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Aqueous non-lithium based rechargeable batteries are emerging as promising energy

storage devices thanks to their attractive rate capacities, long-cycle life, high safety, low

cost, environmental-friendliness, and easy assembly conditions. However, the aqueous

electrolytes with high ionic conductivity are always restricted by their intrinsically narrow

electrochemical window. Encouragingly, the highly concentrated “water-in-salt” (WIS)

electrolytes can efficiently expand the stable operation window, which brings up a series

of aqueous high-voltage rechargeable batteries. In the mini review, we summarize the

latest progress and contributions of various aqueous electrolytes for non-lithium (Na+,

K+, Zn2+, Mg2+, and Al3+) based rechargeable batteries, and give a brief exploration

of the operating mechanisms of WIS electrolytes in expanding electrochemically stable

windows. Challenges and prospects are also proposed for WIS electrolytes toward

aqueous non-lithium rechargeable metal ion batteries.

Keywords: “water-in-salt” electrolytes, aqueous batteries, non-lithium, rechargeable metal ion batteries, high

energy density

INTRODUCTION

Recently, the safety issues and production costs of rechargeable batteries become the main factors
restricting their commercial applications in portable electronic devices (PED), electrical vehicles
(EV), and stationary electronic energy storage systems (EESs) (Wang et al., 2007; Suo et al., 2015;
Lukatskaya et al., 2018). Thus, how to effectively select appropriate materials involved in batteries
has become an important and challenging topic. As an important component of batteries, the
electrolytes play a vital role in the superior electrochemical performance of batteries, and have
attracted more and more attention in recent years (Kandhasamy et al., 2012; Yan et al., 2012;
Suo et al., 2013). Although traditional organic electrolytes have exhibited appealing applications in
rechargeable batteries, they inherently contain a large amount of expensive yet flammable organic
solvents with certain levels of toxicity, which makes the device assembly conditions relatively harsh
(Wang et al., 2012; Xu and Wang, 2016; Yang et al., 2019a). Consequently, aqueous electrolytes
have been established as promising alternative candidates for advanced rechargeable batteries
since their first application in lithium ion batteries (LIBs) (Li et al., 1994). The aqueous batteries
display distinct merits, including low cost, high safety, high electronic conductivity, mild assembly
environment, and so on (Wang et al., 2007; Baskar et al., 2014; Huang et al., 2019a). However,
the electrochemical stability voltage window of aqueous batteries is as narrow as ∼1.23V, which
seriously restricts the optimal choice of cathode and anode materials due to the existence of
hydrogen and/or oxygen evolution reactions. This excludes most electrochemical couples that
occur above the output voltage of 1.5 V, which limits the enhancement in energy density of full
devices (Lu et al., 2011; Kim et al., 2014; Jiang et al., 2019a; Liu et al., 2020).
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Recently, highly concentrated “water-in-salt” (WIS)
electrolytes, in which the dissolved salts far outnumbers
the water molecules (salt/solvent ratio > 1 by volume or weight),
have been reported to expand the stable voltage window up
to ∼3.0V (Suo et al., 2016, 2017). In the WIS electrolytes, all
water molecules participate in the ion solvation shells, and
no “free” water remainders can be found. As a typical system,
Suo et al. first developed a high concentration electrolyte with
21m (mol kg−1) of lithium bis(trifluoromethylsulfonyl)imide
(LiTFSI) for aqueous rechargeable LIBs (the molar ratio of Li+

to H2O is 2.5) (Wang et al., 2015). However, the economic and
environmental concerns, as well as the rarity and increasing
consumption of Li resources, restrain the scalable applications
of lithium-based electrochemical devices. As a consequence,
the development of alternative aqueous rechargeable batteries
based on some other earth-abundant elements turns out to be
urgent and more meaningful. Therefore, the monovalent (Na+,
K+) and/or multivalent (Zn2+, Mg2+, and Al3+) cation based
aqueous secondary batteries have been intensively explored
recently (Wessells et al., 2011; Zhao et al., 2016; Suo et al., 2017;
Wang et al., 2020).

In this mini review, we mainly addressed the topic of the
WIS electrolytes and their latest progress in various non-lithium
aqueous rechargeable metal-ion batteries (ARMIBs). In the first
section, we gave a brief exploration of the involved mechanism of
WIS electrolytes in extending the electrochemical stability voltage
window of devices. And then, we provided an extensive overview
of the applications of WIS electrolytes in aqueous non-lithium
secondary batteries, including aqueous sodium-ion batteries
(ASIBs), aqueous potassium-ion batteries (APIBs), aqueous
zinc-ion batteries (AZIBs), aqueous magnesium-ion batteries
(AMIBs), and aqueous aluminum-ion batteries (AAIBs). Finally,
we proposed the existing challenges and prospects for the
future development of WIS electrolytes toward advanced non-
lithium ARMIBs.

THE OPERATING MECHANISM OF “WIS”
ELECTROLYTES IN EXTENDING THE
ELECTROCHEMICAL WINDOW OF
DEVICES

It is well-known that free water fraction is one of the key factors
affecting the electrochemical stability of electrolytes (McEldrew
et al., 2018; Vatamanu and Borodin, 2018). In traditional “salt-
in-water” (SIW) electrolytes, the water molecules enormously
outnumber the salts, and are relatively free to form hydrogen
bonding networks. Thus, a large amount of water molecules
will separate or solubilize (or corrode) the electrode material
(Dubouis et al., 2018; Huang et al., 2019a). With the salt
concentration increasing, the tighter solvation shell associated
with WIS electrolytes can be formed. Meanwhile, the “freedom”
water solvent molecules display a lower mobility. They turn
out to be preferentially solvated by metal ions, and thus less
available to separate salt anions. Accordingly, the water-water
hydrogen bonds are replaced by water-ion-bonding interactions,
enhancing the interactions between cations and anions, which

can further widen the stable working windows of electrolytes
(Azov et al., 2018).

It is also believed that the formation of a solid electrolyte
interphase (SEI) layer with a high salt concentration on the
electrode surface can prevent water reduction, thus positively
contributing to the wide electrochemical stability window. To
be specific, the OH− generated during the hydrogen oxygen
reaction in the first cycle will chemically react with anions (such
as TFSI) to mainly form a stable SEI film, which further prevents
water reduction, and enhances the oxidative stability of the
electrode masteries (Coustan et al., 2018; Dubouis et al., 2018).
A typical solvation structure for WIS electrolytes is schematically
depicted in Scheme 1.

It is well-known that it is an effective strategy to increase the
energy density of batteries by raising the operating voltage (Xia
et al., 2017; Manalastas et al., 2018). The voltage, according to the
following Nernst equation, is highly dependent upon the half-cell
potentials of both positive and negative electrodes.

1V = V+ − V− (1)

V = V0
−

RT

nF
ln

Cared

Cbox
(2)

where V0 is the standard half-cell reduction potential in respect
to the standard hydrogen electrode (SHE), R is the universal
gas constant, T is the absolute temperature in kelvins, n is the
stoichiometric number of electrons, F is Faraday’s constant, Cred

is the concentration of the reduced form, Cox is the concentration
of the oxidized form, and a and b are exponential powers
determined by the coefficients of Cred and Cox in the redox
half-reaction, respectively.

The maximum cell potential (1V) is critically determined
by the potential subtraction between positive and negative
(V0

+-V
0
−). The higher concentration of the oxidized form

(Cox) establishes stronger reduction potentials, as shown in
Equations 1, 2. The electrolyte concentration and SEI film
can effectively control the electrolyte decomposition, which
allows even higher-concentration redox ions to participate in
electrochemical reactions within the broadened electrochemical
voltage window. Density functional theory (DFT) calculations
are reported as an effective way to calculate reduction potentials
of the anions’ salts (Suo et al., 2015; Dawut et al., 2019; Shin et al.,
2019).

WIS ELECTROLYTES FOR NON-LITHIUM
ARMIBS

Considering some retrieved reviews about WIS electrolytes in
lithium-based aqueous batteries (Wang et al., 2012; Kim et al.,
2014), this mini-review will mainly focus on the latest progress
in highly concentratedWIS electrolytes for non-lithium ARMIBs
including ASIBs, APIBs, AZIBs, AMIBs, and AAIBs. The
electrochemical properties of these batteries are systematically
collected in Table 1.

It is well-known that electrolytes as ionic transport
intermediates, with their inherent ionic conductivity, mobility,
interfacial characteristics, and other properties, play a critical role
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SCHEME 1 | Schematic diagram of the solvation structure for WIS electrolytes. By Linrui Hou, et al.

in enhancing the cycle performances. Designing and optimizing
a functional electrolyte with a stable electrode/electrolyte
interfaces has to be considered as an essential way to achieve a
superior electrochemical performance in aqueous batteries. The
typical design strategies are optimized by varying the electrolyte
components, including salts and additives (Peng et al., 2017;
Zhao et al., 2020).

The choice of salts significantly affects the electrochemical
stability of the electrolytes, as well as their ionic conductivity
and thermal stability. The salt anions in the aqueous WIS
electrolytes can be commonly divided into inorganic (Cl−, SO2−

4 ,
and ClO−

4 ) and organic (CF3SO
−

3 , FSI
−, TFSI−, BETI−, and

PTFSI−) ones (Hong et al., 2013; Zhang et al., 2020). Inorganic
salts are likely to be considered due to their low cost and high
ionic conductivity. For instance, the fewer side reactions and
low oxidation of Cl− make it suitable for aqueous electrolytes
(Zhang et al., 2018). In the case of SO2−

4 , the low cost, good
compatibility, and exceptional stability make it more attractive;
however, some by-products produced by over cycling still limits
its practical application (Zhao et al., 2016; Huang et al., 2019b).
Another anion is ClO−

4 , which has strong oxidability, lowering
the potential for explosive risks and high toxicity (Lee et al.,
2019). The bulky organic anions (i.e., CF3SO

−

3 , FSI
−, TFSI−,

BETI−, and PTFSI−) in aqueous electrolytes can reduce the
solvation effect by occupying a large space. These anions show
low ionic conductivity and corrosion issues (Yamada et al., 2016;
Jiang et al., 2019a; Pan et al., 2019).

ASIBS
Sodium, as one an alkali metal, is closely located with lithium
in the periodic table and has a relatively low electrochemical
potential (−2.71V vs. SHE). Typically, SIBs share many chemical
properties with LIBs (Kim et al., 2012; Li et al., 2013; Boyd and
Augustyn, 2018; Zheng et al., 2019). The high concentrated WIS
electrolytes produce ASIBs with better cycling stability. However,
the easy crystallization of highly concentrated electrolytes at

room temperature will seriously limit their practical application,
and even damage the batteries (Wu et al., 2015; Reber et al.,
2019; Zhang et al., 2020). Currently, the hydrate melts or bisalt,
especially the adoption of asymmetric imide anions (such as
FTFSI and PTFSI), are proved to be effective for reducing the
viscosity and density as well as restraining crystallization by
breaking the water structure and/or changing the probability of
solvation structures with ion aggregations (Marcus, 2009; Brini
et al., 2017; Suo et al., 2017), which thus results in the high
solubility of salt anions (Suo et al., 2016; Zheng et al., 2019).

As reported in previous works, the commonly used salts in
electrolytes of ASIBs are NaClO4, NaFSI, NaCF3SO3 (NaOTf),
and NaTFSI due to their unique properties. Suo et al. first
reported a Na+-conducting SEI layer on the surface of
the NaTi2(PO4)3 anode in an electrolyte of 9.26m sodium
trifluoromethane sulfonate (NaCF3SO3 or NaOTf), which
expands the electrochemical stability window of NaTi2(PO4)3
up to 2.5V (vs. Na+/Na) (Suo et al., 2017). Kühnel and co-
workers obtained an ultra-high-concentration (up to 37M)
sodium bis(fluorosulfonyl)imide (NaFSI) in water by rapid
solidification of the entire supersaturated solution, offering
a stable electrochemical window of 2.6V. Strikingly, an
aqueous NaTi2(PO4)3//Na3(VOPO4)2F sodium-ion battery with
an electrolyte of 35m NaFSI shows electrochemically reversible
behaviors within an electrochemical window over 2.0V (Kühnel
et al., 2017). The NaFSI electrolytes with different concentrations
are also shown to effectively broaden the voltage windows
of ASIBs (Zheng et al., 2019). Another well-used electrolyte
in ASIBs is NaClO4 solution. When its molality increases to
17m, a stable electrochemical potential window of ∼2.8V
can be realized (Nakamoto et al., 2017, 2018; Lee et al.,
2019). However, the potential explosive risk and high toxicity
may hinder the extensive use of NaClO4. Battaglia et al.
explored a NaTi2(PO4)3//Na3(VOPO4)2F sodium-ion battery
by employing the mixed NaFSI/NaFTFSI electrolyte (25m
NaFSI and 10m NaFTFSI). The unique device demonstrates
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TABLE 1 | The main electrochemical properties for WIS-based aqueous non-lithium batteries.

Metal Radius (nm) Electrolytes Voltage (V) electrodes References

Na 0.102 35m NaFSI 2.6 NaTi2(PO4)3 anode

Na3(VOPO4 )2F cathode

Kühnel et al., 2017

18.5m

Na(PTFSI)0.65(TFSI)0.14(OTf)0.213H2O

2.7 Vs Na+/Na Zheng et al., 2019

Na(PTFSI)0.65(TFSI)0.14(OTf)0.213H2O 1.75 Na3V2 (PO4)2F3 |NaTi2(PO4 )3
full cell

17m NaClO4 2.8 Na2MnFe(CN)6 | NaTi2(PO4)3 Nakamoto et al., 2017

17m NaClO4 2.7 Vs Na+/Na Lee et al., 2019

17m NaClO4 1.8 Na4Fe3 (PO4)2(P2O7)|NaTi2(PO4)3
full-cell

25m NaFSI + 10m NaTFSI 1.9 Na3(VOPO4 )2F|NaTi2(PO4)3
full-cell

Reber et al., 2019

9m NaOTf + 22m TEAOTf 3.3 Vs Ag/AgCl Jiang et al., 2019a

K 0.138 27.7m

K(PTFSI)0.12(TFSI)0.08(OTf)0.82H2O

2.5 vs K+/K Zheng et al., 2019

30m KAc 3.2 KTi2(PO4 )3 as anode Leonard et al., 2018

22m KCF3SO3 3.0 vs Ag/AgCl Jiang et al., 2019b

22m KCF3SO3 2.6 KFeMnHCF-3565|PTCDI full

cells

30m KFSI 3.97 vs. Hg/Hg2Cl2) Chen et al., 2020

Zn 0.074 21m LiTFSI +0.5m ZnSO4 1.8 LiMn0.8Fe0.2PO4 as cathode Zhao et al., 2016

21m LiTFSI+ 1m

Zn(CF3SO3 )2

1.4 V2O5 as anode Hu et al., 2017

2.4m KOH+1.0m H2SO4

acid-alkaline dual electrolyte

2.44 Zn/Zn(OH)2−anode+

Mn2+/MnO2 as cathode

Liu et al., 2020

Al 0.0535 5m Al(CF3SO3)3 2.65 PBA-type FeFe(CN)6 as

cathode

Zhou et al., 2019

Mg 0.072 1m MgSO4 1.5 PBN-

Na1.4Ni1.3Fe(CN)65H2O|

polyimide full cells

Xia et al., 2017

4m Mg(TFSI)2 1.9 Li3V2 (PO4)3 |poly pyromellitic

dianhydride

Wang et al., 2017

FSI, bis(fluorosulfonyl)imide; TFSI, bis(trifluoromethylsulfonyl)imide; OTf, trifluoromethane sulfonate; PTFSI, N(SO2CF3)(SO2C2F5 ); TEA, tetraethylammonium; TFSI,

bis(trifluoromethanesulfonyl)imide; PBN, Prussian blue; PTCDI, 3,4,9,10-perylenetetracarboxylic diimide.

superb electrochemical performance in terms of cycling stability,
reversible capacity, and energy density within a wide operating
temperature range from −10 to 30◦C, benefiting from the
positive role of the mixed electrolyte (Reber et al., 2019). A new
type of mixed WIS electrolytes containing inert cations (TEA+)
is prepared by dissolving sodium trifluoromethanesulfonate
(NaOTf) and tetraethylammonium trifluoromethanesulfonate
(TEAOTf) in water. When the total salt concentration is
up to 31m (9m NaOTf and 22m TEAOTf), the unique
NaOTf/TEAOTf electrolyte is endowed with a wide voltage
window of ∼3.3V, and suppresses the dissolution of the positive
transition metal as well (Jiang et al., 2019a).

APIBS
Potassium-ion batteries (PIBs) are also considered to be
a promising energy storage system due to their abundant
potassium resources (Su et al., 2016; Eftekhari et al., 2017).
Generally, potassium owns lower standard redox potential than
its counterparts of Na and Li, which will guarantee PIBs with

a potentially higher cell voltage. However, the higher ionization
potential and larger ionic radius of K itself have limited the
choice of electrode materials for advanced APIBs (Suo et al.,
2017; Hwang et al., 2018). Thanks to the smaller Stokes radius
of solvated K+ owing to its weak Lewis acidity, and the low
interfacial reaction resistance due to the small desolvation
activation energy, the K-containing electrolytes always display
higher conductivity than its Li/Na counterparts (Komaba et al.,
2015; Kim et al., 2017; Chen et al., 2020). Meanwhile, the
weak oxidation resistance of electrolytes and the insufficient
passivation on the surface of negative electrodes leads to modest
reversible capacities, especially at the initial cycle, or in the

high-voltage (>4.0V) operation windows, which limits the huge
development of APIBs (Hosaka et al., 2018). Therefore, it is
essential to fit the high energy APIBs to purposefully explore
suitable electrolytes.

Leonard and co-workers first reported the aqueous electrolyte
of 30m potassium acetate (KAc) for APIBs (Leonard et al.,
2018).With the electrolyte, the KTi2(PO4)3 (KTP) anode displays
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good reversible behaviors within an extended electrochemical
window from −1.7 to 1.5V (vs. Ag/AgCl). Compared to the
KAc and LiTFSI-based electrolytes with the same concentration,
the bis(fluorosulfonyl)imide(KFSI)-based electrolytes exhibit
higher conductivity (Chen et al., 2020). The electrolyte of
30m KFSI also displays an electrochemical stability window
from −1.55 to 2.42V (vs. Hg/Hg2Cl2), which enables the b-
perylene-3,4,9,10-tetracarboxylic dianhydride (b-PTCDA), and
even b-PTCDA-based full batteries to stably operate in such
high-concentration electrolytes without hydrogen evolution and
material dissolution (Chen et al., 2020). Jiang et al. also
investigated an aqueous 3,4,9,10-perylenetetracarboxylic diimide
(anode)//K1.85Fe0.33Mn0.67[Fe(CN)6]0.98·0.77H2O (cathode) full
device with 20m KCF3SO3 (KOTf) WIS electrolyte, and the
full battery exhibits an unprecedented performance in terms of
reversible capacities and rate behaviors (Jiang et al., 2019b).

The asymmetric hydrate melts with an optimized eutectic
system have been reported as a stable aqueous electrolyte
with good fluidity and reduced viscosity/density, in which all
water molecules participate in Li+ hydration shells (Yamada
et al., 2016). With the introduced stable asymmetric anion
(i.e., PTFSI−), the K(PTFSI)0.12(TFSI)0.08(OTf)0.8·2H2O as the
alkali melts exhibits excellent water solubility and an expanded
operating window of ∼2.5V (∼2.14–4.65V vs. K+/K), but
does not suffer from the vulnerable S-F bond. Moreover, the
ionic conductivity of the K(PTFSI)0.12(TFSI)0.08(OTf)0.82H2O is
maintained at ∼34.6mS cm−1, much higher than other typical
non-aqueous electrolytes (∼10mS cm−1) (Zheng et al., 2019).

AZIBS
Recently, AZIBs, due to their remarkable thermal stability, high
theoretical specific capacity (∼820 mAh g−1), intrinsic safety,
and low cost of the Zn metal, are considered to be the most
promising alternative to LIBs. Moreover, the metallic Zn is stable,
and can be directly utilized as an electrochemically reversible
anode in aqueous electrolytes (Zhang, 1996; Li et al., 2019).
However, its extensive applications are still limited by suitable
aqueous electrolytes with excellent thermal properties and safety.
Previous works have shown that the alkaline aqueous electrolytes
result in the formation of zinc dendrite and the by-product of
ZnO, causing a poor cycle capacity and low CE values (Zhang
et al., 2014; Wang et al., 2018a). Similarly, the Zn salts-based
neutral or mildly acidic electrolytes with high concentrations are
a very effective way to address these issues.

Typically, ZnSO4 and Zn(CF3SO3)2 solutions are commonly
used electrolytes for AZIBs because of their excellent stability
and compatibility (Song et al., 2018). Zhao et al. assembled
a Zn//LiMn0.8Fe0.2PO4 aqueous hybrid-ion battery with 0.5m
ZnSO4 and 21m LiTFSI as the WIS electrolyte. The unique
device provides a high energy density of ∼183 Wh kg−1 and
a high operating voltage exceeding 1.8V (Zhao et al., 2016).
However, the ZnSO4 electrolyte for AZIBs always suffers from
its intrinsically limited solubility and lower Zn stripping/plating
efficiency. In contrast, the Zn(CF3SO3)2 electrolyte exhibits
smaller polarization and higher CE values, which makes it
suitable for wide application in aqueous ZIBs (Huang et al.,
2019b; Xie et al., 2020). Mai’s group designed a novel Zn//V2O5

aqueous hybrid-ion battery with the WIS electrolyte of 1m
Zn(CF3SO3)2 and 21m LiTFSI. Compared to that with the
Zn(CF3SO3)2 (1m), the Zn//V2O5 battery with the WIS-
electrolyte (21m LiTFSI and 1m Zn(CF3SO3)2) displayed amore
stable charge/discharge plateau and cycling performance (Hu
et al., 2017). Furthermore, owing to the large-size TFSI− anions,
the Zn(TFSI)2, as a novel organic zinc salt can effectively reduce
the solvation effect. Wang’s group developed a WIS electrolyte
of 1m Zn(TFSI)2 + 20m LiTFSI, which is capable of retaining
the water in an open atmosphere. It effectively promotes the
dendrite-free plating/stripping of metallic Zn with nearly 100%
CE and brings unprecedented reversibility to the aqueous ZIBs
with either LiMn2O4 or O2 cathodes (Wang et al., 2018a).
Additionally, a new low-cost WIS electrolyte of 30m ZnCl2 can
deliver a wide electrochemical window of 2.3V due to its fewer
side reactions and low oxidative Cl− (Zhang et al., 2018). In
the symmetric Zn||Zn cell with a 30m ZnCl2 electrolyte, the
Zn electrode renders a high CE of 95.4% and a high stable
galvanostatic charge-discharge profile of over 600 h without any
significant overpotential fluctuation (Zhang et al., 2018).

AMIBS
Multivalent ions, as good transporters, can carry more electrons
than monovalent ions. Besides the Zn2+, another bivalent metal
ion of Mg2+ with low reduction potential (−2.37V) is also
considered as a predominant charge carrier for AMIBs due
to the high volumetric specific capacity of Mg (∼3833 mAh
L−1) and the total lakc of dendrite growth (Rasul et al., 2012;
Song et al., 2015; Xu et al., 2015; Sun et al., 2016). The
current development and practical applications of the electrolytes
for AMIBs are limited by the corrosion of the electrolytes
(Wang et al., 2017; Zhao et al., 2020). The electrochemical Mg
dissolution occurs at a high overpotential which restrains the
selection of solvents (Hebié et al., 2017). Consequently, the
commonly used anions (Cl−, SO2−

4 , ClO−

4 , CF3SO
−

3 ) in other
ARMIBs cannot be directly applied to AMIBs.Moreover, the high
charge density of multivalent ions will induce strong coulombic
interactions with both the lattice of electrolyte solvents and
electrode materials, which is an adverse factor for improving
electrochemical performance (Lapidus et al., 2014; Wang et al.,
2018b). So far, the AMIBs are still in its infancy; only a few
possible materials based on WIS electrolytes show reversible
performance toward AMIBs.

Moreover, Mg(TFSI)2, as a neutral molecule, is completely
non-corrosive, safe, and green, and can be anticipated for
AMIBs application (Yoo et al., 2013). Wang et al. fabricated
a poly pyromellitic dianhydride//Li3V2(PO4)3 device by using
4m Mg(TFSI)2 as the electrolyte. The full cell exhibits
superior electrochemical properties including an excellent rate
capability, high power density, and high capacity retention in an
electrochemical window of 1.9V (Wang et al., 2017).

AAIBS
Aluminum is the first abundant metal element in the earth’s
crust, which has been investigated widely as the anode material
for AAIBs (Wang et al., 2016). Moreover, the ion radius
of Al3+ (0.054 nm) is much smaller than Li+ (0.076 nm),
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which ensures the rapid insertion/extraction of Al3+ during
the charge/discharge process (Rudd and Gibbons, 1994; Li
et al., 2007; Das et al., 2017; Yang et al., 2019b). Furthermore,
the Al anode possesses a large gravimetric/volumetric capacity
(∼2,980 mAh g−1/∼8,046 mAh cm−3), due to its unique three-
electron transfer capability. However, the low ionic conductivity,
corrosion with low concentration electrolytes, and dendrites
growth still limits the electrochemical stability of electrolytes,
thereby limiting its large-scale energy applications (Liu et al.,
2012; Nakayama et al., 2015; Zhao et al., 2018). So, the key for
developing AAIBs is to exploit WIS electrolytes toward high-
performance electrodes, which can enable the dissolution of
dendrites, thereby significantly improve the cycling stability.

AlCl3, due to the ultra-low cost and safety, is widely used
as the electrolytes for AAIBs. Pan et al. reported a high-
concentration aqueous AlCl3 solution (3.382m) as the electrolyte
for a novel Al/AlCl3/graphite aqueous battery, which can stably
operate within an electrochemical stability window of ∼4V,
and exhibit a large capacity of ∼165 at 500mA g−1 along
with a high CE of 95% over 1,000 cycles (Pan et al., 2019).
Additionally, the Al(OTf)3 is another type of electrolyte with
a noncorrosive property, which makes it more favorable than
corrosive AlCl3 when applied in AAIBs (Das et al., 2017).
Chen’s group introduced the electrolyte of 5m Al(OTf)3 for
electrochemical evaluation of the Prussian Blue Analogs-type
FeFe(CN)6 (FF-PBA) cathode. Appealingly, with the electrolyte,
the FF-PBA shows an extraordinarily high initial discharge
capacity of ∼116 mAh g−1 and long cycle life with a capacity
fading of 0.39% per cycle in the expanded operation window of
2.65V (Zhou et al., 2019). Until now, there are few other WIS
electrolytes reported for AAIBs.

CONCLUSION

Electrolytes, as ionic transport intermediates with inherent
ionic conductivity, mobility, interfacial characteristics, and
other properties, play a critical role in enhancing the cycle
performances, rate capacity, and safety of batteries. WIS
electrolytes with highly concentrated salt solutions specifically
can expand electrochemical potential windows of aqueous
devices up to about 3V and result in low solvent (water
molecules) activities and high chemical stabilities (restraining
side reactions). Moreover, the formation of stable SEI film also
endows the cells with a high energy density and excellent cycling
stability. This mini review mainly focuses on theWIS electrolytes

for ARMIBs and summarizes the recent investigation of WIS
electrolytes in non-lithium monovalent (Na, K) and multivalent
(Zn, Mg, Al) ion batteries.

However, research based on the WIS electrolytes is still at the
primary stage, according to the achievements reported so far;
the challenges and prospects for the future development of WIS
electrolytes toward non-lithiumARMIBs are proposed as follows.
First, the scientific foundation for the highly concentrated WIS
electrolytes will render some novel yet unknown concepts, which
may be in conflict with current classic theories, and should
be further unveiled with the elegant combination of in/ex-situ
spectroscopic techniques and theoretical simulation/calculation.
For instance, an in-depth understanding of intrinsic ionic
transport and functional SEI formation mechanisms in the
WIS electrolyte, which are distinct from the conventional
SIW systems, should be comprehensively conducted. Second,
further exploration of appropriate salts, particularly with high
thermodynamic stability, super ionic conductivity, and good
compatibility with both electrodes at a low cost, should also
be taken into account for high-performance WIS electrolytes,
considering their practical commercial applications. Third,
the balance between high-concentration electrolytes and low
viscosity and crystallization also needs to be solved.

Despite facing huge difficulties and challenges, we firmly
believe that aqueous rechargeable batteries based on WIS
electrolytes will receive rapid and sustained development in the
near future. This will result in new avenues for the future energy
storage landscape.
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