spheres (Santos et al., 2016), nanorods (Dong et al., 2017), nanosheets
(Zhang et al., 2020), or flower-like particles (Feng et al., 2018). Additionally, these materials can
be combined between them or with others to form tandem heterostructures (Enesca et al., 2015),
hybrid structures (Mihaly et al., 2008), or composite structures (Visa et al., 2016) with advanced
electrochemical properties which can be adapted to a specific biosensor application.
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MOS with multifunctional properties able to monitor
molecules from biological systems represent a step forward
in the development of more complex autonomous medical
decision-making systems. Enzyme-based biosensors containing
MOS have several advantages such as: (1) chemical stability
in various environments (Zheng et al., 2020), (2) high energy
efficiency (Solaimuthu et al., 2020), (3) good sensitivity (Yi et al.,
2020), and (4) adaptability to specific working conditions (Han
et al., 2019). There are several issues to overcome in order to
implement MOS in biosensing applications: organic/inorganic
interface compatibility, increasing the carrier charge mobility,
decreasing electron-hole recombinations, and finding facile
synthesis techniques.

The present mini review represents a synthesis of the
recent achievement of the implementation and optimization
of MOS used as biosensor components in biological and
environmental systems. The paper is focused on various methods
of enhancing the metal oxides’ sensing characteristics by
optimizing parameters such as synthesis methods, morphology,
composition, and structure.

THE MECHANISM OF ENZYME-BASED
BIOSENSORS

A biosensor structure (see Figure 1) can be broken down in
a biotransducer and its auxiliary signal processing elements
(Yin et al., 2018). The biotransducer is made up of a
biocompatible layer that has biological recognition entities
(enzymes, probe molecules, proteins, etc.) attached to the
transducer surface. These entities induce a physicochemical
interaction between the target analyte and the transducer,
sending signal impulses to the signal processor. An important
challenge represents the compatibility between metal oxide
inorganic materials with the organic material Wang Q. et al.,
2019; Yilmaz et al., 2020. In this sense MOS (i.e., TiO2,
WO3, SnO2, ZnO) functionalization in order to increase
the compatibility with the organic materials has attracted
much interest. The metal oxide semiconductors present some
advantages regarding biomolecule immobilizations, such as: (a)
high isoelectric point (IEP) which induces electrostatic attraction
forces withmany lower electrostatic point biomolecules (Ramon-
Marquez et al., 2018; Zhao et al., 2019) and (b) morphological
versatility exhibited by a high surface area-to-volume ratio
characteristic for nanomaterials and favorable for enzyme
immobilization, (Fiorani et al., 2019).

Most of the metal oxides materials used in biosensors are
wide band gap semiconductors (see Figure 1) consisting of
various crystalline structures, unique electrochemical, optical,
electronic, gravimetric, pyroelectric, and piezoelectric properties
(Huang et al., 2016). Surface potential represents an important
property in the biosensor application. The space charge effect
is a result of native and imposed semiconductor potential.
The bulk chemical composition, crystallization degree, and
chemical interaction between semiconductor surface and the
analyte will influence the displacement of Fermi energy and
induced depletion (Cao et al., 2020). Consequently, the surface

potential inducing the space charge double layer is directly
dependent on the adsorbed layer characteristics of the electrode
surface (Chen et al., 2019). Additionally, some of these materials
may exhibit super hydro –phobicity/philicity, self-cleaning and
antimicrobial activity. Other factors such as light exposure at
certain wavelengths (∼380 nm for TiO2 and ZnO, ∼320 nm for
SnO2 and ∼443 nm for WO3) induce an increase of charge
carrier mobility. During the light irradiation, oxygen vacancies
are formed at the semiconductor surface, which can forward
develop oxidative species (Ge et al., 2019).

An important advantage in the metal oxides semiconductor
functionalization for biosensor application is represented by
the low toxicity and low probability of negative interference
with the common pharmaceutical compounds (Soldatkina
et al., 2018). The major functionalization methodologies are
based on covalent interactions (Feizabadi et al., 2019) but
non-covalent interactions have been used as well (Ortiz et al.,
2019). The covalent conjugation can be done using different
molecules such as dimercaptosuccinic acid (DMSA), 1-ethyl-
3-(3-dimethylaminopropyl) carbodiimide), (EDC), N-(15-
carboxypentadecanoyloxy) succinimide, 16-(2-pyridyldithiol)
hexadecanoic acid, etc. During the functionalization the MOS
became more stable and reduced the nanoparticles aggregation,
(Xu et al., 2020). After functionalization many analytes can be
used as detecting materials for: urea, immunoglobulin, DNA,
RNA, dopamine, cancer cells, viruses, etc.

The interactions between the bio-transducer and the
analytes will alter the physico-chemical surface semiconductor
characteristics. The surface potential, impedance or
current characteristics can be correlated with the specific
chemical stimuli induced by the analytes (Yoo et al., 2019).
Various techniques are based on these characteristics,
such as cyclic voltametry, impedimentric, differential pulse
voltametry, etc.

The fidelity of the results from such a biosensor are
however heavily influenced by the environmental factors of the
experiment, such as temperature, humidity, pH, presence of
oxygen, and foreign organic compounds, all of which can affect
the stability of the interface. The applications of such biosensors
spread across all domains, depending on the possible interactions
between the immobilized biomolecules (enzymes, antibodies,
DNA) and the analytes of interest.

METAL OXIDE SEMICONDUCTORS FOR
ENZYME-BASED BIOSENSORS

There are various MOS’s used in biosensor applications. The
majority part use mono-component semiconductors but there
are many papers (Oh et al., 2013; Kao et al., 2015) presenting
multi-component semiconductors or coupled semiconductors
(composite, tandem, heterostructures, etc.). Additionally, in
order to enhance certain properties these materials have been
coupled with metals nanoparticles or doped with other metal
ions. The MOS exhibit a multitude of morphologies such as:
rods, stars, flowers, cone, porous or dense films, etc. This mini
review will consider only four metal oxides (TiO2, SnO2, ZnO,
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FIGURE 1 | MOS used in biosensors: band energies, crystalline structure, and biosensor configuration.

and WO3) as representative for biosensor applications. Many
other papers which are not included here have the potential to
contain highly innovative work. A summarized data collection
containing the four metal oxides is presented in Table 1.

TiO2-based Biosensors
TiO2 is an n-type semiconductor considered as a key material in
many applications like photocatalysis, biosensors, photovoltaics,
or energy storage due to his properties such as high chemical
stability, biocompatibility, morphological versatility, etc.

Dip-coating technique was employed to obtain TiO2 films
serving as sensors for microRNA (Wang M. et al., 2019),
heme (Çakiroglu and Özacar, 2019), or glucose (Rajendran
et al., 2018). The microRNA sensor is based on black TiO2

deposed on indium tin oxide (ITO) substrate and improved with
Au nanopoarticles. The semiconductor was functionalized with
histostar antibodies and based on photocurrent measurements
the LOD was established at 0.13 fM. Photocurrent was used for
LOD evaluation of heme using TiO2/ITO sensitized with CdS
quantum dots, and the result was 19µM. The glucose detector
based on TiO2 film was functionalized with glucose oxidase
(GOx) and the LOD was 0.7µM. A better LOD value (0.5µM)
in glucose detection was obtained by replacing the TiO2 films
with TiO2 nanotubes (Zhu et al., 2015). The nanotubes were
developed using the hydrothermal method and functionalized

with GOx. TiO2 nanorods (Yang et al., 2014) and nanosheets (Liu
P. et al., 2017) were tested as glucose sensors after functionalizing
with GO. Better LOD was obtained for nanorods morphology
(0.002mM) comparing with nanosheets (0.01mM) mostly due
to higher surface coverage, which was 3.32 × 10−11 mol/cm.
Concluding, the LOD depends mostly on the active surface,
which explains why nanotubes give better results compared with
TiO2 films.

TiO2 was used for H2O2 detection in the form of
microspheres (Liu H. et al., 2017) or macro-mesoporous film
(Wu et al., 2018). The TiO2 microspheres with a bag-like
structure were hydrothermally obtained and functionalized with
hemoglobin (Hem). The amperometric measurements indicate
a LOD of 10 nM. This value is considerably lower compared
with TiO2 mesoporous films (1.65µM LOD) obtained by
doctor blade technique and functionalized with horseradish
peroxidase (HPOx).

Anodization of titanium was intensively used to obtain
TiO2 nanotubes for H2O2 (Kafi et al., 2011), cholesterol
(Khaliq et al., 2020) and breast cancer cell (Safavipour
et al., 2020) detection. When the TiO2 nanotubes were
functionalized with Hem the LOD evaluated by amperometry
was 0.08µM. Better LOD value was obtained for cholesterol
detection (0.05µM) based on a non-enzymatic approach
to the oxidation process. Finally, TiO2 nanotubes were
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TABLE 1 | Representative studies on metal oxide semiconductors used in biosensors.

Synthesis method/morphology Target detecting substance Testing method/LOD References

TiO2

Dip-coating/Porous thin film microRNA Photocurrent/0.13 fM Wang M. et al., 2019

Heme Photocurrent/19µM Çakiroglu and Özacar, 2019

Glucose Amperometric/0.7µM Rajendran et al., 2018

Dip-coating/nanorods Glucose CV/0.002mM Yang et al., 2014

Solvothermal/nanosheets Photocurrent/0.01mM Liu P. et al., 2017

Hydrothermal/nanotube DPV/0.5µM Zhu et al., 2015

Doctor blade/porous film H2O2 CV/1.65µM Wu et al., 2018

Hydrothermal/microsphere Amperometric/10 nM Liu H. et al., 2017

Anodization/nanotubes H2O2 Amperometric/0.08µM Kafi et al., 2011

Cholesterol CV/0.05µM Khaliq et al., 2020

Cancer cells Impedance/40 cells/mL Safavipour et al., 2020

SnO2

Precipitation/nanoparticles L-cysteine Chronoamperometric/
0.03µM

Dong and Zheng, 2014

Sonication/nanoparticles Methyl parathion
Carbofuran

CV/
5 x 10−14 M
5 x 10−13 M

Zhou et al., 2013

Thermal evaporation/nanowires H2O2 Impedance/0.8µM Li et al., 2010

Microwave irradiation/nanoparticles DPV/43 nM Lavanya et al., 2012

Electrospinning/nanowires Glucose Amperometry/1.8µM Alim et al., 2019

Acetaminophen
pHydroxyacetophenone

DPV/
0.086µM
0.033µM

Hu et al., 2019

Physical vapor deposition/nanobelt Cardiac troponin Fluorescence microscopy/100
pM

Cheng et al., 2011

Hydrothermal/nanosheets Amyloid β-protein Photocurrent/
0.17 pg/mL

Wang et al., 2018

ZnO

Chemical bath deposition/nanostars microRNA-21 CV/18.6 aM Zhang et al., 2019

Chemical bath deposition/nanoparticles Zika virus CV/1.00 pg/mL Faria and Mazon, 2019

Hydrothermal/nanocones Dopamine CV/0.04µM Yuea et al., 2020

Hydrothermal/nanorods Phosphate CV/0.5µM Ahmad et al., 2017

G Imunoglobuline DPV/0.03 ng/mL Dong et al., 2017

Glucose DPV/1.0µM Zong and Zhu, 2018

Hydrothermal/nanoparticles Glucose CV/50µM Lei et al., 2011

WO3

Simple casting/nanowires Nitrite Amperometry/
0.28µM

Liu et al., 2015

Hydrothermal/nanoparticles CV/5µM Santos et al., 2016

Simple reversible redox/nanosheets Epididymal protein 4 Colorimetric/
1.56 pg/mL

Zhang et al., 2020

Ultrasonic/nanosheets Xanthine Colorimetric/
1.24 µmol/L

Li et al., 2019

Hydrothermal/Flower-like Aflatoxin B1 Photoelectrochemical/0.28
pg/mL

Feng et al., 2018

Hydrothermal/nanorods Bisphenol A DPV/0.028µM Zhou et al., 2017

Hydrothermal/nanocomposite Cardiac biomarker Troponin I (cTnI) DPV/0.01 ng/mL Sandil et al., 2018

functionalized with human mucin-1 aptamers, inducing
sensitive electrochemical detection of breast cancer cells
(MCF-7). In this case the 40 cells/mL LOD represent an
encouraging result for future biomedical TiO2 application in
breast cancer detection.

SnO2-based Biosensors
Due to features such as high surface area, good biocompatibility,
nontoxicity, excellent chemical stability, and catalytic activity,
SnO2 was used in many applications such as light energy
conversion, biosensors, smart windows, and electrochemistry.

Frontiers in Chemistry | www.frontiersin.org 4 May 2020 | Volume 8 | Article 354

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
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Tin oxide is an n-type semiconductor with a wide band gap of
3.8 eV and rutile structure (see Figure 1).

SnO2 nanoparticles were synthesized by precipitation (Dong
and Zheng, 2014), sonication (Zhou et al., 2013) and microwave
irradiation (Lavanya et al., 2012). By using precipitation
method, the SnO2 nanoparticles have an average diameter of
4 nm and were used for L-cysteine detection. In order to
employ the chronoamperometric detection method, the SnO2

surface was coated with multiwall carbon nanotubes giving
a LOD of 0.03µM. The SnO2 nanoparticles obtained by
sonication methods were used for pesticide detection based on
acetylcholinesterase as a functionalize agent. The LOD evaluated
by cyclic voltametry (CV) was 5 × 10−14 for methyl parathion
and 5× 10−13 for carbofuran. Themicrowave irradiationmethod
was employed to obtain SnO2 nanoparticles with application for
H2O2 detection. SnO2 surface was functionalized with HPOx
and, based on differential pulse voltammetry (DPV), a LOD of
43 nM was obtained.

An H2O2 sensor was developed using SnO2 nanowires
synthesized by the thermal evaporation method (Li et al., 2010).
Using the same functionalizing molecule as SnO2 nanoparticles,
the LOD measured by CV was 0.8µM. SnO2 nanowires were
also obtained by the electrospinning method (Alim et al.,
2019) for glucose amperometric detection. In this case the
functionalizing procedure was done with both HPOx and
GOx, giving a LOD of 1.8µM. SnO2 nanobelts (Cheng et al.,
2011) and nanosheets (Wang et al., 2018) were obtained by
physical evaporation deposition, respectively using hydrothermal
methods. The nanobelts functionalized with D-biotin molecules
were successfully used as a troponin I detector, a protein marker
for myocardial infarction (100 pM LOD). The nanosheets were
used for amyloid β-protein (Aβ) detection after a previous
functionalizing procedure with anti-Aβ antibody. Based on
photocurrent measurements the LOD value was 0.17 pg/mL,
considered as promising for applications in the detection of
disease-related biomarkers.

ZnO-based Biosensors
ZnO is a direct wide band gap semiconductor which under UV
radiation exhibits n-type conductivity. During the crystallization
forms a hexagonal wurtzite structure (see Figure 1) which has
particular piezoelectric properties based on noncentrosymmetric
crystal structures. The major part of the ZnO synthesis
procedures are wet techniques. Compared with tin oxide, ZnO
has a better binding ability with biological entities, which is a
prerequisite for future biosensor applications in medicine. Due
to its nontoxicity and compatibility with human skin, ZnO can
be adapted as a permanent human sensor in chronic diseases such
as diabetes.

Chemical bath deposition (CBD) has been used (Zhang
et al., 2019) to obtain ZnO nanostars for detecting microRNA-
21 in cancer cells. Previously, the surface was functionalized
using thiol-modified hairpin and hybridization chain reactions,
considering the development of electrochemiluminescence
(ECL) biosensors. The LOD was evaluated at 18.6 aM, which
makes this material a good candidate for clinical bioassay. The
same technique was also employed (Faria and Mazon, 2019)

to develop ZnO nanoparticles for detection of Zika virus in
undiluted urine. The Zika virus is transmitted through mosquito
bites and gives symptoms such as headaches, arthralgia, myalgia,
or conjunctivitis (Faria and Mazon, 2019). The ZIKV-NS1
antibody was immobilized using cystamine and glutaraldehyde
on the ZnO nanoparticles. The LOD was evaluated using CV and
the result was 1.00 pg/mL. This MOS biosensor can be used in
early detection of the Zika virus.

Another technique that has been extensively used for ZnO
synthesis with biosensing application is the hydrothermal
procedure. Both ZnO nanorods (Zong and Zhu, 2018) and
nanoparticles (Lei et al., 2011) hydrothermally obtained were
used in biosensors for glucose detection. The ZnO nanorods
where functionalized with GOx by simple immersion and the
LOD via DPV was 1.0µM. These results are significantly better
compared with ZnO nanopowder functionalized with GOx,
where LOD was 50µM. ZnO nanorods where hydrothermally
obtained and used as sensors for phosphate (Ahmad et al.,
2017) and G Imunoglobuline (Dong et al., 2017) detection.
For phosphate detection the ZnO was functionalized with
pyruvate oxidase by immersion, and the LOD was 0.5µM. In
order to develop a G Imunoglobuline sensor with 0.03 ng/mL
LOD, the ZnO surface was functionalized with myoglobin
by immersion and cold drying. ZnO nanocone arrays were
developed using the hydrothermal technique (Yuea et al., 2020)
for dopamine detection. The nanocones were functionalized
using Au nanoparticles with carboxyl groups obtaining a sensor
with high sensitivity (4.36 µA/µM) and low LOD (0.04 µM).

WO3-based Biosensors
WO3 is an n-type semiconductor with a band gap of 2.8 eV and
a versatile crystalline structure varying from cubic to octahedral,
depending on the synthesis temperature. High surface to volume
ratio WO3-based materials can be developed using physical and
chemical techniques with well-controlled dimensionality, sizes,
and crystal structure for sensors research.

A WO3 nitrite-based sensor was prepared by a simple casting
(Liu et al., 2015) and hydrothermal (Santos et al., 2016) methods.
In the first case WO3 has nanowire morphology and was
functionalized with hemoglobin, while WO3 nanoparticles were
obtained and functionalized with cytochrome c nitrite reductase
using the hydrothermal procedure. The LOD value in the case
of WO3 nanowire is significantly lower (0.28µM) compared
with WO3 nanopowder (5µM) underlining the significance
of semiconductor morphology, synthesis and functionalizing
procedures. The hydrothermal method has been used to produce
WO3 sensors with different morphologies: flower-like for
aflatoxin B1 (Feng et al., 2018), nanorods for bisphenol A (Zhou
et al., 2017), and nanosheets for cardiac biomarker Troponin
I (Sandil et al., 2018). The WO3 flower-like morphology
was functionalized with bovine serum albumin and the LOD
corresponding to aflatoxin B1 was very low (0.28 pg/mL). The
nanorods were doped with Na+ ions, giving a LOD value of
0.028µM. Finally, the nanosheets were functionalized with 3-
aminopropyl tri-ethoxy saline for the activation of amino groups
and the LOD value was 0.01 ng/mL. In the case of WO3-based
biosensors the nanosheets morphology gives a better LOD for
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cardiac biomarker Troponin I compared with the flower-like
morphology used for alfatoxin B1 detection.

Other techniques were used to obtain WO3 nanosheets,
such as simple reversible redox (Zhang et al., 2020) and
ultrasonic exfoliation (Li et al., 2019) processes. Using the
reversible redox process makes it possible to develop WO3

nanosheets with an average width of 150 nm, and LOD for
human epididymal protein 4 detection of 1.56 pg/mL. Ultrasonic
exfoliation of bulk WO3 in water allows the preparation of WO3

nanosheets in the range of 20 to 40 nm. These nanosheets were
functionalized with 3, 3′, 5, 5′-tetramethylbenzidine and the LOD
for xanthine in urine (based on colorimetric evaluation) was 1.24
µmol/L.

CONCLUSIONS

Metal oxides are considered as versatile materials that can
be successfully integrated in biosensor technology. Based
on features such as chemical stability, light excitation/light
conversion, and high surface-to-volume ratio, these materials
are highly competitive in the biosensors market. This mini
review has outlined that the biosensors’ LOD depends on many

parameters such as: morphology (active surface), functionalizing
molecule, evaluation procedure, and detecting target. The same
material with similar morphology and detecting targets can
give different LOD depending on surface functionalization
and evaluation procedures. Even if most of the biosensors
are used for glucose (H2O2, uric acid) there are encouraging
results for cancer cell or virus detection. Recent advancements
indicate a promising future for MOS in applications such as skin
bioelectronics, neural interfaces, and smart biosensing devices.
However, much effort is required to overcome important
issues related to optimizing organic/inorganic interface
compatibility, the enzyme electrochemistry at the MOS interface,
and LOD improvement. To achieve this goal, facile MOS
synthesis technologies allowing good interface control must
be implemented.
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