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Triboelectric Nanogenerators (TENGs) are a highly efficient approach for

mechanical-to-electrical energy conversion based on the coupling effects of contact

electrification and electrostatic induction. TENGs have been intensively applied as

both sustainable power sources and self-powered active sensors with a collection

of compelling features, including lightweight, low cost, flexible structures, extensive

material selections, and high performances at low operating frequencies. The output

performance of TENGs is largely determined by the surface triboelectric charges

density. Thus, manipulating the surface chemical properties via appropriate modification

methods is one of the most fundamental strategies to improve the output performances

of TENGs. This article systematically reviews the recently reported chemical modification

methods for building up high-performance TENGs from four aspects: functional groups

modification, ion implantation and decoration, dielectric property engineering, and

functional sublayers insertion. This review will highlight the contribution of surface

chemistry to the field of triboelectric nanogenerators by assessing the problems that are

in desperate need of solving and discussing the field’s future directions.

Keywords: surface chemistry, surface engineering, triboelectric nanogenerator, wearable electronics, Internet of

Things

INTRODUCTION

The rapid development of wearable and portable electronic devices is greatly revolutionizing our
conventional means of energy generation and consumption (Gubbi et al., 2013; Lee and Lee,
2015; Zhou et al., 2020a; Zou et al., 2020). Miniaturized energy sources with high portability and
sustainability are eagerly desired for powering billions of distributed devices in the era of the
Internet of Things (Bai et al., 2014; Yang et al., 2015; Lin et al., 2017; Xu et al., 2017; Bedi et al., 2018;
Wang, 2019). In the modern world, portable energy storage units, such as batteries, seem like the
intuitive and most widely used solution to meet the power consumption needs of electronic devices
(Grey and Tarascon, 2017; Gu et al., 2017; Liu W. et al., 2017; He et al., 2018; Zan et al., 2020).
However, their limited lifetime (Ponrouch et al., 2016; Placke et al., 2017; Liu K. et al., 2018; Wan
et al., 2019; Xu et al., 2019), rigid structure, toxic chemical components, and unsustainable working
mode, which includes periodically recharging or even replacing the battery unit, deems portable
energy storage units obsolete for wide-range adoption to mobile electronics, and more specifically
wearable devices (Wang, 2013; Zang et al., 2015; Gao et al., 2016; Kenry and Lim, 2016; Trung and
Lee, 2016; Liu Y. et al., 2017; Seneviratne et al., 2017; Gür, 2018; Kim et al., 2019; Yan et al., 2020;
Zhang et al., 2020) and bio-integrated applications (Kang et al., 2013; Slater et al., 2013; Li and Dai,
2014; Yabuuchi et al., 2014; Fu et al., 2017; Zhang et al., 2017; Lin et al., 2018; Yan et al., 2018; Meng
et al., 2019; Zhou et al., 2020b). Converting the accessible, renewable energy from the human body
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and its surroundings into electricity is considered a great
alternative solution (Wang Z. L. et al., 2015; Chen et al., 2020; Su
et al., 2020). Electricity generation from biomechanical motions
(Qin et al., 2008; Sun et al., 2011; Lee et al., 2012; Yang W.
et al., 2013; Yi et al., 2015; Chen and Wang, 2017; Zhao et al.,
2019), acoustic waves (Wang et al., 2007; Cha et al., 2010; Yang
J. et al., 2014a), solar irradiance (Stephen, 2006; Zheng et al.,
2015; Chen et al., 2016b; Dagdeviren et al., 2017), body heat
(Niu et al., 2009; Yang et al., 2013b; Zi et al., 2015a; Wang et al.,
2019), and biofuels (Zou et al., 2016), are just some examples
of the conversion of energy from and around the human body.
In 2012, the triboelectric nanogenerator (TENG) was invented
as a highly efficient energy harvesting technology from human
biomechanical motions (Bai et al., 2013a; Chen et al., 2013; Hou
et al., 2013; Zhu et al., 2013a, 2014b; Yang J. et al., 2014b; Cheng
et al., 2015b; Jeong et al., 2015; Chen, 2016; Jin et al., 2016;
Wang Z. L. et al., 2016). Compared to other energy harvesting
approaches, TENG has several advantages: light weight, low
cost, flexible structures, extensive material selection, and great
efficiency at low operating frequencies, all of which make TENGs
one of the mainstream power supplies for self-powered devices
(Jing et al., 2014; Yang W. et al., 2014a,b; Kuang et al., 2015; Lin
et al., 2016; Liu R. et al., 2018; Chu et al., 2020; Pu et al., 2020a).
TENGs is feasible for driving various electronic devices, ranging
from light-emitting diodes (LEDs) (Yang et al., 2013d; Lin et al.,
2014; Chun et al., 2015; Kanik et al., 2015; Mao et al., 2015; Wu
et al., 2016) to cell phones (Wang et al., 2012; Zhu et al., 2014c)
and from a large number of bio-sensors (Fan et al., 2015; Wen
et al., 2015; Cai et al., 2018; Su et al., 2018, 2020a,b; Davoodi et al.,
2020; Meng et al., 2020) to pacemakers (Zheng Q. et al., 2014).
This shows showing their remarkable compatibility with a wide
range of application in different settings, displaying that plentiful
possibilities are remaining to be further explored (Wang, 2014;
Hinchet et al., 2015; Wang S. et al., 2015; Zhang et al., 2015; Zhu
et al., 2015; Zhang B. et al., 2016; Pu et al., 2020b).

Note that the triboelectric effect is a well-known phenomenon,
in which two surfaces, having different triboelectric properties,
become electrically charged during physical contact (Mizes et al.,
1990; Liu and Bard, 2009). The principle of TENG is based
on the coupling effect of contact electrification and electrostatic
induction (Yang et al., 2013c; Su et al., 2014b; Wu et al., 2015; Li
Z. et al., 2016; Zhang L. et al., 2016). The static polarized charges,
resulting from the contact between the two friction surfaces with
different charge affinities, are generated on the friction surfaces
and cause different surface potentials, thereby bringing about
inductive charges among the two attached electrodes (Su et al.,
2014a; Zhu et al., 2014a; Chen et al., 2015a,b). Then the inductive
electrons are driven to flow between two electrodes via an
external circuit to fulfill the conversion process from mechanical
energy to electricity (Niu et al., 2013a,b, 2014a; Chen et al., 2015c;
Niu and Wang, 2015; Zi et al., 2015b). The output performance
of TENGs is determined by the triboelectric charge density on
the triboelectric material surfaces (Dharmasena et al., 2018).
Thus, increasing the triboelectric charge density is the most
fundamental strategy for building high-performance TENGs.
Considerable efforts have been made to increase the triboelectric
charge density of TENGs, including proper triboelectricmaterials

selection (Zenkiewicz et al., 2015; Zhao et al., 2015; Kim et al.,
2017; Lee et al., 2018), advanced device structural design (Bai
et al., 2013b; Lin L. et al., 2013; Wang et al., 2013; Yang et al.,
2013a; Zhang H. et al., 2014; Deng et al., 2020), and triboelectric
materials surface physical/chemical modifications (Lin et al.,
2009; Lin Z. H. et al., 2013; Niu et al., 2014b; Jing and Kar-
Narayan, 2018; Zhou Y. et al., 2020). The surface physical
modification is primarily realized via material morphological
manipulation. Namely, increasing the effective friction area
through incorporating surface micro-/nano-structures (Jeong
et al., 2014; Kim et al., 2015; Feng et al., 2016; Wang et al.,
2017), such as nanowires (Zheng et al., 2014; Lin et al., 2015),
nanoparticles (Zhu et al., 2013b) and other nanoscale patterns
(Zhang et al., 2013; Lee et al., 2014; Choi et al., 2015; Dudem et al.,
2015). Furthermore, manipulating the surface chemistry of the
friction layers through chemical modifications and consequent
changes in surface potentials will enlarge the polarity between
the two friction surfaces therefore contributing to the high-
performance of TENGs (Wang S. et al., 2016).

This review systematically reports the current advances in
surface chemistry for high-performance TENGs. As shown in
Figure 1, the chemical modification methods can be summarized
and classified into four categories: functional groups grafting,
ion implantation and decoration, dielectric property engineering,
and functional sublayers insertion. In addition, this review
provides a critical analysis of surface chemistry for TENG and
insights into remaining challenges and future directions. With
worldwide efforts in innovations in chemistry and materials
elaborated in this review, the frontiers of high-performance
TENGs will be pushed forward, which could offer the era of
Internet of Things a compelling pervasive energy solution.

FUNCTIONAL GROUPS GRAFTING

Functional groups grafting is a straightforward and efficient
method to fabricate high-performance TENG with finely
tunable triboelectric properties. By simply introducing electron-
accepting and electron-donating groups onto triboelectric
material surfaces, functional group grafting outperforms
complicated bulk engineering. It indicates that TENGs can be
built with a wider range of polymeric surfaces even if they are
originally inefficient for triboelectric energy harvesting. This
indication unlocks the limitations of triboelectric materials
choice for designing high-performance TENGs. In principle,
surface functional groups grafting is achieved by chemically
grafting target element-containing groups, such as –CF3 and
–NH2 groups, generally through either solution reactions or
vapor treatments. By introducing functional groups with high
tendency to gain or loss electrons onto the triboelectric surfaces,
the negative or positive potential of the surface will be increased
and manipulated. This manipulation contributes to a greater
transfer charge density during the cyclic contact-and-separate
movement between two triboelectric materials and therefore
improves the output performance of TENGs. Moreover, applying
some surface treatments for functional groups grafting such as
the plasma process, can chemically and morphologically modify
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FIGURE 1 | Surface chemistry for high-performance triboelectric nanogenerators. Reprinted with permission from Shin et al. (2017). Copyright 2017 American

Chemical Society. Reprinted with permission from Shin and Kwon (2015). Copyright 2015 American Chemical Society. Reprinted with permission from Wang et al.

(2014). Copyright 2014 Wiley-VCH. Reprinted with permission from Park et al. (2017). Copyright 2017 WILEY-VCH. Reprinted with permission from Yu et al. (2015).

Copyright 2015 Wiley-VCH. Reprinted with permission from Seung et al. (2017). Copyright 2017 Wiley-VCH. Reprinted with permission from Lai et al. (2018).

Copyright 2018 American Chemical Society. Reprinted with permission from Cui et al. (2018). Copyright 2018 American Chemical Society.

surfaces simultaneously (Zhang X. et al., 2014; Cheng et al.,
2015a; Li et al., 2015), which can further improve the output
performance of TENGs. In this section, methods concerning
functional groups grafting on the triboelectric material surfaces
are introduced, including their enhancement mechanism toward
TENG performance.

Self-Assembled Monolayer
The self-assembled monolayer (SAM) method, wherein the
chemical adsorption of an active surfactant on a solid surface
is used to realize well-ordered molecular assembly can be easily
performed and widely used on various kinds of surfaces (Ulman,
1996; Song et al., 2015). Using the SAM method in surface
functionalization of TENGs, the target functional groups can
be anchored onto the material surfaces through forming strong
chemical bonds, effectively altering the surface potential of
contact materials. Unlike simply functionalized surface via one-
step solution reactions or vapor treatments (Yao et al., 2017),
this method is effective not only on noble-metal substrates
but also on insulating substrates, such as SiO2 and Kapton.
Moreover, the uniform and well-ordered SAMs in nanoscale
effectively controlled surface defects and reduced the adsorption
of additional adsorbates in the air (Rimola et al., 2013). In
this way, the SAM method can extensively expand the scope

of triboelectric material choices and enhance the performance
of TENGs.

Byun et al. systematically modulated the triboelectric
polarities of SiO2 layers by functionalizing the surfaces with
various electron-donating functional groups, including –NH2, –
SH, a neutral group –CH3, and an electron-accepting functional
group, –CF3 (Byun et al., 2016) Figure 2A shows a schematic
diagram depicting the triboelectrification of these various SAM-
modified SiO2 layers. The modification process started with
treating the substrates, a wafer with a 100 nm-thick SiO2

layer, by ultraviolet/ ozone plasma for 10min to prepare for
functional group anchoring. After that, in the lone case of –
NH2, the substrate was immersed in a 1% (v/v) (3-aminopropyl)
triethoxysilane (APTES)/ethanol solution for 1 h. The other three
functional groups, –SH, –CH3, and –CF3, were all formed by
the chemical vapor deposition method (Hozumi et al., 1999;
Hayashi et al., 2002). During these processes, target functional
groups were anchored on the surface of triboelectric materials,
which altered the conventional triboelectric series of original
substrates, leading to a higher tendency of triboelectric surfaces to
lose or gain electrons. Figures 2B,C show energy band diagrams
of surface modified with an electron-donating and an electron-
accepting functional groups. Among these functional groups,
the negative and positive surface dipoles introduced by the
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FIGURE 2 | Schematic representations of SAM-modified triboelectric materials and their output performance before and after functionalization. (A) Schematic

diagram showing the propensity of the triboelectrification on (i) a strongly electron-donating layer (–NH2), (ii) a moderate electron-donating layer (–SH), (iii) a neutral

layer (–CH3), and (iv) an electron-accepting layer (–CF3). (B) Energy band diagrams of substrates modified with an electron-donating layer and (C) with an

electron-accepting layer and that of the metal. (D) Open-circuit voltage and (E) short-circuit current of the triboelectric device composed of PI and SAM-modified ITO.

Reprinted with permission from Byun et al. (2016). Copyright 2016 American Chemical Society. (F) Schematic illustrations of surface functionalized polyethylene

terephthalate (PET) substrates with various halogen-containing and aminated molecules. (G) Output voltage generated by cyclic contacts between bare

PET:aminated-PET pairs and (H) bare PET:halogenated-PET pairs. Reprinted with permission from Shin et al. (2017). Copyright 2017 American Chemical Society.

strong electron-donating –NH2 groups and electron-accepting
–CF3 groups can significantly decrease or increase the surface
potential. The relative position of the as-functionalized surfaces
and the counter materials in energy level affects the direction of
electrons flow. It reveals that by modulating the surfaces with
various electron-donating and -withdrawing functional groups,
the polarity and the amount of triboelectric charge on the
material surfaces can be well-controlled. In principle, TENGwith
as-SAMs-modified surfaces should deliver significant electric
output considering the enlarged difference of friction surfaces
potential. Figures 2D,E compare the open-circuit voltage and the
short-circuit current of TENGs consisting of the SAMs-modified
indium tin oxide (ITO) and polyimide (PI).With SAMs-modified
surfaces: NH2-ITO and CF3-ITO, the output performance of as-
fabricated TENGs have remarkable enlargement in both Voc and
Isc, compared to that of using a bare ITO surface.

Similar SAMs functionalization was applied to conventional
TENG materials, such as polyethylene terephthalate (PET)
substrates through a series of halogens and amines. Shin et al.
obtained a wide spectrum of tunable triboelectric polarity
through chemical surface functionalization with the halogen-
containing molecules and the aminated molecules (Shin et al.,
2017). Before anchoring functional groups to the PET surfaces,

the PET substrates were first treated by oxygen plasma to form
hydroxyl groups (–OH) on the surfaces, as shown in Figure 2F.
Here, the –OH groups played a crucial role as strong chemical
bonds between the surfaces of PET substrates and the target
functional molecules. The surface was then functionalized with
electron-accepting elements, halogens (Br, F, and Cl)-terminated
phenyl derivatives and several aminated molecules to induce
triboelectrically negative or positive property on PET substrates.
Figures 2G,H show the output voltages of TENGs with bare
PET:aminated-PET contact pairs and bare PET:halogenated-
PET contact pairs, respectively. The result shows a significant
variation in the output performance. The TENGs with the
aminated-PET surfaces generated strong positive polarity signals,
while negative polarity signals were generated from the TENGs
with halogenated-surfaces in contrast. Among them, the PEI(b)-
PET:PET and Cl-PET:PET contact pairs generated the maximum
output voltage, exceeding 300 and 200V, respectively.

For high-performance TENGs designation, SAM method,
cooperating with other efficient surface functionalization
approaches, is applied flexibly to modulate the triboelectric
polarities of both triboelectric materials. Shin et al. engineered
the surfaces of triboelectric materials with a negatively charged
–CF3 group via self-assembling deposition and with positively
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charged –NH3 group through dip-coating (Shin and Kwon,
2015). Figures 3A,B display the surface modification process,
where firstly PET substrates were treated by oxygen plasma for
100 s to form reactive –OH groups strongly binding on their
surfaces. Subsequently, one plasma-treated PET film was dipped
in the poly-l-lysine (PLL) solution for 5min, while the other
side was exposed in trichloro(1H,1H,2H,2H-perfluorooctyl)
silane FOTS vapor environment at 95◦C for 1 h. During this
processing step, target molecules (PLL and FOTS) are anchored
onto the surfaces of PETs through covalent bonding with –OH
groups. Consequently, the PPL-coated PET (P-PET) surface
is positively charged by –NH3 groups and the self-assembling
chemical vapor treated PET (F-PET) surface is negatively
charged by –CF3 groups. Figure 3C displays the schematic of
TENGs fabricated with various triboelectric material pairs: (i)
bare PET:bare PET, (ii) bare PET:P-PET, (iii) bare PET:F-PET,
(iv) P-PET:F-PET. Furthermore, the comparisons of their
open-circuit voltages are shown in Figures 3D,E. Among these
TENGs, the generated output voltages increase from ∼4V
in the device with PET:PET contact pair to ∼330V with P-
PET:F-PET pair. Thus, the output performance of TENGs can
be greatly enhanced by modulating both friction surfaces and
corresponding triboelectric polarities, implying the outstanding
effectiveness of these functional group modification methods.
In addition, the surface of the functionalized PET demonstrates
superior stability, which is attributed to its tight chemical bonds
with surface functional groups.

Ultraviolet-Ozone Irradiation
In addition to the SAM method, Ultraviolet-ozone (UVO)
irradiation is another facile method to enhance the triboelectric
charge of triboelectric material surfaces via tailoring the chemical
functional groups (Hoek et al., 2010; Fan et al., 2014). Unlike
the SAM method, UVO irradiation creates desired functional

groups by substituting the existing chemical elements and bonds
on the surface with target elements and new bonds, instead of
directly introducing new chemical functional groups onto the
material surfaces. Yun et al. increased the triboelectric surface
charge of polydimethylsiloxane (PDMS) via the UVO irradiation
method. After that, by simply sprinkling NaOH or HCl solution
onto theUVO-irradiated PDMS surfaces, the triboelectric surface
charge was further changed significantly (Yun et al., 2015).
As shown in Figure 4A, the fresh PDMS surface consists of
mainly non-polar Si-CH3 bonds (Cole et al., 2011). During
UVO irradiation, the previous Si–CH3 bonds are broken and
converted to polar Si–O, Si–OH, and Si–COOH bonds, obtaining
a mildly base and polar surface. Further NaOH treatment by
simply sprinkling NaOH solution onto the UVO-treated PDMS
surface results in an additional increase of the amount of Si–
O bonds at the expense of Si–CH3 bonds. When adopting the
HCl treatment, on the other hand, the Si–O bonds are changed
to Si–OH bonds (Lai et al., 2012). Due to a large amount
of polar Si–O bonds on the UVO- and NaOH-treated PDMS
surface, a greater triboelectric charge was generated, leading to
higher output performance of as-treated PDMS based TENGs.
As for the UVO- and HCl-treated PDMS surface, the result
showed relatively little triboelectric charge and lower output
performance of as-fabricated TENGs. Figure 4B compares the
output performance of fresh and surface-treated PDMS-based
TENGs. After surface treatment with NaOH for 2 h and UVO
irradiation for 1 h, the open-circuit voltage and short-circuit
current exhibited an almost 15-fold enhancement than those
of fresh PDMS-based TENGs reaching 49.3V and 1.2 µA,
respectively. Note that, the output voltage and current of TENGs
can be improved by simple UVO treatment for 1 h, shown
in Figure 4B with red lines. However, when increasing the
exposure time to 2 h, the output voltage and current showed
no further enhancement, as shown with blue lines. An in-depth

FIGURE 3 | Schematic illustration of modification processes and output performance of TENGs with functionalized-surfaces. (A) The surface modification process by

dip-coating and (B) self-assembling deposition. (C) Schematic of TENGs fabricated with different contact pairs. (D) Open-circuit voltage of corresponding TENGs. (E)

Local enlarged peaks of the open-circuit voltage. Reprinted with permission from Shin and Kwon (2015). Copyright 2015 American Chemical Society.
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FIGURE 4 | Schematic diagrams and output performance of functionalized triboelectric materials surfaces via UVO irradiation or electrospinnig. (A) Schematic

diagram about suggested mechanism of chemical elements and bonds of PDMS surface after UVO irradiation and NaOH treatment. (B) Comparison of the

open-circuit voltage and induced triboelectric surface charge of surface-treated TENGs based on fresh PDMS, UVO-irradiated PDMS for 1 h [UVO (1 h)] and 2 h [UVO

(2 h)], and NaOH-treated PDMS for 2 h after UVO irradiation for 1 h [NaOH (2 h)+UVO (1 h)]. Reprinted with permission from Yun et al. (2015). Copyright 2015 Elsevier.

(C) SEM image of electrospun PMMA fibers. (D) Schematic structure of a single unit of PMMA polymer chain. (E) Output power and (F) open-circuit voltage of

electrospun PMMA-based TENGs. Reprinted with permission from Busolo et al. (2018). Copyright 2018 Elsevier.

comparison of triboelectric surface charge induced from fresh
and surface-treated PDMS-based TENGs is displayed too. The
triboelectric charges of UVO (1 h) and NaOH (2 h)+UVO (1 h)
treated PDMS were enhanced significantly, with ∼33.9 and 53.5
nC respectively, when compared to that of fresh PDMS with
merely 3.17 nC. While increasing the UVO treatment time to
2 h, the surface-induced charge decreases. It implies that NaOH
solution treatment after UVO irradiation is an easy-achieved
and efficient method to enhance the output performance of
TENGs, but controlling the UVO irradiation time is critical to
optimize efficiency.

Electrospinning
The electrospinning technique is a one-step method to
tailor the surface potential of triboelectric materials and
consequently improve TENGs triboelectric output performance.
Electrospinning is applied in the materials fabrication process; a
high voltage is applied between the nozzle of a syringe filled with
a polymer solution and the grounded substrate to produce solid
fibers on the substrate. In this case, through applying a positive
or negative voltage to the nozzle during the electrospinning
process, charges of equivalent polarity are generated at the
liquid jet–air interface, altering the surface chemical properties
of materials (Stachewicz et al., 2012). Busolo et al. altered the
surface chemistry of polymethylmethacrylate (PMMA) fibers via
electrospinning and substantially improved triboelectric output
performance of electrospun PMMA based TENGs (Busolo et al.,
2018). The PMMA fibers altered by polarized charges were
successfully fabricated as scanning electron microscopy (SEM)

images shown in Figure 4C. Positive (PMMA+) and negative
(PMMA−) charges were generated by applying a positive and
negative voltage to the nozzle, respectively, to modify the surface
chemistry. The changes in surface chemistry were analyzed by
using X-ray photoelectron spectroscopy and the result data
indicated that the variation of the surface potential properties
between PMMA+ and PMMA− fibers were directly related to
the distinct contents of chemical bonds in the units of PMMA
polymer chain, as shown in Figure 4D. In the case of positive
voltage polarity applied during electrospinning, more oxygen-
containing groups were present at the O1 and O2 regions,
whereas, in the case of negative voltage polarity applied, the
units contained more C–C chemical bonds. Thus, due to the
high electronegativity of oxygen, PMMA+ fibers exhibited a
lower surface potential when compared to PMMA− fibers. The
changes in surface potential were correlated with variations
of charge transfer affinity and triboelectric performance. To
investigate the output performance of as-fabricated TENGs,
PMMA+ and PMMA− fibers were deposited onto an aluminum
foil by electrospinning. The modified aluminum foil served as
one of the triboelectric material. Via periodically stimulating
the contact-and-separate movement with the counter-electrode
(copper substrate), the output power and voltage of PMMA+

fiber, PMMA− fiber, and pure PMMA film are obtained and
compared in Figures 4E,F. Contact pairs based on PMMA+

and PMMA− fibers significantly outperformed PMMA film-
based TENGs in both output power and open-circuit voltage.
The PMMA− fibers produced a maximum power output of
234.4 nW at a load resistance of 80 MΩ and obtaining a
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nearly 10-fold enhancement in voltage. These results indicated
that the electrospinning technique can be adopted to effectively
manipulate the surface potential of fibers by alternating the
polarity of applied voltage in a simple manufacturing process;
therefore, substantially improving the triboelectric output.

In conclusion, functional groups grafting is a straightforward,
cost-efficient and easy-to-implement method to manipulate
the surface chemical properties, by breaking and forming
new chemical bonds on triboelectric materials’ surfaces. New
functional groups with strong electron-donating or electron-
accepting ability are anchored onto the materials surface, giving
rise to drastic performance enhancement of TENGs. However,
since the functional groups grafting is just taken place on the
surfaces rather than deep into the bulk of tribo-materials, the
results may lose its effectiveness if the surface is polished or worn
out during the friction.

ION IMPLANTATION AND DECORATION

Ion implantation and decoration, is the method that directly
adds ions or single-polarity charged particles on or inside the
triboelectric materials of interest. This can be an efficient way
to increase the charge density of the triboelectric surfaces and
thus enhance the output performance of TENGs. Such methods,
including ion injection and irradiation, usually are achieved with
the assistance of special instruments, such as, an air-ionization
gun. Additionally, the modifications do not only take place
on the material surfaces, but also affect both surface and bulk
regions. This indicates that the results can be maintained for
several months or even longer (Wang et al., 2014), implying
that the as-fabricated high-performance TENGs will have better
output stability.

Ion Injection
The ion injection technique, which is applicable to various
triboelectric polymers, is an effective and the most commonly
adopted way to introduce surface charges for enhancing TENGs’
output performance. The ions with negative or positive polarities
are generated and subsequently implanted onto the material
surfaces by triggering the discharge of air in the air-ionization
gun. Wang et al. adopted this method to create negative charges
CO−

3 , NO
−

3 , NO
−

2 , O
−

3 , and O−

2 , and injected them onto the
fluorinated ethylene propylene (FEP) surface (Baytekin et al.,
2011). In order to achieve the maximum surface charge density
for high-performance TENG, the bottom electrode attached to
the back of the FEP film was grounded, as shown in Figure 5A.
In this way, the negative charges introduced by ion injection
will drive equal quantities of electrons away from the bottom
electron to the ground, leaving positive charges in the electrode.
The grounded connection of the bottom electron will lead to a
higher surface charge density when compared with the electrode-
free FEP layer, because FEP has a much larger dielectric property
than air. By repeating this procedure multiple times, the negative
charge density on the material surface can be controlled to reach
any desired level. The large amount of the negative or positive
polarities charges distributed on the surface of the contact
materials through the ion injection can lead to a strong driving
force for the high-output voltage and current. In this work the
results showed a five-fold enhancement of the surface charge
density is obtained by the ion injection. Figures 5B,C compare
the Voc of TENGs fabricated with FEP films before and after
ion injection, respectively. The FEP film is assembled with an Al
layer, as a pair of triboelectric materials, to form a contact-mode
TENG. Before injection, as-fabricated TENG can only produce a
Voc of ∼200V, because its surface charges are generated merely

FIGURE 5 | Basic modification processes and output enhancement of triboelectric materials surfaces via ion injection and ion irradiation. (A) Schematic diagram of

the ionized ion injection applying onto FEP surface with air ionization gun. (B,C) Open-circuit voltage of TENGs based on FEP films (B) before and (C) after the ion

injection process. Reprinted with permission from Wang et al. (2014). Copyright 2014 Wiley-VCH. (D) Schematic diagram of ion irradiation simulation. (E) Schematic

diagram of chemical structure changes of Kapton. (F) Transferred charge density and (G) output power of different ion concentration irradiated Kapton contracting

with fluorinated ethylene propylene (FEP) films. Reprinted with permission from Li et al. (2020). Copyright 2019 Royal Society of Chemistry.
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by the triboelectrification. After the injection, which introduced
a large number of external charges onto the surface, the Voc

was enhanced to ∼1,000V. Moreover, the output power of
the modified-TENGs was elevated by 25 times, which was also
proven to be stable over 5 months and 400,000 continuous
operating cycles.

Ion Irradiation
Ion irradiation is a widely used method for many materials such
as metals, superconductors and semiconductors, etc., owing to
its controllable applied area, adjustable ion dose, and uniform
treated results (Dong and Bell, 1999; Awasthi et al., 2010;
Kumar et al., 2013; Kumar and Singh, 2015; Wang et al.,
2015). Via low-energy ion irradiation, Li et al. proposed a
novel surface modification process to effectively modulate the
chemical structures of the target polymer, Kapton (Li et al., 2020).
Unlike the Ion Injection method mentioned above, which can
significantly improve the achievable maximum charge density
on the tribo-materials surfaces by electrostatically inducing the
same amount of electrons flowing from the bottom electrode to
the ground, Ion Irradiation mainly changes the crystal structure
of the target materials and consequently changes its surface
properties via inducing the breaking and rearrangement of
chemical bonds. Figure 5D shows a schematic diagram of ion
irradiation simulation, where a low-energy ion beam of 50 keV
He was used to irradiate the Kapton surface. Meanwhile, various
ion irradiation concentrations are adopted on the polymer,
changing from 1 × 1015 to 1 × 1017 ions/cm2 (as-treated
Kapton polymers were named Kapton1E15, Kapton1E16, and
Kapton1E17, correspondingly). The collisions produced by ion
irradiation cause macromolecules in the polymer to reach a
chemical bond energy barrier and finally break. After that, the

implanted ions combine onto polymer surfaces by forming new
chemical bonds. Take the ion irradiation process of Kapton1E16
as an example, shown in Figure 5E. The original C-N bonds
were broken and C-H and N-H bonds were formed instead
after low-energy He ion implantation. In this way, the -NHCOR
bond, which is a very strong electron donating group when
conjugated with a benzene ring, was established on the surface
of the polymer. This is circled out with the red dotted line in
the Kapton1E16 molecular formula. As a result, Kapton film
modified by ion irradiation shows higher surface charge density,
excellent stability, and ultrahigh electron-donating capability.
Therefore, this provides a good demonstration for manipulating
the output performance of TENGs based on controllable
chemical structure change. The transferred charge density
of different ion concentration irradiated Kapton contracting
with fluorinated ethylene propylene (FEP) films were shown
in Figure 5F. Among these four samples, Kapton1E16 film
achieved the maximum transferred charge density with 332
µC/m2. Moreover, the output power of Kapton1E16 and pre-
irradiated Kapton polymer are compared in Figure 5G, implying
a significant enhancement in maximum peak power after ion
irradiation treatment, from 0.5 nW to 18 µW. To further verify
the stability of Kapton1E16, the as-fabricated TENG was tested
for more than 60 days without output degradation, which proved
that the chemical modification of Kapton film induced by ion
irradiation is quite stable and effective.

Ion Absorption
Alkali Metal ions can also be used to modify the surface
chemistry of some types of triboelectric materials by simple
solution-processed alkali metal ion absorption. As shown in
Figure 6A, Li et al. chose SAM-modified PDMS and the

FIGURE 6 | Schematic diagrams and output performance of TENGs with ion-decorated triboelectric materials. (A) Schematic diagram of the structure of an AMI-NF

TENG. (B) Schematic diagram of nanoporous structure on the surface of AMI-NF. (C) Partial enlarged schematics of alkali metal ion (Li+, Na+, K+, and Cs+)

association with sulfonate (SO−

3 ) functional groups on the surface of the nanopores. (D) Average Voc and (E) averaged maximum power of AMI-NF with various alkali

metal ions. (F) Schematics of sequential alkali metal ion exchange on a nanoporous surface: ① Li+→ ② Cs+→ ③ Na+→ ④ Cs+→ ⑤K+
→ ⑥ Cs+→ ① Li+. Reprinted

with permission from Park et al. (2017). Copyright 2017 WILEY-VCH.
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alkali-metal-ion-decorated nanoporous film (AMI-NF) as a pair
of triboelectric materials for TENGs fabrication (Park et al.,
2017). The modification process started from the preparation
of the supramolecular-assembled nanoporous film, where 6:4
w/w blends of sulfonic-acid-terminated poly(styrene) (SPS) and
poly(2-vinylpyridine) (P2VP) were used as a precursor. The
subsequent removal of P2VP from the precursor, where the
pyridine nitrogen atoms of P2VP had been ionically linked to the
sulfonic acid groups of SPS by acid-base interaction, resulted in a
nanoporous surface enriched with sulfonic acids (SO−

3 groups)
that could be used for binding alkali metal ions, as shown in
the diagram in Figure 6B. On the other side, PDMS film was
modified via vapor deposition to form a layer of uniform FOTS
on the surface. Following the procedures, we introduced before in
the section of the SAMmethod, as-modified PDMS film obtains a
fluorinated surface that has a strong tendency to attract electrons.
Next, the ions chosen in the work to modify the nanoporous
friction film were alkali metal ions, including Li+, Na+, K+, and
Cs+. By simply immersing the nanoporous film into an aqueous
solution containing these alkali metal ions, Li+, Na+, K+, and
Cs+ ions can be absorbed into the nanopores of the materials
and selectively bind with SO−

3 groups, as schematically shown in
Figure 6C. Since the electrostatic field built by cation field can
lead to the polarization effect of the sulfonate group (Kujawski
et al., 1992; Salis and Ninham, 2014), the electron transfer
ability from AMI-NF to PDMS increases upon the tribo-contact
after metal ions decoration, allowing us to fabricate alkali-
metal-ion-decorated TENGs with better output performance and
mechanical properties. Figures 6D,E show the average open-
circuit voltage and the maximum power of AMI-NFs modified
with various alkali metal ions. The average Voc values of AMI-
NF TENGs with Li+, Na+, K+, and Cs+ ions were −90, −79,
−49.2, and −27.4V, respectively. For comparison, the output
power of nanoporous film without alkali-metal-ions absorption
was examined with AMI-NF TENGs, showing that the power
generated from the bare nanoporous film was much poorer than
that of the Li+, Na+, K+-NF TENGs. The averaged maximum
power of Li+, Na+, K+-NF TENGs was 256.5, 238.4, 115.7, and
11.5 µW, respectively. The value of 256.5 µW in the case of
Li + -NF is notably high and 20 times higher than that of the
bare nanoporous film with a value of only 12.8 µW. The lowest
output performance of bare nanoporous film attributes to the
weakest polarization without alkali metal ions effect. Therefore,
the friction film obtains the least effective electron transfer ability
when in contact with the PDMS friction film, resulting in a
TENG with the lowest output performance. Furthermore, in the
stability test of as-modified TENGs, the device with a size of 2
× 3 cm was mechanically robust and could be operated without
performance degradation under repetitive contacts (1.25Hz, 5N)
for more than 50,000 cycles. The results suggest that chemical
modification of the triboelectric material surface with alkali metal
salts is crucial for high-performance TENGs with relatively long
effective duration.

Interestingly, as-fabricated AMI-NF TENGs offers a
convenient means to switch the triboelectric properties via
a simple solution treatment, since alkali metal ions bound with
SO−

3 groups on the nanoporous surface can be readily exchanged

from one to another, as shown in Figure 6F. Each step (from ①

to ⑥) shown in the diagram involves the hydrated dissociation
(HD) of the alkali metal ions from the SO−

3 groups with AMI-Cl
solution. In this way, a controllable Voc and output power,
ranging from −90 to −27.4V and 11.5–256.5 µW, respectively,
were obtained simply by a conventional ion exchange process in
a reversible manner. Thereby, wide-range tuning of triboelectric
output performance can be achieved.

In summary, the ion injection and decoration methods
provide effective approaches for improving the TENG’s
output performance. Since modification took place upon both
the surface and near-surface regions, the enhanced output
performance can last stably at least for months and will not suffer
from the polish of the surfaces. Thus, it is the most commonly
adopted method of materials surface modification for improving
TENGs’ output performance by far. Nevertheless, the fabrication
processes are relatively complicated and the instrument used
during the process adds extra cost, which may bring obstacles for
further scaling up.

DIELECTRIC PROPERTY ENGINEERING

Controlling the dielectric property of triboelectric materials can
also effectively enhance the output performance of TENGs. The
underlying mechanism of the dielectric property engineering
shares similarities with the above-mentioned ion implantation
and decoration methods. Both of them manipulate the output
performance of TENGs by controlling the surface charge density
of triboelectric materials or introducing extra charged ions or
molecules. Compared to other chemical modification methods,
the dielectric property engineering improves the triboelectric
materials’ binding force and holding capacity of electrons. This
method achieves such characteristic enhancements by doping
high dielectric nanomaterials into its bulk region. This bulk
modification, which manipulates the chemical properties of the
material itself instead of just modifying the outermost surface,
will then be reflected on the changes in surfaces’ charge density.
Certainly, this approach also contributes to developing high-
performance TENGs with good resistance to the surface wearing
issue. Moreover, dielectric property modification is versatile in
tailoring a broad range of triboelectric materials since a variety
of metalorganic molecules possess high permittivity in most
polymer chains (George, 2010; Jin et al., 2020). With proper
selection of dopants and precise control of the dose, dielectric
property modification could be a promising approach to improve
the output performance of TENGs.

Sequential Infiltration Synthesis
Sequential infiltration synthesis (SIS) is a molecular infiltration
process on the basis of the atomic layer deposition (ALD)
technique (Wilson et al., 2005; Peng et al., 2011; Biswas
et al., 2015). The method is applied in the process of
polymer fabrication; the larger permittivity of metalorganic ALD
precursors allows deep infiltration of inorganic compounds
during the ALD process, leading to inorganic-and-organic
hybrid materials (Ferguson et al., 2004; Gong et al., 2012a,b;
Moghaddam et al., 2013; Padbury and Jur, 2014). Through
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deep infiltration of some high dielectric inorganic molecules,
such as AlOx, the SIS technique was expected to be an
effective means to tailor the dielectric and electrical properties
of the polymer of interest and therefore provide a solution
for modifying triboelectric materials in bulk volume. Based on
the SIS technique, Yu et al. proposed an internal AlOx doping
method of several triboelectric polymers, including PDMS,
Kapton and PMMA (Yu et al., 2015). AlOx was selected as
the dopant since trimethylaluminum (TMA, ALD precursor of
Al2O3) has desirable permittivity in a number of polymers such
as polystyrene (PS), polypropylene (PP), polyethylene (PE), and
poly (vinyl chloride) (PVC) and PMMA (Seung et al., 2015).
The modification results of the PDMS film serves as a good as
simultaneous surface and bulk modification of the PDMS films’
dielectric and electrical properties were achieved, the schematic
diagram is shown in Figure 7A. The AlOx-doped PDMS is
capable of storing a greater volume of charges compared with
the pristine one. Moreover, the surface potential of the AlOx-
doped PDMS film was changed due to the injection of electrons
from AlOx-doped PDMS film to pristine PDMS film upon their
friction. This subsequently leads to a positively charged surface
in the doped PDMS film and negatively charged surface in the

pristine PDMS film. As we know, such a charge redistribution will
not happen between two PDMS films without modification, due
to their identical surface potential. Therefore, the AlOx doping
process via the SIS technique should be able to significantly raise
the output performance of TENGs.

As a consequence of the modification, Figures 7B,C show the
cross-sectional SEM images and corresponding energy dispersive
spectroscopy (EDS) elemental mappings of the pristine PDMS
film and the AlOx-doped PDMS film after 5-cycle sequential
TMA/H2O infiltration, respectively. This elemental distribution
analysis indicated the successful deep infiltration of molecules
in the PDMS film rather than the surface coating of Al2O3

molecules. From these diagrams, AlOx molecules were found
to be capable of penetrating as deep as ∼3µm into PDMS
film, since there was a high concentration of ions gathering
within this region. This bulk modification attributed to the deep
doping method, allows the enhanced performance of TENGs to
survive even after polishing off 2 µm-thick polymer materials,
leading to a longer duration of effective time. Figure 7D displays
the dielectric constant of pristine PDMS film and AlOx-doped
PDMS film. The dielectric constant of PDMS films increased
from ∼2.4 to ∼2.7 after the SIS doping technique, implying

FIGURE 7 | SEM images of SIS-modified triboelectric materials and output performance of as-fabricated TENG. (A) Schematic diagram of triboelectrification induced

charge redistribution between pristine PDMS and AlOx-doped PDMS films upon contact. (B,C) Cross-sectional SEM images (i) and corresponding energy dispersive

spectroscopy (EDS) mappings of a pristine PDMS film and an AlOx-doped PDMS film for Al, Si, O, and C elements (ii–v). (D) Dielectric constant of pristine PDMS film

and AlOx-doped PDMS film. (E) Voc of TENGs based on the PDMS with and without AlOx doping. Reprinted with permission from Yu et al. (2015). Copyright 2015

Wiley-VCH.
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that AlOx-doped PDMS was capable of storing more charges
than the pristine one. By controlling the types and doses of
dopant and modified triboelectric materials, the SIS doping
could also arbitrarily tune the charge attraction or repulsion
ability of the polymer, therefore, successfully manipulating the
output performance of TENGs, similar to previously discussed
modification strategies. The average peak values of the Voc of
TENGs fabricated with the two pristine PDMS pair and AlOx-
doped PDMS: PDMS pairs are shown in Figure 7E. The value
reached 2.3V in the AlOx-doped pair which were comparable to
TENGs based on typical triboelectric pairs with distinct electron
affinities, such as PDMS-ITO and Teflon-metal pairs (Fan et al.,
2012), while the untreated PDMS pair generated only 0.3V in the
same testing condition.

High Dielectric Nanoparticles Doping
Nanoparticles with high permittivity are also doped inside the
triboelectric materials to increase its dielectric constant, and
therefore, to improve the output performance of the TENGs
(Liu et al., 2017). Chen et al. filled the triboelectric materials,
PDMS matrices, with high permittivity nanoparticles, such as
SiO2, TiO2, BaTiO3, and SrTiO3 (Chen et al., 2016a), as shown
in Figure 8A. The relative permittivity of these nanoparticles is
demonstrated in Figure 8B. Among them, the TENGs doped
with SrTiO3 particles generated the highest output voltage due
to its highest relative permittivity of 300. Figure 8C displays
the open-circuit voltage of TENGs fabricated with different
dielectric-nanoparticles-doped PDMS films. The voltage was
greatly enhanced after doping and reached a peak value of 305V
generated from the composite PDMS film containing 10 vol %
SrTiO3 nanoparticles, while only 172V can be obtained from the
original PDMS. As a result, the peak voltage and current density

for the TENG with composite PDMS film are 1.8 and 2.4 times as
much as that of the original one.

In order to modulate the permittivity, a porous structure
was formed inside the PDMS film by the process of simply and
feasibly mixing and removing NaCl particles, as displayed in
Figure 8D. When the TENG is pressed by a cyclic external force
during the contact-and-separate movement, the triboelectric
materials will shrink to minimum thickness, which increases the
electrical output of the TENG due to the enlarged capacitance.
Thus, the reason for introducing pores into triboelectricmaterials
is that the effective thickness of the triboelectric materials can
be reduced and the surface area can be enlarged simultaneously
by forming sponge structure. However, adding pores into
triboelectric materials, which can be regarded as filling particles
with the permittivity of the air (even lower than the original
triboelectric materials, PDMS), will have an adverse influence
on the effective permittivity. The effective permittivity of PDMS
film with sponge structure drops from 3 to 1.83 when the
volume fraction of pores increases from 0 to 45%, verifying that
filling with lower dielectric particles into the PDMS film causes
a reduction in its effective permittivity. After comparing and
balancing the three factors: effective thickness, top surface area,
and permittivity of the PDMS film with sponge structure, the
investigations found that the TENG based on the sponge PDMS
friction film doped with 10 vol % SrTiO3 NPs and 15 vol %
pores can provide an optimal output performance, reaching up to
9.06µA/cm2 and 338V in short-current density and open-circuit
voltage, respectively. The as-modified TENG achieved over 5-
fold power enhancement when compared with the TENG based
on the pure PDMS film.

However, some researchers reported that the agglomeration
effect, due to the high surface energy of nanoparticles doped

FIGURE 8 | Schematic diagrams and output performance of nanoparticles-doped TENGs. (A) Structure and working principle of as-fabricated TENG. (B) The relative

permittivity and (C) open circuit voltage of TENGs fabricated with different dielectric-nanoparticles-doped PDMS films. (D) Schematic diagram of TENG with sponge

structure PDMS composite film. Reprinted with permission from Chen et al. (2016a). Copyright 2016 American Chemical Society. (E) TEM images of the

core-shell-structured BaTiO3-PtBA nanoparticles. (F) Schematic diagram illustrating the preparation process of the core-shell-structured BaTiO3-PtBA nanoparticles.

(G) Output current densities generated by the PVDF-based TENGs with different percentage of the BaTiO3-PtBA nanoparticles (ranging from 0 to 30%). Reprinted

with permission from Du et al. (2018). Copyright 2018 American Chemical Society.
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into the triboelectric materials, might yield poor mechanical
properties and high dielectric loss (Kim et al., 2007). Surface
treatments should be applied in advance to reduce the
surface energy and enhance the dispersity of nanoparticles to
overcome the shortcoming of directly doping the high dielectric
nanoparticle in the polymer matrix. Du et al. modified the
surface of BaTiO3 nanoparticles with polymer polypoly(tert-
butyl acrylate) (PtBA) and created core-shell-structured BaTiO3-
PtBA nanoparticles by the atom transfer radical polymerization
(ATRP) technique (Du et al., 2018). The transmission electron
microscopy (TEM) images of the core-shell-structure BaTiO3

nanoparticles and the flow chart of the modification process
are shown in Figures 8E,F. This PtBA shell can effectively
reduce the surface energy of the nanoparticles in order to avoid
aggregation in friction polymers, and therefore make the BaTiO3

nanoparticles maintain high flexibility with low dielectric loss.
As demonstrated in Figure 8G, the TENG with BaTiO3-PtBA
doped PVDF film generated a short-circuit current in the range
from 1.1 to 2.1 µA/cm2, according to the weight percent of
the BaTiO3-PtBA nanoparticles ranging from 0 to 30%, while
the TENG with pure PVDF film generated only 0.8 µA/cm2.
The as-modified nanocomposites have a high breakdown field, a
high dielectric constant, and good mechanical properties. These
favorable characteristics further improve the output performance
of TENGs that are modified with the high dielectric nanoparticles
doping method.

Aside from forming a sponge structure, there is another
method, working together with nanoparticles doping, to further
enhance the output performance of TENGs. Seung et al.
applied both the relative permittivity effects and the polarization
effects to modify the triboelectric materials (Seung et al.,

2017). As displayed in Figure 9A, the triboelectric materials
in this work are composed of poled ferroelectric copolymer
matrix, poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-
TrFE)] (Lee et al., 2015a,b), doped with high dielectric
nanoparticles, BaTiO3 (BTO) (Wu et al., 2009; Kim et al.,
2014). The poled ferroelectric P(VDF-TrFE) matrix could attract
a large number of electrons from the opposite triboelectric
material during the cyclic contact-and-separate movement.
Moreover, the embedded BaTiO3 nanoparticles, with a high
dielectric property, acting as a strong charge-trapping site of
TENGs, can greatly increase the capacitance of triboelectric
material (Wolters and van der Schoot, 1985). In this way, by
embedding dielectric BaTiO3 nanoparticles inside the poled
ferroelectric P(VDF-TrFE) copolymer matrix, TENGs with as-
modified composite triboelectric materials can exhibit a dramatic
increase in output performance (Zhong et al., 2015; Li W.
et al., 2016; Wang et al., 2016). The charge transfer behavior
between aluminum film and three different P(VDF-TrFE)-based
surfaces, including non-poled P(VDF-TrFE), poled P(VDF-
TrFE), and poled P(VDF-TrFE):BTO, are shown in Figure 9B.
Among the three pairs, no significant charge transfer occurred
between Al and non-poled P(VDF-TrFE). While in the pair
of Al and poled P(VDF-TrFE):BTO, the band shifted steeply
and a huge charge transfer occurred on the surface, owing
to both the polarization of P(VDF-TrFE) (Shin et al., 2014)
and the dielectric properties of the embedded nanoparticles.
Figure 9C compared the dielectric constant between poled
P(VDF-TrFE) and poled P(VDF-TrFE):BTO in order to visually
display the electrical impacts brought from the introduction of
high dielectric nanoparticles. For the whole measured range,
the dielectric constant of the poled P(VDF-TrFE):BTO film

FIGURE 9 | Schematic diagrams and output performance of a ferroelectric composite-based TENG with dielectric nanoparticles BTO. (A) Schematic representations

of the structure of as-modified TENG. (B) The charge transfer behavior between two different material surfaces and its corresponding energy band modification. (C)

The dielectric constant of P(VDF-TrFE) with and without dielectric nanoparticles BTO. (D) The output voltage and current of TENGs with different modification

depending on with or without two effects: ferroelectric and dielectric. (E) Output performance comparison between ferroelectric composite-based TENG with BTO

nanoparticles and TENGs with traditional polymer films. Reprinted with permission from Seung et al. (2017). Copyright 2017 John Wiley & Sons.
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was larger than the poled P(VDF-TrFE) film. The output
voltage and current of TENGs based on different triboelectric
materials, depending on with or without ferroelectric and
dielectric effects, are shown in Figure 9D. Note that after
embedding the BaTiO3 nanoparticles into the poled P(VDF-
TrFE) rather than the non-poled P(VDF-TrFE), both the output
voltage and current increased significantly, reaching nearly
360V and 0.3mA, respectively. That means the as-fabricated
TENGs can only provide the maximum electrical output
by introducing high dielectric nanoparticles and poling the
matrix simultaneously.When compared with typical triboelectric
material-based TENGs, as shown in Figure 9E, the as-fabricated
TENG with poled P(VDF-TrFE):BTO film had a boosted output
performance which was improved by about∼150 times.

Generally speaking, dielectric property modification is an
effective and simple approach to fabricate high-performance
TENGs. However, the percentage of nanoparticles embedded
into the triboelectric material should be precisely controlled,
since the introduction of new contents may affect other chemical
or physical properties of the material itself including: surface
effective area, material effective thickness and so on. In fact,
the correlation between tribo-materials’ dielectric properties and
the output performance of TENGs is not clearly understood
yet. Therefore, more investigations should be done to further
improve the performance of energy harvesting.

FUNCTIONAL SUBLAYERS INSERTION

Functional sublayers insertion is another effective way to increase
the charge density of triboelectric materials and thus improve
the output performance of the TENGs. By adding sublayers
with different electrical properties into the TENG structure,
the triboelectric charges in the bulk of triboelectric materials
will redistribute to avoid the unnecessary loss of electrons.
Furthermore, they will enlarge the friction layers’ capacity of
triboelectric electrons. Take the triboelectric electrons in a
negative triboelectric material e.g., the original transport and
storage process is as follows: when the electrons are accumulated
on the contact surface after the cyclic contact between the
positive and negative friction layers, the positive charges can
be induced in the electrode. Due to this separate accumulation
of opposite charges, a vertical upward electric field will be
established between the friction surface and the bottom electrode.
Therefore, the electrons will be transported deeper into the bulk
of the triboelectric material, rather than stay on the friction
surface through a drift process caused by the vertical electric
field and a diffusion process caused by the concentration gradient
of electrons. However, the loss of electrons may occur during
the transport process. The positively charged ions or particles in
the air may also be absorbed onto the friction surface, causing
a decrease in the number of surface triboelectric electrons.
Moreover, for the triboelectric electrons that transport deep
into the bulk area, they may reach the bottom electrode and
recombine with the induced positive charges. Furthermore,
the triboelectric charges gathered on the surface will hinder
the subsequent triboelectric charges from entering into the

friction layer and cause a decline in charge density. In this
case, one intuitive solution to the problem is to transport and
trap triboelectric electrons into a specific middle layer of the
triboelectric material, which is far from the friction surface. To
store more charges, the sublayers used to trap the triboelectric
electrons should have a higher dielectric constant. For the reasons
above, adding multiple functional sublayers, including the charge
transport layer with high electric conductivity and the charge
storage layer with high dielectric property, etc., seems like a
promising way to realize the electronic redistribution inside the
triboelectric materials and therefore increase the charge density,
which plays a vital role in improving the output performance
of TENGs.

Electrons Capture Layer Insertion
Typically, monolayer molybdenum disulfide (MoS2), similar
to the reduced graphene oxide (GO) sheet, is a competitive
candidate as the charge-trapping agent due to its quantum
confinement effect, large specific surface area, and appropriate
energy level (Liu et al., 2012; Shin et al., 2016). Therefore,
Wu et al. introduced 2D MoS2 monolayer sheets inside the
triboelectric materials of TENG in an attempt to dramatically
enhance its output performance, as displayed in Figure 10A

(Wu et al., 2017). In the structure of TENG, a PI layer
and Al film were chosen as the negative and the positive
triboelectric material. Based on this, a MoS2 monolayer sheet
was inserted into the bulk of the PI material by spin-coating and
subsequent imidization (Wu et al., 2011), to create a uniform
MoS2-inserted PI layer. During the cyclic contact-and-separate
movement of as-fabricated TENG, the triboelectric electrons
generated on the surface of the PI may be transferred into
the MoS2 monolayer. Furthermore, they may also be stored
inside the negative friction layer rather than on its surface; the
aforementioned transfer and storage of electrons within this
system are displayed in Figure 10B. This phenomenon can be
attributed to the high charge-trapping property of the MoS2
monolayer. Therefore, the static electron density on the negative
triboelectric surfaces is decreased, increasing the gap between
the positive and the negative charges. The high electron-capture
properties of the monolayer MoS2 can weaken the air breakdown
effect, the recombination process between triboelectric electrons,
and the later absorbed positive charges, which can both cause
the loss of generated triboelectric electrons. Additionally, the
monolayer MoS2 can also suppress the drift and the diffusion
effects of electrons. The electrons in the friction layer serve as
an electrostatic induction source for the electricity generation
process of the TENGs, which has a great impact on the output
performances of TENGs. As a result, the electrical output
performance of as-fabricated TENG can be enhanced by the
dramatic increase in the density of triboelectric electrons.

To verify the impact of MoS2 monolayer insertion, a vertical
contact-separation mode TENG containing MoS2 monolayer as
an electron-acceptor layer was fabricated. Figure 10C shows that
the open-circuit voltage of the TENG without MoS2 monolayer
is about 30V, however, that of the TENG equipped with MoS2 is
as high as 400V. Furthermore, the as-fabricated TENG exhibited
a dramatic enhancement in its short-circuit current density and
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FIGURE 10 | Schematic diagrams and output performance of TENGs with dielectric monolayers. (A) Schematic diagram of a vertical contact-separation mode

TENGs based on the MoS2-inserted PI layer. (B) Schematic views of the electron transfer from the PI layer to the MoS2 monolayer. (C) Rectified open-circuit voltage

of the TENGs without and with MoS2 monolayer. (D) Short-circuit current density and the amount of charge generated during a press-release cycle for the TENGs

with and without monolayer. Reprinted with permission from Wu et al. (2017). Copyright 2017 American Chemical Society. (E) Illustrations of electrons’ drift process in

the TENG based on Au film. (F) Schematic diagram of electrons tunnel from PDMS to the Au film. (G) Transfer charge densities of TENGs. Reprinted with permission

from Lai et al. (2018). Copyright 2018 American Chemical Society.

the amount of charge generated by the TENG, as displayed in
Figure 10D. The total amount of charge generated by TENGwith
MoS2 monolayer reached ∼0.2 µC, which was much larger than
that generated by using a TENG without MoS2 monolayer with a
value of 20.05 µC. Moreover, the peak power density of modified
TENG was as large as 25.7 W/m2, which is 120 times larger than
that of the pristine TENG. These performance enhancements
are attributed to the highly efficient electrons-captured ability
of some novel 2D materials, which can provide direction to a
frontier inactive material selection and device structure design
for high efficiency triboelectric devices.

Electrons Trapping Layer Insertion
In addition to a MoS2 monolayer, the conductive materials
serving as sublayers have also been reported. These materials are
normally inserted in a bulk triboelectric material as transport
layers and form sandwich structures. Lai et al. embedded ravines,
gullies, and crisscrossed Au layers into the near-surface region
of the negative triboelectric material of PDMS, as shown in
Figure 10E (Lai et al., 2018). In order to obtain the PDMS
triboelectric material equipped with the Au layer, gold was coated
on the surface of PDMS via magnetron sputtering deposition.
It was determined, through theoretical analysis, that when the
negative triboelectric material, PDMS, captures the triboelectric
charges from the positive triboelectric material, Al film, the
charges drift from the surface to the internal bulk of the
triboelectric material. This can be credited to the diffusion
process caused by the concentration gradient of electrodes and
the strong electric field between the friction surface and the

bottom electrode. The Au layers applied in the work act as
the passageways and trapping agent of the triboelectric charges
during the drifting process. When the triboelectric charges reach
the interface between the PDMS and the Au layer, owing to the
strong electric field, the triboelectric charges will tunnel from
the PDMS to the gold. In this way, the internal-space-charge
zone is built. Moreover, the existence of ravines and gullies in
PDMS and crisscrosses in the Au layers jointly benefit from
the tunneling of charges. Owing to the existence of ravines in
the gold layer, formed by plasma treatment, there are many
embossments similar to those in mountain chain formation via
PDMS, as shown in Figure 10F. As we know, for a charged
object, the charge surface density is proportional to the curvature.
Thus, electrons will assemble in the embossments, resulting in
an increase of the local electric field strength. Accordingly, the
increased strength of the local electric field leads to an increase
in the probability of tunneling. Through embedding ravines
and gullies, the crisscrossed gold layer has an improved charge
storage capability and enhanced storage depth of the triboelectric
charge, which leads to the high output performance of TENG.
Figure 10G displays the transfer charge densities of TENGs,
where the charge density of the TENG with Au trapping layer
increases to 16.8 nC/cm2 which is ∼3 times higher than that
of the pure TENG without the Au layer. TENGs equipped with
multiple gold layers were built in the work to investigate the
changing tendency of triboelectric charge densities. With the
increasing number of inserted gold layers, from 0 to 4, the
value of transfer charge density is about 5.4, 9.7, 14.5, 16.7, and
16.8 nC/cm2, respectively, showing a gradual steady tendency at
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around 16.8 nC/cm2 when the number of layers reaches three.
This observation implies that the charges cannot drift much,
because they are being restricted by the depth of the drift and
depressed by the product of the probabilities of tunneling in
each interface. Overall, this study paves a novel way to enhance
the charge density of the triboelectric materials and, therefore,
improve TENG’s output performance.

Multiple Layers Structure
Based on the electrons trapping layer insertion method
mentioned above, a composite multiple-layer structure was built
in the triboelectric materials, in order to adjust the internal
distribution of the triboelectric charges and therefore improve
the output performance of TENGs. The structure was formed
by the stacking of a charge capture layer, a charge transport
layer, and a charge storage layer from the friction surface to
the bottom electrode. Among these three sublayers, the charge
capture layer was used as the fundamental friction layer that
was equipped in all of the structures of TENGs demonstrated
in Figure 11A. Furthermore, the charge capture layer was used
for robbing charges effectively from the opposite friction layer
during the cyclic contact-separate-movement. In contrast, the
charge transport sublayer was inserted to transport the generated
triboelectric charges on the surface to deeper inside the material.
Finally, the charge storage layer was added in order to hold more
charges in the triboelectric materials. For these purposes, the
transport sublayer should use materials with high conductivity in
order to allow for triboelectric charges to pass through this layer
quickly and hardly reside in it. This passageway for charge can
not only help the generated triboelectric charges on the surface
transport deeper into the bulk area, but also weaken the repulsive
force for the later coming charges as well. As for the charge

storage sublayer, it should bemade of materials with lower carrier
mobility, low intrinsic carrier concentration, and rich defects,
which can all contribute to a larger charge capacity. As we all
know, increasing the triboelectric charge density of a friction
layer is one of the most basic approaches to improve the electrical
output performance of TENGs.

On the basis of the theoretical analysis, Cui et al. fabricated
TENGs based on the above three-sublayers structure (Cui et al.,
2016). The negative and positive friction layers of TENGs
fabricated in this work were polyvinylidene fluoride (PVDF) and
aluminum foils. Firstly, the PS dielectric sublayer was added
into the negative triboelectric material, as a charge storage layer
between the bottom aluminum electrode and PVDF friction
layer. The intrinsic carrier density and electron mobility of
PS are both smaller than that of PVDF, due to its abundant
trap levels of electrons, making PS one of the most suitable
dielectric materials for acting as a storage layer. The short-circuit
currents performances, compared in Figures 11B,C, indicate that
the TENG with the PS sublayer demonstrated a dramatically
enhanced short-circuit current value with nearly 600 nA, which is
over 8 times greater than that of the TENG without the sublayer.
The triboelectric charge density of the triboelectric material with
this new structure is 7 times larger than that with the pure PVDF
layer, as shown in Figure 11D. To further enhance the output
performance of TENGs, a charge transport layer made of a small
number of carbon nanotubes was inserted between the PVDF
friction layer and the PS storage layer, in order to increase the
conductivity of the near-surface area in triboelectric material.
The transport sublayer is formed by adding a small number
of carbon nanotubes (CNTs) into a PS or poly(vinyl alcohol)
(PVA) layer. In this way, the transport process of the triboelectric
charge in the negative triboelectric materials was improved as

FIGURE 11 | Schematic diagrams and output performance of TENGs with multiple functional sublayers. (A) Schematic diagram of the transport process of

triboelectric electrons in the negative triboelectric material of TENG. (B,C) The output comparation of short current generated from TENG (B) without and (C) with PS

dielectric sublayer. (D) Improvement effects of different composite friction layer structure. Reprinted with permission from Cui et al. (2016). Copyright 2016 American

Chemical Society. (E) Schematic of the electrons transport process of TENG with three-sublayers structure. (F) The voltage of TENG with different sublayers applied in

both the positive and negative triboelectric materials. (G) The charge capacity of TENGs fabricated with different thicknesses of PS dielectric layers. Reprinted with

permission from Cui et al. (2018). Copyright 2018 American Chemical Society.
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follows: triboelectric charges from the positive friction layer
was first captured by the outermost PEDF layer and entered
the friction surface. Under the force of a built-in electric field
between the negative triboelectric charges on the friction surface
and the positive induced charges in the electrode, these charges
migrated deeper into the bulk area through the CNTs-based
PS layer and finally remained in the PS dielectric layer. This
further introduction of the charge transport layer can increase
the triboelectric charge yield effectively. And in this way, the total
charge quantity in the friction layer could be increased again by
a factor of 1.6. Overall, these multiple-layer structures of negative
triboelectric material provided a factor of 11.2 improvement of
the charge density produced from as-fabricated TENG when
compared to the original non-modified one.

Based on the previous work, it can be speculated that the
introduction of the charge transport and storage sublayers, which
has been proved to be effective in improving the electron storage
capacity for the negative triboelectric materials, may also take
effect in the positive triboelectric materials. As demonstrated
in Figure 11E, Cui et al. also introduced a similar multilayer
structure to the positive triboelectric material, PVA layer (Cui
et al., 2018). The three-sublayers structure are, in this case, from
the friction surface to the bottom electrode, a 2µm thick PVA
layer, a 5µm thick PS-doped 0.7 wt % CNTs layer (PSC), and PS
layer ranging from 3 to 20µm, working as the positive charge
capture layer, the charge transport layer and the storage layer,
respectively. Actually, to achieve the optical output performance
of TENG, the structure with three collaborative sublayers may
well be applied to both the negative and positive friction layer.
Therefore, three TENGs equipped with different sublayers are
built to investigate their output performance, including a TENG
with a PVA positive friction layer and a PVDF negative friction
layer, the second TENG with the same pair of friction layer
and an inserted PS storage layer, the third TENG added both
the PSC transport layer and PS storage layer into the same
friction pair. The schematic diagram of these structures and
the output voltage are shown in Figure 11F. The TENG with
multiple functional sublayers exhibited a dramatic enhancement
on output performance when compared to the original TENG.
Moreover, by introducing the PSC layer into the positive friction
layer, the charge capacity of TENG could be improved by 3.7-
fold, from 0.37 to 2.7 nC/cm2, as displayed in Figure 11G. By
properly applying this three-sublayers structure to both positive
and negative friction layers, the charge capacity of the designed
TENG would be able to improve by 16.5-fold, which results
in an outstanding promotion in the performance of the as-
fabricated TENG.

Furthermore, in this multiple-layer structure, the thickness
of each inserted sublayer has a vital relationship with the total
charge capacity of the triboelectric materials and their inner
charge distribution. Figure 11G shows the charge capacity of
TENG with the bottom PS charge storage layer of different
thicknesses, ranging from 3 to 20µm, while the devices’ top
PVA layers are all 2µm and PSC layers are 5µm. From the
output performance test, it can be found that with the increase
of the PS layer’s thickness, the charge capacity reveals an initial
trend of rapid rising and finally becoming stable finally, at about

12µm. The same trend of output performance can also be
found in the structure with a charge capture layer or transport
layer of changing thickness. The charge capacity of the inserted
capture layer PVA and the inserted transport layer PSC continues
to increase with the increase of the thickness of each layer,
respectively, but the increasing rate decreases gradually. This
means that an excess of thickness for these sublayers will not
supply more extra effective storage space for the triboelectric
charges. When comparing the performance difference between
devices with (shown in black line) and without (shown in red
line) a charge transport layer in this multiple-layer structure,
it can also be found that the thicker the PS layer, the greater
the influence of the charge transport layer. This is because, for
a PVA–PSC–PS three-layers structure TENG with a thicker PS
layer, a greater proportion of positive charges is separated from
the surface by the transport layer. Therefore, the function of the
inserted charge transport layer certainly becomes more obvious.

In general, adding additional sublayers with different
electrical properties into the TENG structure yields an active
intervention to the electrons transport and storage process;
therefore, functional sublayers insertion is a promising way to
improve the output performance of the TENGs. The triboelectric
charges in the bulk of triboelectric materials were redistributed,
in order to avoid the unnecessary loss of triboelectric electrons.
Furthermore, this enlarges the friction layers’ capacity of
triboelectric electrons. However, the mechanism of the
collaborative effect from the inserted sublayers, inner interfaces,
and the triboelectric material, which, respectively, enhances the
effective capture, transfer and storage of triboelectric charges
has not yet been well-studied. Accordingly, future studies in
this field will have great guiding significance for improving the
performance and stability of TENGs.

CONCLUSIONS

In this review, surface chemistry was systematically introduced
to promote the mechanical to electrical energy conversion via
triboelectric nanogenerators. Through chemical modifications
and approaches, triboelectric materials’ surface charge densities
have been proven to be modulated and thus the output
performances of TENGs are improved. Table 1 systematically
summarizes the performance enhancements and mechanical
durability of each chemical-modified TENGs. Methods that
have been discussed in this review include functional groups
grafting, ion implantation and decoration, dielectric properties
engineering, and sublayers insertion. TENGs with broadened
material choices, diversified operation modes and structural
design have fully displayed the advantages in a variety of
application scenarios, comparing with other mechanical energy
harvesting techniques. Many challenges are waiting to be
overcome to advance the field of surface chemistry for high-
performance TENGs, as follows.

(1) Enhance the chemical stability of the surface chemical
functional group grafting. Functional group grafting is a
straightforward, cost-efficient, and easy-to-implement way
to efficiently enhance the output performance of TENGs.

Frontiers in Chemistry | www.frontiersin.org 16 November 2020 | Volume 8 | Article 577327

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Xu et al. Surface Chemistry for Triboelectric Nanogenerators

TABLE 1 | A summary of typical chemical modification methods for TENGs.

Tribo-materials Modification method Output performance enhancementb Durationc References

Charge Voltage Current Power

Cl-PET, PEI(b)-PET Self-assembled monolayer - 19.80 a 21 a - 5,000 Shin et al., 2017

PDMS, ITO UVO-irradiation 15.88 11.97 17.46 - 20,000 Yun et al., 2015

PMMA− fiber, Cu Electrospinning - 1.28 a 147 a 585 a 125,000 Busolo et al., 2018

FEP, Al Ion Injection 5 5 3.33 25 400,000 Wang et al., 2014

FEP, Kapton Ion Irradiation 2.32 a - - 35,999 - Li et al., 2020

FOTS-PDMS, Li+ film Ion Absorption - 2.40 5.25 20 50,000 Park et al., 2017

AlOX-PDMS, PDMS Sequential Infiltration Synthesis 8 6.67 6.33 - - Yu et al., 2015

BaTiO3-doped(PVDF-TrFE), Al High Dielectric Doping 2.52 2 a 5 a 150 - Seung et al., 2017

PI/MoS2:PI/PI, Al Caption-Layer Insertion 3 12.33 6 a 120 - Wu et al., 2017

PDMS-Au layer, Al Trapping-Layer Insertion 4 - - - - Lai et al., 2018

PVA-PSC-PS, PVDF-PSC-PS Multiple-Layer Structure 16.5 9 a 9 a - - Cui et al., 2018

a Estimated value. b Multiple of Enhancement. c Testing Cycle of Duration.

Although that may be true, the results may lose its
effectiveness if the surface is polished or worn out during
the friction since the modification just takes place on the
surfaces rather than deep into the bulk of triboelectric
materials. To overcome this difficulty and limitation, further
improvements should be found to enhance stability and
effective duration of the method.

(2) Reduce the cost of ion injection and decoration methods for
further scaling up. The ion injection and decorationmethods
provide effective approaches for improving the TENG’s
output performance with relatively high stability. However,
the fabrication processes are relatively complicated and the
instruments used during the processes, such as air-ionization
guns, add extra cost. It may bring obstacles for further scaling
up. Consequently, more flexible and cost-efficient techniques
should be explored for ion implantation promotion.

(3) Deeply explore the mechanisms of dielectric engineering.
Although the dielectric property modification is
experimentally proven to be an effective and simple
approach for obtaining high-performance TENGs, the
correlation between dielectric properties of triboelectric
materials and output performance of as-fabricated TENGs
is not clearly unveiled yet. Further investigation should be
done to explore the mechanisms of dielectric engineering
and reveal the coefficient between embedded nanoparticles
and other chemical and physical properties of the material
itself, therefore optimizing the dose of dopants for
high-performance TENGs.

(4) Investigate the inner mechanism of functional sublayers
insertion. Functional sublayers insertion is a promising
way to improve the output performance of the TENGs
because it can provide an active intervention to the electrons
transport and storage process. Nevertheless, the mechanism
of the collaborative effect from the inserted sublayers, inner
interfaces, and the triboelectric material has not yet been
well-studied. Thus, further studies investigating the inner
mechanism will have great guiding significance to further
improve the output performance of TENGs.

(5) Incorporation of chemical and physical modifications. The
synergy of chemical and physical modifications could be
an effective approach to build up a high-performance
TENGs. Applying them to a material of interest can not
only increase the effective contact area between the two
triboelectric surfaces by various surface morphologies, but
also increase the gap between the two triboelectric materials’
ability to gain or lose electrons as well. Therefore, more
attempts should be done to apply both chemical and physical
modifications together to triboelectric materials or to explore
new techniques that can modify surface morphologies and
chemical properties simultaneously.

(6) Seek for possible biochemical approaches. Chemical and
biological approaches are usually highly correlated with each
other. By introducing biomaterials as novel triboelectric
materials, like silk fibroin film, TENG may have some
satisfying superiorities, such as flexible, stretchable, bio-
friendly and preferably transparent. Therefore, it should
be wearable (or even implantable) to the human body.
Through applying proper chemical modifications to these
biomaterials, higher electrical performance and working
stability can also be achieved, making TENG an efficient and
reliable power source with wider application prospects.

(7) Explorations of versatile TENG-based self-powered devices.
Both theoretical calculations and experimental endeavors are
highly in need for promoting existingmaterials or potentially
discovering new materials. which are not only with high
triboelectric properties but also compatibility with various
application scenarios, which seem to be a basis for the
development of versatile TENG-based self-powered devices.

Overall, the utilization of surface chemistry opens an emerging
and effective route to build up high-performance triboelectric
nanogenerator as a pervasive energy solution in the upcoming era
of the Internet of Things. Challenges coexist with opportunities,
and much more research efforts remain desired to improve
surface chemical modification with the goals of improved
stability, robustness, scalable and advanced surface modification.
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We anticipate that the wide application of surface chemistry can
contribute largely to develop high-performance TENGs as both
sustainable power sources and active sensors.
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