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Phosphotungstic acid (HPW) as a polyoxometalate was selected as the active

component of the catalyst. The activated carbon supported different percentage of HPW

catalysts were prepared by impregnation and were characterized by X-ray diffraction

(XRD), nitrogen adsorption, Fourier transform infrared (FTIR), and scanning electron

microscope (SEM). The results showed that the HPW retained the original Keggin

structure after being supported on activated carbon, the specific surface of the HPW/C

was much bigger than that of pure HPW. The catalytic performance of HPW/C in

the hydrogen generation reaction by hydrolysis of sodium borohydride in seawater

and in deionized water were studied. 2.5 wt.% HPW/C showed the fastest hydrolysis

reaction rate and the biggest volume of hydrogen generated. As for hydrolysis of sodium

borohydride, catalytic effect of HPW/Cwas better in seawater than in distilled water. HPW

dispersed on activated carbon is a real promising catalytic system for the development

of hydrogen generation by hydrolysis of NaBH4 in seawater.

Keywords: hydrogen production, activated carbon, polyoxometalate, NaBH4, seawater

INTRODUCTION

Hydrogen is considered as an important alternative energy source for fossil fuels due to its diverse
sources, cleanliness, and renewable advantages (Akdim et al., 2009; Yu et al., 2014; Zhou et al., 2014;
Sun et al., 2018). Metal borohydride can release hydrogen through a simple hydrolysis reaction.
Sodium borohydride owing to its low cost and high hydrogen density (10.6 wt.%), has received
extensive attention as a promising hydrogen storage medium (Demirci, 2018; Lale et al., 2018; Lee
et al., 2019). NaBH4 hydrolysis produced hydrogen by the following chemical reaction:

NaBH4 + 2H2O → NaBO2 + 4H2 1H = −217kJ/mol

However, this reaction rate is very slow at room temperature, an appropriate catalyst is usually
used to accelerate the reaction rate. Noble metal catalysts have been the research focus due to their
stable chemical properties and good catalytic activity, such as Pt (Genç et al., 2018), Pd (Lu et al.,
2018), Ru (Semiz et al., 2018), and its alloys (Alasmar et al., 2018; Semiz et al., 2018). However, their
expensiveness and finite reserves limit their wide application.
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Therefore, many studies have focused on the preparation of
low-cost, highly active non-noble metal catalysts (Liang et al.,
2009; Bennici et al., 2011; Lee et al., 2019; Nuran et al., 2019),
such as CoB (Wang et al., 2018; Nuran et al., 2019), NiB (Hua,
2003; Singh and Das, 2017), Co/Fe3O4@C (Chen et al., 2018)
and so on. Compared with noble metal, these catalysts have
the advantages of simpler preparation and lower catalyst cost.
Nevertheless, there are also shortcomings such as long initial
activation time and poor catalytic performance of the catalyst,
which need to be further improved. The surface acid/base
character of the catalyst is an important point to improve the
catalytic performance (Akdim et al., 2009).

H3PW12O40 (HPW) is a kind of polyoxometalate with
strong acid properties. However, due to the difficulty of
catalytic recovery (Lana et al., 2006; Leão Lana et al.,
2006),certain pollution and the corrosion of equipment, the
specific surface area is small (<10 m2/g), which is not conducive
to giving full play to its catalytic activity and limiting its
application in catalysis. The effective loading of polyoxometalates
on suitable support can greatly increase its surface area.
Therefore, not only its catalytic activity and selectivity were
improved, but also the product was easy to separate, and the
catalyst was easily regenerated, the production process was
simplified. There are many works studying polyoxometalate
on a variety of supports (Hanif et al., 2017; Alcañiz-Monge
et al., 2018; Yuan et al., 2020), the research on surface

FIGURE 1 | The SEM images and EDX detection of HPW with different loading percentages supported on the activated carbon: pure activated carbon (a), 2.5
wt.%HPW/C (b), 4 wt.%HPW/C (c), 6 wt.%HPW/C (d), 10 wt.%HPW/C (e), 12.5 wt.%HPW/C (f).

properties showed that supporting polyoxometalate firmly on
the support was key (Hu et al., 1995). Activated carbon
not only has high specific surface area and large pore
size but also can be adjusted as needed; it was a good
catalyst support.

This study aims to prepare activated carbon supported
polyoxometalate catalysts and use them for the hydrolysis
of sodium borohydride to produce hydrogen, due to the
extremely rich seawater resources in coastal cities, seawater
was used as a reaction liquid. Our work is to study
the mode of action between polyoxometalate and activated
carbon, and the effect of catalyst microstructure on hydrogen
generated kinetics.

EXPERIMENTAL DETAILS

Catalyst Preparation
Activated carbon particles (AR, ≥200 mesh) and
phosphotungstic acid (HPW) (≥95%) were purchased from
Aladdin. Activated carbon was activated by chemical activation
using nitric acid as an activator (Salem and Ebrahim Yakoot,
2016; Yao et al., 2016; Jiang et al., 2017). HPW/C catalysts
were prepared by impregnation-chemical reduction method:
Added activated carbon pretreated to the HPW solution,
stirred them in a water bath at 50◦C for 6 h. After filtration
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and washed with distilled water, the catalysts were dried at
105◦C for 10 h under vacuum oven. Adjust the mass ratio of
activated carbon and HPW to prepare different catalysts: 2.5
wt.%HPW/C, 4 wt.%HPW/C, 6 wt.%HPW/C, 10 wt.%HPW/C,
12.5 wt.%HPW/C.

Characterization of Catalysts
X-Ray Diffraction (XRD)
The catalysts were determined by XRD of Rigaku Utima IV
(Rigaku Corporation, Japan) operating at a scanning speed of 5
deg/min from 10 to 80◦ and in steps of 0.02◦ with CuKα radiation
(40 kV, 40 mA).

Specific Surface and Porosity
N2-physisorption measurements were performed at −196◦C,
using a Micromeritic ASAP2460 (Micromeritics Instrument
Corporation, America). The specific surface, pore volume and
pore size distribution of activated carbon and catalysts were
obtained by using BET (Brunner–Emmet–Teller), BJH (Barrett-
Joyner-Halenda), and t-plot modelizations, respectively.

Fourier Transform Infrared (FTIR)
The functional group vibration during the carbon raw material
pretreatment were characterized by a 510P Fourier transform
infrared spectrometer (Nicolet Corporation, America). The KBr
tablet method was used, and the transmitted light wavelength
range was 4000–400 cm−1.

Scanning Electron Microscope (SEM) and
Energy Dispersive X-Ray Spectroscopy
(EDX)
Activated carbon and catalysts morphology were observed by
using SEM performed on an APREO (FEI, America) operating
at 2 kV. And the HPW loaded on activated carbon was detected
by EDX of QUANTAX (BRUKER, Germany) operating at 10 kV.
The samples were deposited onto conducting resin and treated by
gold sputtering.

Sodium Borohydride Hydrolysis
The reaction temperature was 40◦C, and 50ml seawater (taken
from Jiaozhou Bay) was used as the reaction liquid, the amount
of powder NaBH4 (granular, 99.99% trace metals basis, Sigma-
Aldrich) was around 500mg, and the m (catalyst):m (NaBH4)
is about 1:10. The reaction was performed under strong stirring
conditions. Immediately after that, the generated hydrogen was
collected by the drainage method.

RESULTS AND DISCUSSION

Materials Characterization
Morphology of Materials
Figure 1 showed the SEM images of activated carbon and
different catalysts samples with different HPW loadings. The
HPW entered the pores of carbon increases the contact area
of the catalyst with NaBH4 and reaction solution. Comparing
Figures 1a–f, as the HPW loaded on the activated carbon, some
HPW enters the pores of the activated carbon support, resulting
in reducing the surface area and pore volume of activated carbon.

Through EDX detection, the content of W and O confirmed the
existence of HPW, and it can be seen that HPW entered the pores
of activated carbon.

X-Ray Diffraction of Materials
The X-ray diffraction pattern of each catalyst was shown in
Figure 2. The XRD pattern can be used to study the crystal form
of polyoxometalate on activated carbon (Song et al., 1996). The
XRD pattern of the low-load catalyst was similar to the support,
and no HPW crystal phase peak appeared. Only the high-load
catalyst sample showed weak crystal phase diffraction peaks. This
showed that the adsorption between activated carbon and HPW
was not a simple physical action. The HPW adsorbed on the
activated carbon had chemically bonded with the surface groups
of the support. HPW was highly dispersed and contained oxygen
on the support surface. The association was lost, and the original
crystal form was lost, and the peak was not obvious. When
the crystalline phase diffraction peaks appeared, HPW formed
a bulk phase on the support surface, indicated that when the
single molecule adsorption has reached saturation, the bulk phase
polyoxometalate began to appear on the support surface.

FIGURE 2 | The XRD pattern of activated carbon, HPW and catalysts samples
with different HPW loadings.
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Specific Surface Area and Pores
Figures 3, 4 demonstrated the N2 adsorption/desorption
isotherms and pore size distribution of activated carbon, HPW,
and different catalyst samples. The results in Table 1 showed
that only the catalysts’ specific surface area and pore volume

value decreased rapidly with increasing HPW loading. Because
the HPW filled the micropores and part of the mesopores of the
activated carbon during the adsorption and diffusion process.
Therefore, compared with pure HPW, the specific surface
area of supported HPW was significantly increased, which was

FIGURE 3 | N2 adsorption/desorption isotherms and pore size distribution of activated carbon (A) and HPW (B).

FIGURE 4 | N2 adsorption/desorption isotherms and pore size distribution of 2.5 wt.%HPW/C (A), 4 wt.%HPW/C (B), 6 wt.%HPW/C (C), 10 wt.%HPW/C (D), 12.5
wt.%HPW/C (E).
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beneficial for catalytic reactions and effectively overcomes the
lack of specific surface area of pure HPWwhen used as a catalyst.
But 10 wt.%HPW/C showed a smaller surface area and pore
volume, and a bigger average pore size than 12.5 wt.%HPW/C. It
maybe because during the impregnation process, HPW caused
partial micropore clogging. Therefore, in the nitrogen adsorption
test, the blocked micropores cannot adsorb nitrogen, the specific
surface area and pore volume were small, and the average pore
diameter was large.

TABLE 1 | Specific surface area, pore size and pore volume of activated carbon,
HPW and catalysts samples with different HPW loadings.

Samples Surface area(m2/g) Average

pore

diameter(nm)

Pore

volume(cm3/g)

Activated carbon 614.265 1.3 0.399

Pure HPW 4.051 11.37 0.023

2.5 wt.%HPW/C 449.351 1.43 0.321

4 wt.%HPW/C 444.087 1.42 0.313

6 wt.%HPW/C 444.603 1.38 0.307

10 wt.%HPW/C 234.582 1.69 0.199

12.5 wt.%HPW/C 360.768 1.39 0.251

FTIR Spectra Analysis
Figure 5 showed the infrared spectra of different supported
catalysts and pure catalysts. It can be seen that the characteristic
peaks of the Keggin structure still appear after HPW was loaded
on activated carbon, which indicated that the Keggin structure
of HPW had not changed after activated carbon, but some
characteristic peaks had shifted. The vibration of bridge oxygen
W-Oc-Wwas blue shifted, the terminal oxygenW=Od vibration
was red shifted, and the vibration of tetrahedral oxygen P-Oa

and bridge oxygen W-Ob-W did not shift significantly. Because
the surface of activated carbon contains a large number of
oxygen-containing groups, such as carboxyl, hydroxyl, phenol,
and carbonyl groups, HPW will interact with these oxygen-
containing groups during the adsorption process (Timofeeva
et al., 2004). The terminal oxygenW=Od and bridge oxygenW-
Oc-Wwere outside the Keggin anion and were directly bonded to
the oxygen-containing group, which caused the IR characteristic
peak to shift. Tetrahedral oxygen P-Oa and bridging oxygen W-
Ob-W were inside the Keggin anion and did not interact directly
with oxygen-containing groups, so no significant shift occurred
(Zhang and Shunhe, 2005). It is worth noting that when the load
is low, like 2.5 wt.%HPW/C, there is not the characteristic peak
of HPW, however, when the load is high, the offset decreases,
because under high load, the HPW that forms multi-molecular
adsorption does not directly interact with the oxygen-containing
groups on the support surface, and its infrared characteristic

FIGURE 5 | The FTIR pattern of activated carbon, HPW and catalysts samples with different HPW loadings.

Frontiers in Chemistry | www.frontiersin.org 5 August 2020 | Volume 8 | Article 676

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Xi et al. Efficient Hydrogen Generation From Hydrolysis

peak is close to the pure HPW. This phenomenon supports the
aforementioned theory of HPW adsorption on activated carbon.
But for 10 wt.%HPW/C, the characteristic peak of HPW can’t

FIGURE 6 | The images of NaBH4 hydrolyzed seawater with catalysts
samples with different HPW loadings (A) and partial enlargement in 10min (B).

be found, speculating the HPW basically entering the pore of
activated carbon resulting in this phenomenon. The surface area
and pore volume of 10 wt.%HPW/C also can explain that.

FIGURE 7 | The images of NaBH4 hydrolyzed fresh water and seawater with
2.5 wt.%HPW/C (A) and 4 wt.%HPW/C (B).

TABLE 2 | Comparison of catalytic performance between pure HPW and catalysts samples with different HPW loadings effect on seawater or DI water.

Catalysts Reaction

mixture

Theoretical hydrogen

production

(ml)

Experimental

hydrogen production

(ml)

Maximum rate of

hydrogen production

[ml/(min·gcat)]

Activated carbon seawater 1187.1 231 140

Pure HPW seawater 1185.2 520 1,080

2.5 wt.%HPW/C seawater 1185.7 955 7,680

2.5 wt.%HPW/C DI water 1197.7 850 6,800

4.0 wt.%HPW/C seawater 1186.4 946 6,600

4.0 wt.%HPW/C DI water 1215 880 6,370

6.0 wt.%HPW/C seawater 1189 826 4,320

10.0 wt.%HPW/C seawater 1184.7 736.5 1,440

12.5 wt.%HPW/C seawater 1179.5 619 1320
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TABLE 3 | Comparison of different catalysts’ performance on the hydrolysis of
sodium borohydride.

Catalysts Maximum rate of

hydrogen production

[ml/(min·gcat)]

References

Co/Fe3O4@C 1,403 Chen et al., 2018

Co-Bbubble 5,310 Wang et al., 2018

Acid treated sepiolite
supported-CoB

1,486 Nuran et al., 2019

Intrazeolite cobalt(0)
nanoclusters

6,090 Rakap and Özkar,
2009

Co/KWPA 5,884 Bennici et al., 2011

Co/CsWPA 4,039 Bennici et al., 2011

2.5 wt.%HPW/C 7,680 This work

Performance of Catalysts
The kinetics of NaBH4 hydrolysis catalyzed by catalysts
were compared in Figure 6. And the hydrogen production
volume and maximum hydrogen production rate of NaBH4

hydrolysis catalyzed by different catalysts were shown in
Table 2. Compared with pure HPW, catalysts HPW/C
can improve the rate of hydrogen production obviously.
Nevertheless, as the increase of HPW loading on activated
carbon, the rate of hydrogen production decreases. The reason
for this result was that excessive loading of HPW caused
HPW multilayer adsorption on activated carbon, which may
cause clogging of activated carbon pores (reduce the surface
area, see Table 1), which cannot make HPW fully contact
with the reaction solution and NaBH4, thus reducing the
catalytic effect.

The best catalytic effect of 2.5 and 4 wt.%HPW/C were
selected to compare the kinetics of hydrolysis of NaBH4 in
seawater and in deionized (DI) water. The results were shown in
Figure 7 and Table 2. Within 55min, 2.5 wt.%HPW/C catalyzed
NaBH4 hydrolysis in seawater can release 955ml hydrogen
while catalyzed NaBH4 hydrolysis in DI water only released
850ml of hydrogen. And within 66min, 4 wt.%HPW/C catalyzed
NaBH4 hydrolysis released 946ml of hydrogen from seawater,
while catalyzed NaBH4 hydrolyzed and released 880ml hydrogen
from DI water. The maximum rate of NaBH4 hydrolyzed
in seawater with catalysts 2.5 and 4 wt.%HPW/C are 7,680
ml/(min·gcat) and 6,600 ml/(min·gcat), respectively. In addition,
from Figures 7A,B, the NaBH4 hydrolyzes faster in seawater
faster than in DI water with different catalysts. Considering
that seawater is alkaline and DI water is neutral, when seawater
is used as the reaction liquid, the hydrolysis of HPW can be
accelerated to improve the NaBH4 hydrolysis. And previous
works of literature showed that compared with the reaction
solution without NaOH, the rate of hydrogen produced by the
alkaline reaction solution was faster (Sahiner et al., 2015; Singh
and Das, 2017). In addition, 2.5 wt.%HPW/C was also compared
with many previous works shown in Table 3, and it can still show
good catalytic effect.

CONCLUSION

In this study, different percentage of HPW supported catalysts
were prepared by impregnation method for hydrolysis of NaBH4.
Supporting HPW on porous activated carbon can significantly
increase the specific surface area of HPW, at the same time, the
Keggin structure of HPW is also guaranteed, which guarantees
its catalytic performance. Compared the different percentage
supported catalysts on the hydrolysis of sodium borohydride
in seawater, 2.5 wt.%HPW/C showed the best results. The
maximum rate of hydrogen production was 7680 ml/(min·gcat).
Compared the rates of hydrolysis of NaBH4 in seawater and
in DI water with the same catalyst, the rate of NaBH4

hydrolyzes seawater was faster than that of DI water. When
using 2.5 wt.% HPW/C and 4 wt.% HPW/C to catalyze, the
maximum hydrogen production rate in NaBH4 in seawater was
880 ml/(min·gcat) and 230 ml/(min·gcat) faster than that in
NaBH4 in DI water, respectively. Therefore, this study provides
reliable theoretical support for seawater hydrogen production
in coastal areas.
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