

Application of Plasmonic Metal Nanoparticles in TiO₂-SiO₂ Composite as an Efficient Solar-Activated Photocatalyst: A Review Paper

Collin G. Joseph^{1,2,3}*, Yun Hin Taufiq-Yap^{4,5,3}, Baba Musta², Mohd Sani Sarjadi³ and L. Elilarasi^{1,6}

¹Sonophotochemistry Research Group, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, ²Water Research Unit, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, ³Industrial Chemistry Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, ⁴Chancellery Office, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, ⁵Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia, ⁶Centre of Foundation, Language and Malaysian Studies, International University of Malaya-Wales, Kuala Lumpur, Malaysia

OPEN ACCESS

Edited by:

Sivakumar Ponnusamy, Arignar Anna Government Arts College, India

Reviewed by:

Senthil Subramaniyam, Erode Sengunthar Engineering College, India Shanmugam Palanisamy, Anna University, India Geetha Arumugam, Anna University, India

*Correspondence:

Collin G. Joseph collin@ums.edu.my

Specialty section:

This article was submitted to Catalysis and Photocatalysis, a section of the journal Frontiers in Chemistry

Received: 31 May 2020 Accepted: 18 December 2020 Published: 29 January 2021

Citation:

Joseph CG, Taufiq-Yap YH, Musta B, Sarjadi MS and Eilarasi L (2021) Application of Plasmonic Metal Nanoparticles in TiO₂-SiO₂ Composite as an Efficient Solar-Activated Photocatalyst: A Review Paper. Front. Chem. 8:568063. doi: 10.3389/fchem.2020.568063 Over the last decade, interest in the utilization of solar energy for photocatalysis treatment processes has taken centre-stage. Researchers had focused on doping TiO_2 with SiO_2 to obtain an efficient degradation rate of various types of target pollutants both under UV and visible-light irradiation. In order to further improve this degradation effect, some researchers resorted to incorporate plasmonic metal nanoparticles such as silver and gold into the combined TiO_2 -SiO₂ to fully optimize the TiO_2 -SiO₂'s potential in the visible-light region. This article focuses on the challenges in utilizing TiO_2 in the visible-light region, the contribution of SiO_2 in enhancing photocatalytic activities of the TiO_2 -SiO₂ photocatalyst, and the ability of plasmonic metal nanoparticles (Ag and Au) to edge the TiO_2 -SiO₂ photocatalyst toward an efficient solar photocatalyst.

Keywords: TiO₂-SiO₂, plasmonic metal nanoparticles, visible region, photocatalysis, dye

INTRODUCTION

The first breakthrough in producing the photocatalytic effect of TiO_2 was reported by Fujishima-Honda in 1972, in which, photosplitting of water in the presence of TiO_2 was achieved. The team documented the generation of oxygen gas bubbles at the electrode containing TiO_2 placed under an electrical contact with a piece of platinum metal. While both were immersed in water and exposed to light, hydrogen gas was detected at the platinum electrode. The explanation for this effect was that TiO_2 , under ultraviolet irradiation with a wavelength lower than 380 nm, produces an electron-hole pairs according to the following equation:

$$\operatorname{TiO}_{2} + hv \to \operatorname{TiO}_{2}\left(e_{CB^{-}} + h_{VB^{+}}\right) \tag{1}$$

The electron-hole pairs diffuse evenly on the surface of the TiO_2 particle, to react and decompose oxygen and water present in the atmosphere in order to produce HO[•], hydroxyl radicals, and O_2^- , superoxide ions, according to the following equations:

$$TiO_2(h_{VB^+})+H_2O \rightarrow TiO_2+H^++OH^-$$
(2)

$$\operatorname{TiO}_{2}(h_{VB^{+}}) + \operatorname{OH} \to \operatorname{TiO}_{2} + \operatorname{OH}$$
(3)

$$\operatorname{TiO}_{2}(e_{CB^{-}}) + O_{2} \to \operatorname{TiO}_{2} + O_{2}^{-}$$

$$\tag{4}$$

These oxidants will disintegrate and restructure the pollutants through redox reactions taking place on the surface of catalyst, into H_2O , CO_2 , and mineral acids (Zangeneh et al., 2015). The mineral acids are generated due to presence of heteroatoms, i.e., S, N, and Cl in the organic compounds (Gardin et al., 2010). TiO₂, is a commonly used photocatalyst due to its availability, its efficient photoactivity, highest chemical stability, harmless nature, lowest cost, and ability in mineralizing various organic contaminants including dyes, insecticides, aromatics, alkanes, haloalkanes, alcohols, and surfactants (Gardin et al., 2010; Abdullah et al., 2016).

TiO₂-based photocatalysis has long been utilized as one of the methods to remediate wastewater. The main obstruction for the application of TiO₂ under solar energy is its high recombination rate of photoexcited electron-hole pairs and wide band gap which is 3.2 eV (Liu et al., 2013). Due to its wide band gap, it requires photon energy equals or higher than 3.2 eV, in order to induce the photoexcitation of electrons and holes. Unfortunately, majority of photons in visible region have photon energy less than 3.0 eV (based on **Figure 1**). In order to overcome these restrictions, TiO₂ is prepared as a composite catalyst in which the newly added material enables the utilization of TiO₂ in the visible-light region. For instance, doping CuBiS₂, a p-type semiconductor (with a band-gap value of 2.19–2.62 eV) onto TiO₂, enabled the direct utilization of TiO₂ photocatalytic activity in the visible-light region (Abdullah & Kuo, 2015).

Another hindrance in utilizing TiO_2 photocatalysis on an industrial scale is the requirement of a large amount of energy to power the UV lamps, resulting in its high operating costs (Chan et al., 2012). In order to overcome these drawbacks, employing sunlight energy to power the photoexcitation of the

electrons and holes in the TiO_2 semiconductor would be most ideal. The tapping of solar energy to drive the remediation of wastewater by photocatalysis processes will enable the classification of conventional photocatalysis methods as renewable energy with green technology characteristics.

Due to these benefits, many investigators are currently working on extending the application of TiO_2 photocatalysis into visible-light region. In order to achieve this, one of the methods focused on is the synthesizing of SiO_2 -modified TiO_2 photocatalysts which have shown remarkable efficiency under visible-light region.

TIO₂-SIO₂ PHOTOCATALYSIS

Effect of SiO_2 on Specific Surface Area of TiO_2 -SiO₂ Composite

 SiO_2 is typically used as a catalyst support or dopant dispersed within the TiO_2 lattice (Liga et al., 2013). This doping affects the TiO_2 's fundamental properties and thus influences the photocatalytic activities too. The structure modification of TiO_2 by SiO_2 drastically increases the specific surface area of the TiO_2 -based photocatalyst. The high surface area of TiO_2 -SiO₂ is due to its high porosity. Structures with high porosity have large internal surface area per weight, and it is this property which provides high accessibility and diffusivity in order to allow molecules to penetrate through pores, resulting in higher degradation of pollutants on the catalyst's surface (Jeon et al., 2015).

The morphological improvement by SiO₂ on the TiO₂'s surface is evident from the literature. Balachandran et al. (2014) reported that the BET specific surface area increased from $65 \text{ m}^2 \text{ g}^{-1}$ for TiO₂ to $75 \text{ m}^2 \text{ g}^{-1}$ for TiO₂-SiO₂ while the mean pore size calculated from BET isotherms was 10 nm for TiO_2 and 15 nm for $TiO_2\mathchar`-SiO_2\mathchar'-SiO_2\mathchar`-SiO_2\mathchar`-SiO_2\mathchar`-SiO_2\$ specific surface area of TiO2-Cabot SiO2, TiO2-Axim SiO2, and TiO₂-Fly Ash SiO₂ as 177, 49, and $29 \text{ m}^2 \text{ g}^{-1}$, respectively. Fatimah et al. (2015) reported TiO₂-SiO₂ produced by using rice husk ash as the precursor for SiO₂ with a specific surface area of 91.91 m²/g with a pore volume of 15.18 cc/g compared to that of rice husk ash with a specific surface area of $25.09 \text{ m}^2\text{g}^{-1}$ and pore volume of 11.60 cc g^{-1} . These results were reportedly higher than that of TiO₂-SiO₂ synthesized by using tetraethyl orthosilicate (TEOS) as the SiO₂ precursor, resulting in catalyst material with a specific surface area of 59.22 m²/g and

TABLE 1 BET surface area and crystallite size values of TiO_2 -SiO ₂ catalysts.				
Photocatalyst	BET surface area (m ² g ⁻¹)	Crystallite size (nm)		
TiO ₂	92	18		
SiO ₂	289	NA		
10% TiO ₂ -SiO ₂	282	9		
20% TiO2-SiO2	279	10		
30% TiO2-SiO2	279	10		
40% TiO2-SiO2	272	11		
50% TiO ₂ -SiO ₂	264	12		
1% Ag/30% TiO ₂ -SiO ₂	274	10		

pore volume of 14.92 cc/g. **Table 1** shows the BET surface area and crystallite size values of TiO_2 -SiO₂ photocatalyst reported by Ramamoorthy et al., 2016.

Data in **Table 1** clearly indicate that the high surface area of TiO_2 -SiO₂ is attributed to the high surface area of SiO₂ itself. SiO₂ can be synthesized easily via sol gel with a large surface area and pore volume (Ren et al., 2010; Bahadur et al., 2012) and later can be added into TiO_2 sol, generating composite photocatalyst with increased surface area and pore volume. The enhanced surface area of TiO_2 -SiO₂ definitely facilitates in achieving higher photocatalytic activity under solar irradiation.

Effect of SiO_2 on Crystalline Size of TiO_2 -SiO₂ Composite

Deposition of SiO₂ onto TiO₂ reduces the overall particle size of TiO₂-SiO₂ composite particles. Based on the spectra from the UV-Vis spectrophotometer, Balachandran et al. (2014) reported absorption peak of maximum absorbance of TiO₂ and TiO₂-SiO₂ at 372 and 352 nm, respectively. The blue shift indicates decrease in particle size due to quantum confinement effect. As shown in Table 1, Ramamoorthy et al. (2016) reported the reduction in crystallite size of TiO₂-SiO₂ (9-12 nm) compared to TiO₂ (18 nm). In addition, using data from the SEM and TEM analysis, Balachandran et al. (2014) reported that pure TiO2 showed irregular morphological structure due to the agglomeration of its particles and has an average diameter of 15-20 nm. Meanwhile, TiO₂-SiO₂ showed regular morphology with an average particle size of 7-10 nm. This proves that the SiO₂-modified TiO₂ photocatalyst consists of smaller particles but with larger surface area.

The reduced size of TiO_2 -SiO₂ particles reduces the pathway in which the photoinduced electrons and holes are used to migrate to the active sites on the TiO_2 surface. This increases the efficiency of the redox reactions by electrons and holes while reducing the recombination rate of photoinduced electrons and holes, thus making TiO_2 -SiO₂ a better photocatalyst as compared to TiO_2 .

Effect of SiO₂ on Surface Acidity of TiO₂-SiO₂ Composite

Many previous researchers have reported high surface acidity of TiO_2 -SiO₂ composite which aids in enhancing the photo decomposition of pollutant molecules. According to Wei et al. (2014), TiO_2 exhibits Lewis acidity and SiO₂ does not exhibit any acidity while TiO_2 -SiO₂ exhibits both Bronsted and Lewis acidity. For TiO_2 -SiO₂ with TiO_2 as the main component, the Lewis acid sites are dominant while the Bronsted acid sites are dominant for TiO_2 -SiO₂ with SiO₂ as the major component (Fateh et al., 2013). It should be noted that the TiO_2 -SiO₂. TiO_2 -SiO₂ with atomic ratio of four (Ti:Si = 4) exhibits highest Lewis acidity while TiO_2 -SiO₂ with atomic ratio of one (Ti:Si = 1) exhibited highest Bronsted acidity (Wei et al., 2014).

The Ti-O-Si bond, a strong acidic bond, in the TiO_2 -SiO₂ composite photocatalyst, results in a charge imbalance due to the

different coordination numbers of the Ti and Si metal center. To offset the negative imbalanced charges over Ti-O, a great deal of protons is extracted from H₂O molecules generating HO⁻ groups, which in turn enhances the surface acidity. The decomposition rate of pollutant molecules is enhanced due to higher amount of hydroxyl groups being on the surface of TiO₂-SiO₂, representing a better photocatalytic performance in visible region compared to TiO₂ (Kibombo et al., 2012; Xu et al., 2015).

The increased surface acidity attracts and adsorbs more hydroxyl groups which later act as hole-scavengers and readily oxidize the adsorbed H_2O molecules. These surface hole-scavenger active sites effectively increase the charge separation and reduce the recombination of photoinduced electrons and holes (Kibombo et al., 2012).

Effect of SiO_2 on Band Gap of TiO_2 -SiO₂ Composite

One of the main drawbacks of TiO_2 is the fast recombination of photoinduced electrons and holes which decreases the efficiency of its photocatalytic activity. Deposition of SiO₂ onto TiO_2 caused an increase in the band-gap value of the TiO_2 -SiO₂ composite, which is due to the quantum-size effect resulting in an increase in the band-gap value and the interface interaction between the oxide phases, either an SiO₂ matrix or SiO₂ support effect. The interface interaction leads to a formation of Ti-O-Si bonds strongly modifying the electronic structure of the Ti atoms (Panayotov and Yates, 2003).

As an example, the band-gap value of TiO₂ and TiO₂-SiO₂ as reported by Balachandran et al. (2014) was 3.3 and 3.54 eV, respectively. Bellardita et al. (2010) documented the band-gap value of pure TiO₂, TiO₂-Cabot SiO₂, and TiO₂/Axim SiO₂ as 3.00, 3.02, and 2.98 eV, respectively. The increased band gap in TiO₂-SiO₂ indicates that the electrons and holes possess stronger reduction (Kibombo et al., 2012) and oxidation abilities and these abilities enhance the photocatalytic activity of the TiO₂-SiO₂ photocatalyst in visible region.

Effect of SiO_2 on Thermal Stability of TiO_2 -SiO₂ Composite

Addition of SiO₂ onto TiO₂ increases the overall thermal stability of TiO₂-SiO₂, thus preventing the conversion from anatase TiO₂ into rutile TiO₂ crystalline structure (Kibombo et al., 2012). **Table 2** shows the specific surface and pore volume of CTS-1 (Ti:Si = 1), CTS-4 (Ti:Si = 4), and TiO₂ as a function of the calcination temperature reported by Wei et al. (2014).

When the calcination temperature increased from 500 to 950°C, the specific surface area decreased from 437.4 to 176.3 m² g⁻¹ for CTS-1 and from 309.5 to 121.2 m² g⁻¹ for CTS-4. When the calcination temperature was increased from 500 to 950°C, the pore volume of CTS-1 changed from 1.39 to 0.52 ml g⁻¹ and the pore volume of CTS-4 changed from 0.55 to 0.30 ml g⁻¹. Meanwhile, for TiO₂, both specific surface area and pore volume were undetectable after calcination at 650°C or higher due to sintering of particles and collapse of interstitial pores. However, both CTS-1 and CTS-4 are less affected by the

Calcination temperature (°C)	CTS-1		CTS-4		TiO ₂	
	Specific surface area (m²/g)	Pore volume (ml/g)	Specific surface area (m²/g)	Pore volume (ml/g)	Specific surface area (m²/g)	Pore volume (ml/g)
500	437	1.39	222	0.50	94	0.33
650	334	0.88	246	0.57	BDL	0.03
800	287	0.75	205	0.57	BDL	BDL ^a
950	176	0.52	121	0.30	BDL	BDL

TABLE 2 | Specific surface area and pore volume of CTS-1, CTS-4, and TiO₂ in relation to calcination temperature (source: Wei et al. (2014)).

^aBDL = below detection limit.

increase in calcination temperature due to enhanced thermal stability of TiO_2 with the addition of SiO_2 (Wei et al., 2014).

Photocatalytic Activity of TiO₂-SiO₂ Composite

Binary mixed oxide, TiO_2 -SiO₂, has been widely documented as a better photocatalyst compared to TiO_2 alone due to simultaneous roles played by the TiO_2 and SiO_2 as photocatalyst and adsorbent, respectively, according to the reaction mechanism shown in **Figure 2**. The doping of SiO_2 onto TiO_2 enhances the adsorption of pollutant molecules to be near the photoactive center of TiO_2 , resulting in more pollutant molecules being broken down, thus producing high degradation rate of pollutant molecules under visible-light region. Due to the presence of more effective adsorption sites in the TiO_2 -SiO₂ composite system, the photogenerated holes can reach the sites before recombination with electrons thus further enhancing the photocatalytic activity of TiO_2 .

Ramamoorthy et al. (2016) reported that 30% of the $\rm TiO_2$ incorporated in $\rm TiO_2\text{-}SiO_2$ (200 mg) exhibited 51% degradation

of acid orange dye (300 ppm) as compared to only 19% by TiO_2 (200 mg) after 10 h of visible-light irradiation (150 W tungsten filament lamp). Mungondori et al. (2015) reported an absorption band of 366 nm for TiO_2 and 397 nm for TiO_2 -SiO₂ analyzed through shift in absorption band edge. This proves that incorporation of SiO₂ into TiO_2 shifts the absorption band of TiO_2 toward the visible-light region.

When the molar ratio of TiO_2 in TiO_2 -SiO₂ was increased, the total surface area of TiO_2 -SiO₂ decreased causing low photocatalytic activity of the composite catalyst (Ramamoorthy et al., 2016). In a study reported by Jeon et al. (2015), at high molar ratio of TiO_2 (molar ratio of TiO_2 precursor to SiO_2 precursor of 0.05) in the TiO_2 -SiO₂, dense thin film with mostly blocked pores was observed. This indicated that at higher concentration of TiO_2 precursor relative to SiO_2 precursor, the size of the pores became smaller if not completely blocked. In contrast, at high SiO_2 precursor molar ratio relative to TiO_2 precursor, the amount of vertically perforated pores increased and formed large micron-sized cracks due to the inability in enduring thermal shrinkage stress as the film thickness increased. Thickness of the film

TABLE 3 | Some of the previous studies on TiO₂-SiO₂ photocatalyst.

Photocatalyst	Synthesis method	Target pollutant	Experimental conditions	Results	References
TiO ₂ /Cabot-SiO ₂ , TiO ₂ / Axim-SiO ₂ , TiO ₂ /Fly Ash- SiO ₂	Wet method	2-Propanol	Irradiated with UV 500 W medium pressure Hg lamp with 1.3 mW cm ⁻² , 74 μM concentration of 2-propanol	TiO ₂ -cabot SiO ₂ completely mineralized 2-propanol (74 μ M concentration) in 6 h. TiO ₂ /Axim SiO ₂ adsorbed half of 2-propanol (initial conc. 30 μ M) after 6 h. For TiO ₂ /Fly ash SiO ₂ most of the 2-propanol (initial concentration of 30 μ M) was adsorbed on the surface	Bellardita et al. (2010)
TiO ₂ -SiO ₂	Sol gel	Acid red 88 (λ_{max} 505 nm)	Experimental conditions: pH 9, 10–40 ppm acid red 88, 4 h sunlight irradiation, 15 min dark adsorption	TiO ₂ : 96.5% removal % TiO ₂ -SiO ₂ : 94.2% removal %	Balachandran et al. (2014)
TiO ₂ -SiO ₂	Sol gel. Rice husk ash as SiO ₂ source	Methyl violet (MV)	Experimental conditions: UV-A and UV-B lamps placed 20 cm above the reactor, H_2O_2 as additional oxidant, initial concentration of MV: 1–8ppm	Almost complete degradation of 1 ppm MV in 60 min	Fatimah et al. (2015)
Fibrous nanosilica (KCC- 1)-TiO ₂ , MCM-41/TiO ₂ > SBA-15/TiO ₂	Atomic layer deposition	Methylene blue (1 \times 10 ⁻⁵ M). Phenol (1 \times 10 ⁻⁵ M)	75 W of UV light 250–385 nm; 25 mg catalyst, 50 ml reaction solution	MB degradation rate: KCC-1/TiO ₂ > MCM-41/TiO ₂ > SBA-15/TiO ₂ , phenol degradation rate: MCM-41/TiO ₂ > KCC-1/TiO ₂ > SBA-15/TiO ₂	Singh et al. (2016)
SiO ₂ -Fe ₂ O ₃ (5%)-TiO ₂ -B (5%)-N (5%)	Adsorbed-layer nanoreactor synthesis (ANS)	Methyl orange (MO)	4 W and 40 W fluorescent lamp with rare earth phosphor; 5 h of irradiation	Increase in the amount of Fe/Ti from 1% to 8%, decreased the band-gap energy of SiO ₂ -TiO ₂ -Fe ₂ O ₃ from 3.00 to 2.15 eV and decreased the band- gap energy of SiO ₂ -Fe ₂ O ₃ -TiO ₂ from 3.00 to 1.89 eV. Increase in the amount of Fe/Ti increased the photocatalytic degradation of MO under 5 h of 40 W room light irradiation	Wang et al. (2016)

has been reported to decrease with increase in molar ratio of SiO_2 in TiO_2/SiO_2 film (Fateh et al., 2013).

When too small amount of SiO₂ (<2%) or too large (>5%) is used to modify TiO₂, it causes lower photocatalytic degradation of TiO₂-SiO₂ as compared to commercial P25 TiO₂. In addition, from the XRD analysis, it was reported that doping a small amount of SiO₂ on TiO₂ will not effectively prevent the rutile phase transformation, which also contributes to a lower photocatalytic activity while a high amount of SiO₂ doping will influence the optical absorption of TiO₂ which is unfavourable in photocatalytic reactions (Kang et al., 2009). **Table 3** presents the gist of the some of the previous studies on TiO₂-SiO₂ photocatalyst.

Challenges in TiO₂-SiO₂ in Solar Photocatalysis

Modification of TiO_2 with SiO_2 alone is insufficient to maximize the utilization of the TiO_2 semiconductor in a solar-energypowered wastewater remediation process. In order to fully utilize the photocatalytic activity of the TiO_2 - SiO_2 in the visible region, there is a need for third material to be added to the TiO_2 - SiO_2 in which the third material donates the electrons excited via absorption of photon from sunlight irradiation. Thus, the third material needs to have a low band-gap energy (Eg < 3) in order to utilize the energy directly from the sunlight. Xu et al. (2015) utilized Fe₂O₃,

FIGURE 3 UV-Vis diffuse reflectance spectra of various SiO_2 -Ti O_2 -Fe2O3 combinations. Inset: the plots of (α hv)1/2 vs. photon energy of different catalysts. Ratio percentage of Fe/Ti amount: a, 0%; b, 1%; c, 3%; d, 5%; e, 8% (source: Wang et al. (2016)).

which has a band-gap energy of 2.2 eV, to extend the application of TiO_2 in the visible-light region by coupling with Fe₂O₃.

Wang et al. (2016) reported on utilizing Fe_2O_3 coupled TiO_2 -SiO₂ photocatalyst irradiated under room light to degrade the methyl orange dye. Based on the diffuse reflectance spectra analysis, the absorption edge of SiO₂-TiO₂ was approximately 400 nm. However, the absorption edge of SiO₂-TiO₂-Fe₂O₃ and SiO₂-Fe₂O₃-TiO₂ is in the visible-light region as shown in **Figures 3**, **4**. This shift directly enables and enhances the photocatalytic activity of TiO₂-based catalyst in the visible-light region due to the narrowing of the band-gap value. Compared to SiO₂-TiO₂-Fe₂O₂, SiO₂-Fe₂O₃-TiO₂ exhibited a higher photocatalytic activity in the visible region due to strong interaction between Fe₂O₃ and TiO₂ and due to the formation of shallow trapping sites for photoinduced electrons and holes.

The codoped SiO₂-Fe₂O₃(5%)-TiO₂ by N and B exhibited high photocatalytic activity of methyl orange under weak room light irradiation (4 W fluorescent lamp with rare earth phosphor) due to synergistic effect of both N doping and Fe₂O₃ coupling which enhanced the visible-light absorbance and reduced the band-gap energy of TiO₂-based catalyst and at the same time, and both N and B doping on TiO₂ caused high separation efficiency for photoinduced electrons and holes (Wang et al., 2016).

DEPOSITION OF PLASMONIC METAL NANOPARTICLES

Another option to maximize the application of TiO_2 - SiO_2 photocatalyst in the visible-light region is by incorporating plasmonic metals such as Ag and Au into TiO_2 in order to utilize their ability in absorbing strongly in visible region. Their ability in absorbing of solar photons is attributed to the Localized

Surface Plasmon Resonance (LSPR) (Hao et al., 2016). LSPR is defined as collective motions of conduction electrons induced by light irradiation (Chen et al., 2012). Some of the previous attempts to deposit plasmonic metal onto the TiO_2 -SiO₂ composite are listed in **Table 4**.

Plasmonic nanoparticles (such as Ag and Au) exhibit a property identified as surface plasmon resonance (SPR) especially in the visible region of the electromagnetic spectrum (Cho and Krishnan, 2013; Abdullah and Kuo, 2015). Many previous research studies deposited Ag/Au nanoparticles onto TiO_2 -SiO₂ composite photocatalyst due to their ability to enhance photocatalytic activities by trapping the generated photoelectron and reducing the recombination rate of generated electrons and holes by acting as an electron trap (Chen et al., 2012; Abdullah & Kuo, 2015). The Ag/Au nanoparticles enhance the efficiency of TiO_2 -SiO₂ photocatalyst by absorbing the solar photons and transferring the energetic electron, formed via SPR excitation, into the TiO_2 (Hamal and Klabunde, 2010; Linic et al., 2011). This mechanism is demonstrated in **Figure 5**, **6**.

Evidence of higher efficiency achieved by plasmonic metal deposited TiO₂-SiO₂ was reported by Liu et al. (2013). Liu showed that under 4 h of visible irradiation, the TiO₂-SiO₂-Ag photocatalyst exhibited an almost complete degradation of rhodamine B (10ppm) as compared to 80% by TiO₂-Ag and only 30% by neat TiO₂. In comparison, Hayashido et al. (2016) documented that Ag@AgBr/mp-TiO₂ is an efficient photocatalyst in the visible-light region ($\lambda > 400$ nm) due to the visible-light activity of Ag@AgBr.

Addition of Ag into TiO₂ modifies the lattice parameters of TiO₂ by generating oxygen vacancies which act as active sites for photocatalysis process, reduces recombination rates of photoexcited electrons and holes due to the formation of Schottky barrier between Ag and TiO₂, reduces band-gap value, and generates defect site Ti³⁺ (Gupta et al., 2006; Chen et al., 2007; Hamal and Klabunde, 2010). Hamal and Klabunde (2010) documented that 5% AgCl-SiO₂, 5% AgBr-SiO₂, and 5% AgI-SiO₂ exhibited band-gap absorption in visible region as shown in **Figure 7** and were able to degrade rhodamine B dye (concentration of 2 × 10⁻⁵ M) in the liquid phase and acetaldehyde in the gas phase under visible region ($\lambda > 420$ nm). Among these three, the 5% AgI-SiO₂ was found to be the best photocatalyst due to its low band gap and high surface area as well as high stability.

When molar ratio of TiO_2 in the TiO_2 -SiO_2 photocatalyst structure is increased, the total surface area of TiO_2 -SiO_2 decreases causing low photocatalytic activity of the composite catalyst (Ramamoorthy et al., 2016). In a study reported by Jeon et al. (2015), at high molar ratio of TiO_2 (molar ratio of TiO_2 precursor to SiO_2 precursor of 0.05) in the TiO_2 -SiO_2 photocatalyst, a dense thin film with mostly blocked pores was observed. This indicates that at higher concentration of the TiO_2 precursor relative to the SiO_2 precursor, the size of the pores becomes smaller and may be completely blocked. In contrast at high SiO_2 precursor molar ratio relative to TiO_2 precursor, the amount of vertically perforated pores increases and forms large micron-sized cracks due to the inability in enduring thermal shrinkage stress due to the high film thickness. Thickness of the

TABLE 4 | Some of the previous studies on plasmonic metal deposited TiO₂-SiO₂.

Photocatalyst	Synthesis method	Target pollutant	Result	Experimental conditions	References
AgX-SiO ₂ (X-Cl, Br, or I)		Acetaldehyde (gas phase). Rhodamine B dye (5.4 × 10 ⁻⁵ M; liquid phase)	Gas phase: under visible irradiation, photoactivity follows the order AgI-SiO ₂ > AgBr-SiO ₂ > AgCI-SiO ₂ , under UV irradiation, AgI-SiO ₂ and AgBr-SiO ₂ exhibited similar and higher photocatalytic activity compared to AgCI-SiO ₂ . Liquid phase: under visible irradiation, only AgI-SiO ₂ is able to degrade the rhodamine B dye. Under UV irradiation, photocatalytic activity follows the order AgI- SiO ₂ > AgBr-SiO ₂ > AgCI- SiO ₂	UV irradiation (320–400 nm). Visible-light irradiation (420 nm); 0.1 g photocatalyst, total volume 150 ml	Hamal and Klabunde (2010)
TiO ₂ -SiO ₂ -Ag	Biomimetic using lysozyme and sol gel	Rhodamine B (10 ppm)	96.9% of RhB degraded by 0.11%Ag/TiO ₂ -SiO ₂ , 67.5% by 0.08%Ag/TiO ₂ -SiO ₂ , and 31% by 0.04% Ag/TiO ₂ -SiO ₂ under 4 h visible irradiation (λ > 420 nm). Adsorption experiment: 30% RhB adsorbed by TiO ₂ -SiO ₂ -Ag compared by only 10% for both TiO ₂ -Ag and TiO ₂	50 mg of catalyst; 50 ml of 10 ppm RhB, 150 W Xenon arc lamp with cutoff filter (λ > 420 nm)	Liu et al. (2013
Au@SiO2-TiO2	Sol gel	Methylene blue (2.4 \times 10 ⁻⁵ M)	After 5 h of irradiation with UV _{365nm} and visible light, TiO ₂ and SiO ₂ -TiO ₂ degraded about 44% of MB, Au/TiO ₂ degraded about 80% MB and Au@SiO ₂ -TiO ₂ degraded about 95%	UV _{365nm} , visible irradiation (400–700 nm) -UV _{365nm} , Xenon lamp with filter (400 nm < λ < 700 nm); 150 klux	Chen et al. (2012)
SiO ₂ /TiO ₂ /20%CuBiS ₂ / 2%Ag	Sol gel Ag deposited via photoinduction. CuBiS ₂ deposited via precipitation	Acid black 1 (10ppm)	Under UV irradiation: 100% degradation of AB1 in 5 min. Under visible-light irradiation: 100% degradation of AB1 in 30 min	Visible irradiation with 150 W incandescent halogen lamp and ultraviolet irradiation with 450 W xenon light with cutoff filter (λ > 400 nm)	Abdullah and Kuo (2015)
Ag25/SiO ₂ /TiO ₂	Modified Stober process; Au/ SiO ₂ and Ag/SiO ₂ deposited onto TiO ₂ by using maleic acid	1.50×10^{-4} M aqueous salicylic acid (SA) and 1.50×10^{-4} M aniline (A)	Under UV-visible-light irradiation. SA: 3.8 times higher than bare TiO ₂ . A: 2.5 times higher than bare TiO ₂	UV-visible: 300 W Xe lamp with water filter to cutoff IR.	Lee et al. (2017a)
SiO ₂ -Ag@ TiO ₂	Sol gel; impregnation	10 mg/L of TC 2 × 10 ^{−5} M of RhB, MB, and MV	60% degradation of TC; 95.9% RhB dye	120 min; visible irradiation, 350 W with UV cut filter (λ > 420 nm)	Zhang et al. (2018)
M-TiO ₂ /SiO ₂ (M: Pt ⁴⁺ , Pd ²⁺ , and Ag*)	Photodeposition method using 8 W blacklight lamp (365 nm) for 15 h in N_2 atmosphere	Brilliant red K-2G (K- 2G) and cationic blue X-GRL (CBX)	300 W high pressure mercury lamp (330–550 nm)	Pt-modified catalyst demonstrated a 2.8 times higher photoactivity than the TiO ₂ /SiO ₂ for the photodegradation of K- 2G. However, this catalyst had a lower degradation rate for CBX.	Hu et al. (2003)
TiO ₂ -SiO ₂ (TS1) materials doped with Ag and Pt nanoparticles	TiO ₂ -SiO ₂ was prepared by the sol-gel method. Ag- and Pt- based photocatalysts were prepared by photodeposition (400 W medium pressure mercury lamp)	Phenol	Solar simulator box equipped with a Xe lamp (450 W m^{-2}) emitting the solar spectrum	TS1-Ag-1.0 and TS1-Pt-1.0, respectively, showed an increase in the photocatalytic activity up to two and five times higher than TS1	Matos et al. (2018)

(Continued on following page)

Photocatalyst	Synthesis method	Target pollutant	Result	Experimental conditions	References
Core/shell nanostructures SiO ₂ / TiO ₂ doped with Au nanoparticles	A combination of methods to prepared each component	Methyl orange (MO)	The UV light (I < 400 nm) filtered using a UV shield film (SK-2, Sunnano) to produce only visible light at a power density of 80 \pm 2.5 mW cm ⁻²	The photocatalyst decomposed 1% of MO solution in 15 ml deionized water in 1 h under the visible light	Lee at al. (2017b)
Ag-coated SiO ₂ @TiO ₂ (Ag-SiO ₂ @TiO ₂) core- shell nanocomposites	Hydrothermal process and photodeposition (high-pressure Hg UV lamp for 60 min)	Phenol and methylene blue	500 W high-pressure mercury lamp	Ag nanoparticles improved the photocatalytic activity of SiO ₂ @ TiO ₂ core-shell nanoparticle improved the degradation of phenol and methylene blue	Fu et al. (2019)

FIGURE 5 | Schematic representations of excited electron generated in AuNS and transfer to the TiO₂ CB, where ECB, Ef, and EVB represent the energies of the conduction band, Fermi level, and valence band, respectively (source: Shi et al. (2016)).

film has been reported to decrease with the increase in molar ratio of SiO_2 in TiO_2/SiO_2 film (Fateh et al., 2013).

When the amount of SiO₂ used to modify the TiO₂ is too small (<2%) or too large (>5%), it causes lower photocatalytic degradation of TiO₂-SiO₂ as compared to commercial P25 TiO₂. In addition, from the XRD analysis, it was reported that doping small amount of SiO₂ on TiO₂ will not effectively prevent rutile phase transformation, which also produces lower photocatalytic activity while high mount of SiO₂ doping will influence the optical absorption of TiO₂ which is not favourable in photocatalytic reactions (Kang et al., 2009).

Lee et al. (2017a) employed the citrate reduction method to prepare Au and polyol method to prepare Ag nanoparticles, respectively. After that, modified Stober process was employed to coat Au and Ag surfaces with SiO₂. The prepared composites were later deposited onto TiO₂ (Degussa P25) by employing maleic acid as an anchoring agent. Lee et al. (2017b) reported that Ag@SiO₂-doped TiO₂ nanoparticles are significantly more effective in photocatalytic activity than Ag-doped TiO₂. Ag25@SiO₂/TiO₂ exhibited the highest activity in decomposing aqueous salicylic acid and aniline under UVvisible light irradiation; which was 3.8 and 2.5 times, respectively, that of the bare TiO_2 . The authors attributed the high photocatalytic efficiency of Ag25@SiO₂/TiO₂ to strong LSPR effect of Ag.

Zhang et al. (2018) found that SiO_2-Ag/TiO_2 (SAT) showed enhanced visible-light activity and UV light activity compared to SiO_2-TiO_2/Ag (STA) for degrading tetracycline and traditional dyes. According to them, SiO_2 serves as an efficient support for the Ag nanoparticle immobilization; meanwhile, TiO_2 retains the hierarchical structure and prevents agglomeration of Ag nanoparticles during photocatalytic reaction. They attributed the excellent photocatalytic activity of SAT to improve the transport path of photogenerated electrons, diminished recombination probability of electron-hole pairs, and reduced threat of oxidation and corrosion. It should be noted that the SAT retained its photocatalytic efficiency even after five consecutive runs.

CONCLUSION

Plasmonic metal particle-incorporated TiO_2 -SiO₂ composite plays an essential role as a solar photocatalyst which can transform solar energy into chemical energy for application in photocatalysis. Various methods and strategies were presented in this work that highlighted this incorporation, yielding different

REFERENCES

- Abdullah, H., Kuo, D. H., Lee, J. Y., and Wu, C. M. (2016). Recyclability of thin nylon film-supported p-CuBiS₂/n-TiO₂ heterojunction-based nanocomposites for visible light photocatalytic degradation of organic dye. *Appl. Phys. A.* 122 (8), 750. doi:10.1007/s00339-016-0276-4
- Abdullah, H., and Kuo, D. H. (2015). Photocatalytic performance of Ag and CuBiS₂ nanoparticle-coated SiO₂@ TiO₂ composite sphere under visible and ultraviolet light irradiation for azo dye degradation with the assistance of numerous nano p–n diodes. *J. Phys. Chem. C.* 119 (24), 13632–13641. doi:10.1021/acs.jpcc. 5b01970
- Bahadur, J., Sen, D., Mazumder, S., Sastry, P. U., Paul, B., Bhatt, H., et al. (2012). One-step fabrication of thermally stable TiO₂/SiO₂ nanocomposite microspheres by evaporation-induced self-assembly. *Langmuir* 28 (31), 11343–11353. doi:10.1021/la3022886
- Balachandran, K., Venckatesh, R., Sivaraj, R., and Rajiv, P. (2014). TiO₂ nanoparticles versus TiO₂–SiO₂ nanocomposites: a comparative study of photo catalysis on acid red 88. Spectrochim. Acta Mol. Biomol. Spectrosc. 128, 468–474. doi:10.1016/j.saa.2014.02.127
- Bellardita, M., Addamo, M., Di Paola, A., Marcì, G., Palmisano, L., Cassar, L., et al. (2010). Photocatalytic activity of TiO₂/SiO₂ systems. J. Hazard Mater. 174 (1–3), 707–713. doi:10.1016/j.jhazmat.2009.09.108
- Chan, P. Y., El-Din, M. G., and Bolton, J. R. (2012). A solar-driven UV/Chlorine advanced oxidation process. Water Res. 46 (17), 5672–5682. doi:10.1016/j. watres.2012.07.047
- Chen, H. W., Ku, Y., and Kuo, Y. L. (2007). Photodegradation of o-cresol with Ag deposited on TiO₂ under visible and UV light irradiation. *Chem. Eng. Technol.* 30 (9), 1242–1247. doi:10.1002/ceat.200700196
- Chen, J. J., Wu, J. C., Wu, P. C., and Tsai, D. P. (2012). Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@ SiO₂/TiO₂ by promoted LSPR. J. Phys. Chem. C. 116 (50), 26535–26542. doi:10.1021/jp309901y
- S. H. Cho and S. Krishnan (Editiors) (2013). Cancer nanotechnology: principles and applications in radiation oncology. (Boca Raton, FL: CRC Press), 296.
- Choi, K. S. (2007). Band gap tuning of zinc oxide films for solar energy conversionA CASPiE Module. West Lafayette, Ind: Purdue University, 38.

results. By taking advantage of three synergistic effects that can influence the photocatalytic activity of TiO₂, ability to absorb solar photons by plasmonic metal nanoparticles (Ag or Au), and high adsorption activity by SiO₂, it is possible to utilize the renewable solar energy for water and wastewater remediation effectively. With greater focus on this composite photocatalyst, the next few years will bring major advancement in utilizing the Ag/Au-incorporated TiO₂-SiO₂ in water and wastewater treatment plants at an industrial scale.

AUTHOR CONTRIBUTIONS

CJ supervised the student, visualised, wrote, and edited the manuscript. YH wrote and edited the manuscript. BM made funding acquisition and edited the manuscript. MS made funding acquisition and edited the manuscript. LE conducted the research and investigation process and wrote the original draft.

FUNDING

This research was supported by the Research and Innovation Management Center of University Malaysia Sabah (grant no. SBK0354-2017), and it is gratefully acknowledged.

- Fateh, R., Dillert, R., and Bahnemann, D. (2013). Preparation and characterization of transparent hydrophilic photocatalytic TiO₂/SiO₂ thin films on polycarbonate. *Langmuir* 29 (11), 3730–3739. doi:10.1021/la400191x
- Fatimah, I., Said, A., and Hasanah, U. A. (2015). Preparation of TiO₂-SiO₂ using rice husk ash as silica source and the kinetics study as photocatalyst in methyl violet decolorization. *Bull. Chem. React. Eng. Catal.* 10 (1), 43–49. doi:10.9767/ bcrec.10.1.7218.43-49
- Fu, N., Ren, X.-C., and Wan, J.-X. (2019). Preparation of Ag-coated SiO₂@TiO₂ core-shell nanocomposites and their photocatalytic applications towards phenol and methylene blue degradation. *J. Nanomater.* 2019, 8. doi:10.1155/ 2019/8175803
- Gardin, S., Signorini, R., Pistore, A., Giustina, G. D., Brusatin, G., Guglielmi, M., et al. (2010). Photocatalytic performance of hybrid SiO₂–TiO₂ films. *J. Phys. Chem. C.* 114 (17), 7646–7652. doi:10.1021/jp911495h
- Gupta, A. K., Pal, A., and Sahoo, C. (2006). Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag⁺ doped TiO₂. *Dyes Pigments* 69 (3), 224–232. doi:10.1016/j.dyepig. 2005.04.001
- Hamal, D. B., and Klabunde, K. J. (2010). "Heterogeneous photocatalysis over highsurface-area silica-supported silver halide photocatalysts for environmental remediation," in *Nanoscale materials in chemistry: environmental applications*. (Washington: American Chemical Society), 191–205.
- Hao, C. H., Guo, X. N., Pan, Y. T., Chen, S., Jiao, Z. F., Yang, H., et al. (2016). Visible-light-driven selective photocatalytic hydrogenation of cinnamaldehyde over Au/SiC catalysts. J. Am. Chem. Soc. 138 (30), 9361–9364. doi:10.1021/jacs. 6b04175
- Hayashido, Y., Naya, S. I., and Tada, H. (2016). Local electric field-enhanced plasmonic photocatalyst: formation of Ag cluster-incorporated AgBr nanoparticles on TiO₂. J. Phys. Chem. C. 120 (35), 19663–19669. doi:10. 1021/acs.jpcc.6b04894
- Hu, C., Tang, Y., Jiang, Z., Hao, Z., Tang, H., and Wong, P. K. (2003). Characterization and photocatalytic activity of noble-metal-supported surface TiO₂/SiO₂. *Appl. Catal. Gen.* 253 (2), 389–396. doi:10.1016/S0926-860X(03)00545-3
- Jeon, H., Lee, C. S., Patel, R., and Kim, J. H. (2015). Well-organized meso-macroporous ${\rm TiO}_2/{\rm SiO}_2$ film derived from amphiphilic rubbery comb

copolymer. ACS Appl. Mater. Interfaces. 7 (14), 7767–7775. doi:10.1021/acsami. 5b01010

- Kang, C., Jing, L., Guo, T., Cui, H., Zhou, J., and Fu, H. (2009). Mesoporous SiO₂modified nanocrystalline TiO₂ with high anatase thermal stability and large surface area as efficient photocatalyst. *J. Phys. Chem. C.* 113 (3), 1006–1013. doi:10.1021/jp807552u
- Kibombo, H. S., Peng, R., Rasalingam, S., and Koodali, R. T. (2012). Versatility of heterogeneous photocatalysis: synthetic methodologies epitomizing the role of silica support in TiO₂ based mixed oxides. *Catal. Sci. Technol.* 2 (9), 1737–1766. doi:10.1039/C2CY20247F
- Lee, J. E., Bera, S., Choi, Y. S., and Lee, W. I. (2017a). Size-dependent plasmonic effects of M and M@ SiO₂ (M= Au or Ag) deposited on TiO₂ in photocatalytic oxidation reactions. *Appl. Catal. B Environ.* 214, 15–22. doi:10.1016/j.apcatb. 2017.05.025
- Lee, R., Kumaresan, Y., Yoon, S. Y., Um, S. H., Kwon, I. K., and Jung, G. Y. (2017b). Design of gold nanoparticles-decorated SiO₂@TiO₂ core/shell nanostructures for visible light-activated photocatalysis. *RSC Adv.* 7 (13), 7469–7475. doi:10. 1039/C6RA27591E
- Liga, M. V., Maguire-Boyle, S. J., Jafry, H. R., Barron, A. R., and Li, Q. (2013). Silica decorated TiO₂ for virus inactivation in drinking water-simple synthesis method and mechanisms of enhanced inactivation kinetics. *Environ. Sci. Technol.* 47 (12), 6463–6470. doi:10.1021/es400196p
- Linic, S., Christopher, P., and Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. *Nat. Mater.* 10 (12), 911–921. doi:10.1038/nmat3151
- Liu, C., Yang, D., Jiao, Y., Tian, Y., Wang, Y., and Jiang, Z. (2013). Biomimetic synthesis of TiO₂–SiO₂–Ag nanocomposites with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 5 (9), 3824–3832. doi:10. 1021/am4004733
- Matos, J., Llano, B., Montaña, R., Poon, P. S., and Hidalgo, M. C. (2018). Design of Ag/and Pt/TiO₂-SiO₂ nanomaterials for the photocatalytic degradation of phenol under solar irradiation. *Environ. Sci. Pollut. Control Ser.* 25 (19), 18894–18913. doi:10.1007/s11356-018-2102-3
- Mungondori, H. H., Tichagwa, L., and Green, E. (2015). Synthesis and glass immobilization of carbon and nitrogen doped TiO₂-SiO₂ and its effect on *E. coli* ATCC 25922 bacteria. *Br. J. Appl. Sci. Technol.* 5 (5), 447. doi:10.9734/bjast/ 2015/11049
- Oriel-Instruments (1999). The book of photon tools. Stratford, CT: Oriel Instrument, 1–3.
- Panayotov, D., and Yates, J. T. (2003). Bifunctional hydrogen bonding of 2chloroethyl ethyl sulfide on TiO₂–SiO₂ powders. J. Phys. Chem. B. 107 (38), 10560–10564. doi:10.1021/jp0304273
- Ramamoorthy, V., Kannan, K., Joseph, J., Infant, A., Kanagaraj, T., and Thiripuranthagan, S. (2016). Photocatalytic degradation of acid orange dye

using silver impregnated TiO₂/SiO₂ composite catalysts. J. Nanosci. Nanotechnol. 16 (9), 9980–9986. doi:10.1166/jnn.2016.12071

- Ren, Y., Chen, M., Zhang, Y., and Wu, L. (2010). Fabrication of rattle-type TiO₂/ SiO₂ core/shell particles with both high photoactivity and UV-shielding property. *Langmuir* 26 (13), 11391–11396. doi:10.1021/la1008413
- Shi, X., Lou, Z., Zhang, P., Fujitsuka, M., and Majima, T. (2016). 3D-Array of Au–TiO₂ yolk–shell as plasmonic photocatalyst boosting multi-scattering with enhanced hydrogen evolution. ACS Appl. Mater. Interfaces 8 (46), 31738–31745. doi:10.1021/acsami.6b12940
- Singh, R., Bapat, R., Qin, L., Feng, H., and Polshettiwar, V. (2016). Atomic layer deposited (ALD) TiO₂ on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect. ACS Catal. 6 (5), 2770–2784. doi:10.1021/acscatal.6b00418
- Wang, T., Zhu, Y. C., Xu, Z. Y., Wu, L. G., Wei, Y. Y., Chen, T. N., et al. (2016). Fabrication of weak-room-light-driven TiO₂-based catalysts through adsorbedlayer nanoreactor synthesis: enhancing catalytic performance by regulating catalyst structure. J. Phys. Chem. C. 120 (22), 12293–12304. doi:10.1021/acs.jpcc.6b03721
- Wei, Q., Li, Y., Zhang, T., Tao, X., Zhou, Y., and Chung, K., et al. (2014). TiO₂-SiO₂-composite-supported catalysts for residue fluid catalytic cracking diesel hydrotreating. *Energy Fuels* 28 (12), 7343–7351. doi:10. 1021/ef500799t
- Xu, Z., Huang, C., Wang, L., Pan, X., Qin, L., Guo, X., et al. (2015). Sulfate functionalized Fe₂O₃ nanoparticles on TiO₂ nanotube as efficient visible lightactive photo-Fenton catalyst. *Ind. Eng. Chem. Res.* 54 (16), 4593–4602. doi:10. 1021/acs.iecr.5b00335
- Zangeneh, H., Zinatizadeh, A. A. L., Habibi, M., Akia, M., and Isa, M. H. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J. Ind. Eng. Chem. 26, 1–36. doi:10.1016/j.jiec.2014.10.043
- Zhang, Y., Chen, J., Tang, H., Xiao, Y., Qiu, S., Li, S., et al. (2018). Hierarchicallystructured SiO₂-Ag@ TiO₂ hollow spheres with excellent photocatalytic activity and recyclability. J. Hazard Mater. 354, 17–26. doi:10.1016/j.jhazmat.2018.04.047

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Joseph, Taufiq-Yap, Musta, Sarjadi and Elilarasi. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.