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Coronavirus disease 2019 (COVID-19) outbreak has become a global pandemic.

The deleterious effects of coronavirus have prompted the development of diagnostic

tools to manage the spread of disease. While conventional technologies such as

quantitative real time polymerase chain reaction (qRT-PCR) have been broadly used

to detect COVID-19, they are time-consuming, labor-intensive and are unavailable in

remote settings. Point-of-care (POC) biosensors, including chip-based and paper-based

biosensors are typically low-cost and user-friendly, which offer tremendous potential for

rapid medical diagnosis. This mini review article discusses the recent advances in POC

biosensors for COVID-19. First, the development of POC biosensors which are made of

polydimethylsiloxane (PDMS), papers, and other flexible materials such as textile, film,

and carbon nanosheets are reviewed. The advantages of each biosensors along with

the commercially available COVID-19 biosensors are highlighted. Lastly, the existing

challenges and future perspectives of developing robust POC biosensors to rapidly

identify and manage the spread of COVID-19 are briefly discussed.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an infectious illness caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (Chen L. et al., 2020; Hu et al., 2020). On 20 January 2020,
World Health Organization (WHO) declared the outbreak of COVID-19 a global public health
emergency of international concern (Zheng et al., 2020). The incidence of COVID-19 has increased
drastically, with more than three million cases reported worldwide, causing more than 200,000
deaths (Baud et al., 2020). The clinical manifestation of COVID-19 ranges from mild illnesses such
as fever, cough and dyspnea to life-threatening syndromes, including pneumonia, acute respiratory
distress syndrome, or even death (Bedford et al., 2020; Bernheim et al., 2020). COVID-19 has high
transmission capability, making the prevention and control difficult (Chen S. et al., 2020). As there
is no specific antiviral treatment or vaccine for COVID-19, early and prompt diagnosis is important
to reduce the risk of life-threatening complications and mortality through appropriate health care
(Lee et al., 2020; Xiao and Torok, 2020).

With the advances in POC testing, chip-based [e.g., polydimethylsiloxane (PDMS) biosensors]
and paper-based biosensors [e.g., lateral flow test strips or three-dimensional (3D) paper-based
microfluidic biosensors] have been developed for rapid diagnosis of infectious diseases
(Choi et al., 2017; Yew et al., 2018; Zhang et al., 2019). They are widely used to
detect antibodies, antigens or nucleic acids in crude samples such as saliva, sputum,
and blood based upon colorimetric, fluorescent, or electrochemical detection approaches
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(Choi et al., 2015; Tang et al., 2017a; Yee et al., 2018). They
offer many advantages such as being Affordable, Sensitive,
Specific, User-friendly, Rapid and Robust, Equipment-free, and
Deliverable to end users (ASSURED) (Gong et al., 2017; Tomás
et al., 2019). The result can be obtained in a fast and simple
manner, which allows rapid decision-making, hence minimizes
the risk of human-to-human transmission.

In view of the escalating demand for rapid diagnosis of
COVID-19, a mini review that summarizes the recent progress in
developing POC biosensors for COVID-19 is highly desirable. In
this review article, the most recent advances in POC biosensors,
including both chip-based or paper-based biosensors for the
detection of COVID-19 infection are reviewed. The advantages of
each biosensors along with the commercially available COVID-
19 biosensors are summarized. Finally, the existing challenges
and future perspectives of developing robust and fully integrated
POC biosensors for COVID-19 are briefly discussed.

DEVELOPMENT OF POINT-OF-CARE
BIOSENSORS FOR COVID-19

In general, there are two types of rapid POC tests that can detect
COVID-19 infections, which are nucleic acid and antibody (Ab)
tests (Sheridan, 2020). The nucleic acid test is usually performed
by detecting the presence of virus in patient’s sputum (or saliva)
or nasal secretions (snot) (Zhifeng et al., 2020). Such test is
good at detecting the virus at early stage of infection or even
before the symptoms appear. On the other hand, the antibody
test strip (IgG/IgM test) is performed by collecting patient blood
samples that contain antibodies against the virus (Li et al., 2020).
In general, about 5 days after initial infection, the virus triggers
the immune response which stimulates the production of both
IgM and IgG in blood that fight against the virus (Thevarajan
et al., 2020). These antibodies can be detected in patient
plasma, serum or whole blood. The existing POC biosensors
and commercial products for COVID-19 are summarized in
Table 1. In fact, compared to the existing POC biosensors,
quantitative real-time polymerase chain reaction (qRT-PCR), the
gold standard for COVID-19, shows a higher clinical sensitivity
and specificity, which are 79–96.7 and 100%, respectively (He
et al., 2020). The clinical sensitivity and specificity of commercial
POC biosensor (i.e., IgG/IgM lateral flow test strip) are 86.43–
93.75 and 90.63–100%, respectively. The POC biosensors which
are potentially used for COVID-19 are sample-to-answer chip-
based biosensors, paper-based biosensors or other material-
based biosensors (Figure 1) which are briefly discussed in the
following sections.

Chip-Based Biosensors
Chip-based biosensors have been broadly used for point-of-
care diagnosis of infectious diseases. They are mainly made of
PDMS or poly(methyl methacrylate) (PMMA) (Zarei, 2017a;
Zhang et al., 2017). These biosensors allow automated, precise
manipulation of fluid flow with small volume of samples.
They are able to minimize reagent consumption which enables
high throughput analysis (Dincer et al., 2017; Nasseri et al.,

2018). PDMS chip-based biosensors, in particular, have attracted
scientific interest due to its biocompatibility, high transparency
and cost-effectiveness (Nayak et al., 2017). They have been
explored in both antibodies and nucleic acid detection for
monitoring infectious diseases (Wang et al., 2016; Darwish
et al., 2018). Recent studies have focused on the development
of sample-to-answer platform for nucleic acid testing as they
are more sensitive and specific than antibody assays. For
example, a study has developed a sample-to-answer “lab-on-a-
disc” biosensor (Loo et al., 2017). This PDMS-based biosensor
consists of multiple channels that allows automated nucleic acid
extraction, isothermal amplification [loop-mediated isothermal
amplification (LAMP)] and real time signal detection. SYTO-9
dye is used for detection, which binds to the double-stranded
DNA from LAMP reaction and emits green fluorescence. The
intensity of fluorescence signal indicates the amount of target
detected. The biosensor is self-contained for performing sample
heating and chemical lysis for both extraction and amplification
processes. The entire sample-to-answer processes take ∼2 h.
While the platform is portable, the size of biosensor is relatively
large, which requires further improvement. The biosensor can
be readily customized to detect COVID-19 viruses in the
near future.

More recently, one group has integrated digital amplification
process into a sample-to-answer chip-based biosensor to quantify
nucleic acids which further simplifies the entire process of nucleic
acid testing (Yin et al., 2020). The biosensor integrates nucleic
acid extraction, multiplex digital recombinase polymerase
amplification (RPA) and fluorescence detection into a single
biosensor. It is mainly made of PDMS layers with a glass slide
as a supporting substrate. The specific primer mixture and all
of the reaction solution for RPA except magnesium acetate
are added onto three different detection areas and lyophilized.
Once the sample is added, the cell is lysed and the nucleic
acids bind to the magnetic beads. Following the washing and
elution steps, the reagents are passively driven into the digital
RPA area using vacuum-based self-priming approaches for
isothermal amplification, followed by fluorescent imaging. As
the fluorescence probe is labeled with carboxyfluorescein (FAM)
which is detectable by the UV light, the fluorescence signal
intensity is proportional to the concentration of amplicons. The
biosensor could achieve three main steps of nucleic acid testing
within 45min without requiring complex instrument and control
systems. This integrated biosensor shows immense potential to
rapidly and accurately detect COVID-19 in patient samples.

Besides fluorescence signal detection, colorimetric detection
approach has also been used in chip-based biosensors. The output
of isothermal amplification (e.g., LAMP) has been visualized
by colorimetric indicators [e.g., calcein or hydroxynaphthol
blue (HNB)] that interact with amplicons or byproducts (i.e.,
pyrophosphate; Seok et al., 2017; Quyen et al., 2019; Wang et al.,
2019). Calcein binds manganese ions that quench fluorescence
and the complex interacts with pyrophosphate to express
fluorescent signal (Dou et al., 2019). HNB changes color from
violet to sky blue upon reacting with pyrophosphate (Yang
et al., 2018). To improve the portability and functionality
of chip-based biosensors, one has developed an automated,

Frontiers in Chemistry | www.frontiersin.org 2 May 2020 | Volume 8 | Article 517

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


C
h
o
i

P
O
C
B
io
se

n
so

rs
fo
r
C
O
V
ID
-1
9

TABLE 1 | Point-of-care biosensors and commercial products for COVID-19.

Commercial product

for COVID-19

Sample volume

(µL)

Limit of

detection (LOD)

Clinical

sensitivity (%)

Clinical

specificity (%)

Advantages Limitations

Chip-based biosensor

(Loo et al., 2017; Yin et al.,

2020)

– 10 30–1,000 CFU/mL – – Low sample volume

Allows on-chip sample-to-answer

nucleic acid testing

Complex fabrication process

Requires skilled personnel

Clean room is usually required

for fabrication

Paper-based biosensor

(Choi et al., 2016a; Tang

et al., 2017c)

2019-nCoV IgG/IgM

detection kit (Biolidics)

20 – 91.54 97.02 Simple fabrication and operation

processes

User-friendly

Cost-effective

Lateral flow test strip allows high-scale

production which remains the most

popular screening option

Lack of quantification

Clungene COVID-19

IgM/IgG rapid test cassette

(Hangzhou Clongene

Biotech)

10 – 87.01 98.89

COVID-19 IgG/IgM rapid

test (Aytu BioScience)

20 – 91.9 100

COVID-19 IgG/IgM rapid

test device (RayBiotech)

25 – 90.44 98.31

COVID-19 IgM-IgG rapid

test (BioMedomics)

20 – 88.66 90.63

qSARS-CoV-2 IgG/IgM

rapid test (Cellex)

10 – 93.75 96.4

One step COVID-19

IgM/IgG antibody test kit

(Artron Laboratories Inc.)

10 – 93.4 97.7

Rapid response COVID-19

IgG/IgM rapid test (BTNX)

10 – 90.0 98.7

SGTi-flex COVID-19

IgM/IgG (Sugentech)

10 – 91 96.67

Wondfo SARS-CoV-2

antibody test (Guangzhou

Wondfo Biotech)

10 – 86.43 99.57

Standard Q COVID-19

IgM/IgG Duo (SD Biosensor)

10 – 90.6 96.1

COVID-19 IgM/IgG rapid

test kit (Aurora)

10 – 90.21 96.2

COVISURE COVID-19

IgM/IgG rapid test (Cardinal

Health)

20 – 93.5 100

(Continued)
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portable sample-to-answer biosensor coupled with a smartphone
for colorimetric detection of pathogens (Ma et al., 2019). It
consists of a microfluidic structure layer, a hydrophilic layer, a
PDMS hydrophobic layer and a glass substrate. The biosensor
is able to (i) purify pathogens with specific affinity reagent
pre-conjugated to magnetic beads, (ii) conduct lysis at low
temperatures, (iii) perform LAMP, and (iv) quantify the results
based on colorimetric signals. HNB is used as an indicator or
visual dye for amplicons. As mentioned, the LAMP reaction
changes the color of LAMP products from violet to sky blue. The
entire process is about 40min which is automatically performed
and being monitored using a smartphone. Future work should
include storing the reagents on chip to make it more applicable at
remote settings.

Paper-Based Biosensors
Paper-based biosensors have attracted more significant attention
for use in POC testing as compared to chip-based biosensors
owing to their cost-effectiveness, biodegradability as well as ease-
of-fabrication, functionalization and modification (Hu et al.,
2017; Böhm et al., 2018; Choi et al., 2019). With these
characteristics, they are able to achieve rapid, onsite POC testing
in remote settings (Tang et al., 2017b). Lateral flow test strips, in
particular, have been widely used for the detection of COVID-
19. They are designed to detect IgG and IgM in patient whole
blood, serum and plasma samples (Li et al., 2020; Sheridan,
2020). Each test strip generally consists of (i) a sample pad to
add patient samples, (ii) a conjugate pad containing COVID-
19 antigen conjugated with gold nanoparticles (gold-COVID-19)
and gold-rabbit IgG, (iii) a nitrocellulose membrane that consists
of a control line coated with goat anti-rabbit IgG, an IgG test
line coated with anti-human IgG, an IgM test line coated with
anti-human IgM as well as (iv) an absorbent pad that absorbs
waste (Li et al., 2020; Sheridan, 2020). In the presence of IgM
and/or IgG in patient samples, the antibodies react with gold-
COVID-19 antigen to form a complex, which moves across the
nitrocellulose membrane and interact with the anti-IgM and/or
IgG at their respective test line. The gold-rabbit IgG in turn reacts
with anti-rabbit IgG coated at the control line to produce a visible
red color. A positive IgM and a negative IgG or positive at both
lines indicate a primary or acute infection, while a positive IgG
with a negative IgM shows a secondary or later stage of infection
(Du et al., 2020; Li et al., 2020).

Apart from antibody testing, some lateral flow test strips
with sample-to-answer capability have been used for nucleic acid
testing which could potentially detect COVID-19 nucleic acids
in respiratory samples. For instance, a group has introduced
a fully integrated paper-based biosensor that involves three
main steps of nucleic acid testing (i.e., nucleic acid extraction,
LAMP, and detection), producing colorimetric signal detected
by lateral flow test strip (Rodriguez et al., 2016). However,
this integrated biosensor requires an external heat block for
amplification. To simplify the platform for POC applications, a
small and portable heater has been developed in combination
with four-layered paper-based sample-to-answer biosensor (Choi
et al., 2016a). This biosensor consists of Fast Technology
Analysis (FTA) card and glass fiber for nucleic acid extraction

Frontiers in Chemistry | www.frontiersin.org 4 May 2020 | Volume 8 | Article 517

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Choi POC Biosensors for COVID-19

FIGURE 1 | Point-of-care biosensors for COVID-19. Respiratory and blood samples are collected for the detection of viral nucleic acids and human antibodies against

the virus. Point-of-care biosensors such as chip-based biosensors (Ma et al., 2019), paper-based biosensors (Li et al., 2020), film-based biosensors (Kukhtin et al.,

2019), thread-based biosensors (Choi et al., 2018a), graphene-based biosensors (Kampeera et al., 2019), and black phosphorus-based biosensors (Kumar et al.,

2016) offer tremendous potential for identifying and managing the spread of COVID-19. Rapid onsite analysis can be performed using a smartphone for appropriate

health management.
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and LAMP, along with an integrated lateral flow test strip
for visual detection. Each functional layer is separated by
hydrophobic polyvinyl chloride substrates that control the
fluid flow from one layer to another. To further simplify the
processes, a semi-automated, fully disposable and integrated
paper-based biosensor has been developed (Tang et al., 2017c).
This integrated biosensor consists of a paper-based valve and
a sponge-based reservoir to extract nucleic acids from crude
samples, a portable battery and a heater integrated into the
platform for isothermal amplification (i.e., helicase dependent
amplification, HDA) as well as a lateral flow test strip for
colorimetric detection. The proposed biosensor allows on board
reagent storage with the use of sponges and equipment-free
isothermal amplification which significantly simplifies user steps.
More recently, lateral flow test strip has been combined with
paper folding technologies for sample preparation, LAMP and
lateral flow detection (Reboud et al., 2019). The integrated test
strip consists of buffer chambers that regulate fluid flow, acetate
films which prevent sample evaporation, filter paper-based valves
that prevent LAMP reagent from mixing with other reagents,
and a lateral flow test strip. This integrated technology is suitable
for use in resource-limited settings to test crude samples (e.g.,
sputum), offering great potential to rapidly detect nucleic acids of
COVID-19 (<50 min).

Besides lateral flow test strips, several 3D paper-based
microfluidic biosensors have been developed to detect proteins
or nucleic acids at the POC (Xia et al., 2016; Lam et al., 2017).
These biosensors usually detect targets based on fluorescence or
colorimetric detection approaches. Metal ions (e.g., magnesium,
calcium, or silver) have been used in 3D paper-basedmicrofluidic
biosensors to react with base (purine or pyrimidine) from
double stranded DNA to form a stable complex that show
fluorescent signal upon UV irradiation. For example, a fully
integrated and foldable biosensor encapsulated with agarose have
been developed for long-term reagent storage and multiplex
fluorescence detection (Trinh et al., 2019). The biosensor
consists of a reaction zone and a detection zone. Agarose that
carries LAMP reagents and silver nitrate (reaction indicator)
is deposited and stored in reaction and detection zones for
at least 45 days. The sample is added into reaction zones
which are then closed with an adhesive sealing film to avoid
sample evaporation before being placed on a portable heater for
amplification. Following the amplification process, the sealing
film is removed and the detection zone is folded and soaked
into the reaction zone. UV light is used to visualize the
reaction between amplicons and silver ions. The brown color
intensity of the test zone increased along with the increased
concentration of amplicons. The biosensor is simple and user
friendly, which is expected to detect COVID-19 nucleic acids in
patient samples.

More recently, as a new alternative, fuchsin has been
explored for the detection of DNA amplicons based upon
colorimetric detection approach using a 3D paper-based
microfluidic biosensor (Trinh and Lee, 2019). In the absence
of DNA amplicons, addition of sodium sulfite molecule and
fushsin produces fushsin leucosulfonic acid or leucofushsin
which is colorless. In the presence of DNA amplicons, aldehyde

groups of the DNA bind to sulfonate groups and the bond
between hydrogen sulfite and the central C atom is broken,
producing the fuchsin with chromophoric structure, which
appears to be purple signals (Mello and de Campos Vidal,
2017). The proposed biosensor is composed of a sample zone,
a reaction zone and a detection zone. The detection zone
consists of paper strips with fuchsin stained lines. Briefly,
sample is injected into the sample zone which is sealed with
an adhesive sealing film to prevent sample evaporation. The
reaction zone is folded to bind to the sample zone and
the biosensor is turned upside down to enable the flow of
sample from sample zone to reaction zone. The biosensor is
heated on a hot plate at 65◦C for 30min for LAMP. After
LAMP, the sealing film is peeled off and the hydrochloric
acid is injected into the reaction zone. Sodium sulfite is
subsequently added and the changes of fuchsin-stained line
color is observed. Unlike the above-mentioned biosensors, this
biosensor produces simple colorimetric signals detectable by
the naked eyes without requiring any external readers, which
shows promising for rapid diagnosis of COVID-19 infections at
the POC.

Other Biosensors
Apart from developing chip-based and paper-based biosensors,
other material-based biosensors such as textile-based, film-
based or carbon-based biosensors have also been introduced
for potential use for COVID-19 (Parrilla et al., 2016; Afsahi
et al., 2018; Mogha et al., 2018). They are developed
to improve the functionality and detection sensitivity
of the existing biosensors, providing more promising
choices for practical use. Textile-based biosensors such
as thread-based, fabric-based or cloth-based biosensors
have been developed with simple fabrication processes and
improved assay performance. One study has incorporated
polysiloxanes with tunable hydrophobicity into thread-
based biosensors to delay fluid flow in lateral flow assay and
improve detection sensitivity (Choi et al., 2018a). Similar to
conventional lateral flow test strip, the fluidic delay in thread
increases interactions between gold nanoparticles-antibodies
(AuNP-Ab) and targets. With the optimum conditions,
the increase in interactions produces more AuNP-Ab-
target complexes, showing 10-fold more sensitive than the
unmodified biosensors. This biosensor is simple-to-fabricate
and highly sensitive, which shows immense potential in
detecting IgG and IgM in COVID-19 patients for appropriate
health monitoring.

In addition to textile-based biosensors, film-based biosensors
have been developed to detect infectious microorganism from
crude samples. For instance, a film-based biosensor has been
introduced which consists of a transparent polyester film
substrate, a sample chamber, a cover, a reaction chamber
and a waste chamber (Kukhtin et al., 2019). Microarray
2-(hydroxyethyl)methacrylamide gel elements are synthesized
with the incorporation of oligonucleotides into gels and
polymerization under UV irradiation. The gel elements are
covalently attached to the substrate. Briefly, both sample and
master mix are first introduced into chambers. The capillary
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action promotes uniform filling of the chamber and amplification
is subsequently performed. Wash buffer is then introduced and
the pressure leads the waste to the waste chambers. Lastly,
fluorescent imaging and analysis are performed. The flexible
film substrate used in the study offers several advantages for
POC testing: (i) allows covalent attachment of gel without pre-
treatment processes, (ii) has low background fluorescence, (iii)
has transparent properties that allows optical inspection, (iv) able
to withstand thermal cycling and compatible to amplification
processes. This flexible film allows easy fabrication and is user-
friendly, which costs ∼500 times less than other substrates (i.e.,
glass), demonstrating its potential for detecting COVID-19 virus
in patient samples.

Apart from these, 2D materials such as graphene or black
phosphorus have also been integrated into biosensors for
POC diagnosis which could potentially be used for COVID-
19 testing (Jin et al., 2017; Choi et al., 2018b; Liu et al.,
2018). For example, a recent study has introduced a portable
graphene-based electrochemical biosensor for highly sensitive
POC testing (Kampeera et al., 2019). Graphene-based electrodes
are constructed by screen-printing mainly due to low cost,
ease of fabrication and high production rate. The screen-
printed graphene electrodes (SPGE) are synthesized by either
substituting carbon with graphene or incorporating graphene
into carbon paste. SPGE have been reported to show superior
electrochemical properties than commonly used screen-printed
carbon electrodes (SPCE) by having a higher electron transfer
rate and a larger electrochemical surface area. After nucleic
acid extraction, LAMP is performed using a simple heating
block. The interaction between SPGE and amplicons results in
a shift in cathodic current which stems from the intercalation of
redox probe to double-stranded DNA. This phenomenon enables
quantification of LAMP product. A portable mini potentiostat is
used in combination with SPGE for on-site detection. The next
step should be the integration of extraction platform into the
proposed biosensor to make it more portable and user-friendly.

Besides graphene, black phosphorus (BP) or phosphorene-
based biosensors have also been extensively explored for medical
diagnosis (Qian et al., 2017; Ge et al., 2019; Luo et al.,
2019). BP displays excellent electrochemical properties which
enhances assay sensitivity and selectivity owing to its inherent
redox properties. For example, a recent study has reported
the development of a label-free electrochemical biosensor with
an aptamer-functionalized BP nanostructured electrode (Kumar
et al., 2016). The BP nanosheets are coated with poly-L-lysine
(PLL) that allows functionalization of BP with antiAb-aptamers.
The aptamers are immobilized onto the nanosheets via the
coulomb interaction between aptamers and PLL. The presence
of target antigens causes the direct oxidization of iron (ii)
to iron (iii) at the electrode surface through the mechanism
of electron transfer. As compared to reduced graphene oxide
(rGO), BP-based biosensors show a higher detection sensitivity
and specificity, achieving the detection limit down to pg level
compared to ng level achieved by rGO biosensors. The proposed
biosensor would allow highly sensitive detection of IgG or IgM
against coronavirus in patient blood samples.

CONCLUSION AND FUTURE
PERSPECTIVES

In summary, this review article discusses the POC biosensors that
made of PDMS, paper and other flexible materials such as textile,
film, and carbon nanosheets for rapid diagnosis of COVID-19.
The cost-effectiveness, simplicity, rapidity and portability of these
biosensors play a crucial role in POC applications. Antibody tests
are suitable to detect the late stage of infections while nucleic acid
tests detect the presence of nucleic acids (viruses) at the early
stage of infection, showing a higher sensitivity and specificity
than antibody tests. However, current nucleic acid tests require
three key steps (i.e., nucleic acid extraction, amplification, and
detection), involving more complicated processes than that of
antibody tests. In fact, most of the commercial POC biosensors
for COVID-19 are paper-based biosensors or lateral flow test
strips for antibody detection (IgG and IgM) that produce
colorimetric signal. While these antibody tests display lower
specificity compared to nucleic acid tests, they have helped
shortening the turnaround time for rapid diagnosis, allowing
fast decision making. Future work should include specificity
improvement or combination with other tests such as rapid
nucleic acid tests to further confirm the test result.

Recent studies have integrated sample-to-answer processes
into a single biosensor to detect nucleic acids of pathogens and
human antibodies against the pathogens, which could be further
explored to detect COVID-19 infections. In addition, current
works have also attempted to improve detection sensitivity,
simplicity and performance of biosensors. Assay sensitivity can
be enhanced through enzyme-based signal enhancement (He
et al., 2011), sample concentration (Moghadam et al., 2015)
or much simpler fluidic-control strategies (Choi et al., 2016b).
Further, nucleic acid tests, in particular, that involves three key
steps should be simplified and integrated into a single biosensor
for POC use. The biosensors discussed in this review show
immense potential to be developed into a self-contained platform
for the detection of COVID-19 infections outside the laboratory,
particularly in the remote settings or developing areas.

In the future, more studies should focus on simplifying user
steps and incorporating all key steps into a single biosensor
at minimal cost (Loo et al., 2019). The capability of storing
all reagents on chip is vital to eliminate the requirement for
large storage equipment (Deng and Jiang, 2019) whereas, the
multiplexing capability of biosensors would increase throughput
(Dincer et al., 2017). As compared to other detection approaches
such as fluorescence and electrochemical detection approaches,
colorimetric detection represents the most common approach
mainly due to its simplicity and the ability to observe signal with
the naked eyes. The biosensors that produce colorimetric signals
enable visual detection without requiring extra tools such as UV
lamp, which would be helpful for rapid on-site diagnosis (Chan
et al., 2016; Yang et al., 2019). Quantification, which provides
more accurate readout has been achieved using smartphone
apps which could be performed by untrained users at POC
settings. Future studies should further improve the function of
smartphone and specific smartphone apps that enable on-site
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data analysis while allowing data storage to track patient health
status (Roda et al., 2016; Wang et al., 2017; Liang et al., 2019; Xu
et al., 2020). Additionally, incorporating portable power sources
such as batteries into biosensors would significantly advance their
functionality especially in rural areas where electricity supply is
limited (Zarei, 2017b). In short, emerging POC biosensors with
the aforementioned capabilities could rapidly identify the spread
of COVID-19 and guide appropriate health care, playing a key
role in managing the outbreak.
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