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Since Ashkin’s pioneering work, optical tweezers have become an essential tool to

immobilize and manipulate microscale and nanoscale objects. The use of optical

tweezers is key for a variety of applications, including single-molecule spectroscopy,

colloidal dynamics, tailored particle assembly, protein isolation, high-resolution surface

studies, controlled investigation of biological processes, and surface-enhanced

spectroscopy. In recent years, optical trapping of individual sub-100-nm objects has got

the attention of the scientific community. In particular, the three-dimensional manipulation

of single lanthanide-doped luminescent nanoparticles is of great interest due to the

sensitivity of their luminescent properties to environmental conditions. Nevertheless, it

is really challenging to trap and manipulate single lanthanide-doped nanoparticles due

to the weak optical forces achieved with conventional optical trapping strategies. This

limitation is caused, firstly, by the diffraction limit in the focusing of the trapping light and,

secondly, by the Brownian motion of the trapped object. In this work, we summarize

recent experimental approaches to increase the optical forces in the manipulation of

lanthanide-doped nanoparticles, focusing our attention on their surface modification and

providing a critical review of the state of the art and future prospects.

Keywords: nanoparticle, lanthanide, rare-earth, optical trapping, optical force

INTRODUCTION

Optical trapping (OT) of nanoparticles (NPs) by the forces exerted by a tightly focused laser
beam has allowed innumerable advances in the study of single molecules and cells and the
characterization of photonic nanomaterials. OT stands out for its ability to isolate and manipulate
NPs for their study in a contactless and non-invasive way, and it has enabled the development
of different techniques, such as photonic force microscopy, the optical manipulation for assembly
or actuation in nanostructures, and diverse types of local contactless sensing (Maragò et al., 2013;
Rodríguez-Sevilla et al., 2017a; Bradac, 2018; Bunea and Glückstad, 2019). For the application of
optical tweezers in biological science, Arthur Ashkin, the inventor of the technique, was awarded
with the Nobel Prize in Physics in 2018.

The most commonly optically trapped inorganic particles are silica and polystyrene beads. They
are usually tracked to infer properties of the environment or employed as handlers for non-direct
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manipulation of, for example, biological molecules. However,
their detection can become challenging if their size is reduced
below the resolution limit of the optical setup. In contrast,
OT of luminescent particles has the advantage of enabling
their detection by their luminescence even if they are smaller
than the resolution limit of the imaging system. Moreover,
they have a great potential for sensing as most of them
show environment-sensitive luminescence. Several types of
luminescent particles have been already optically trapped:
quantum dots (Jauffred et al., 2008; Jensen et al., 2016),
nanodiamonds (Geiselmann et al., 2013; Neukirch et al., 2013,
2015), semiconductor nanowires (Reece et al., 2009; Wang et al.,
2011a), niobate nanowires (Nakayama et al., 2007; Dutto et al.,
2011), and lanthanide-doped nanoparticles (NPs:Ln) (Haro-
Gonzalez et al., 2013; Rodríguez-Sevilla et al., 2015, 2016a;
Kang et al., 2019). NPs:Ln stand out due to their photostability,
long luminescence decay time, narrow and multiple emission
bands, and tailorable luminescence characteristics. Within the
NPs:Ln library, upconverting nanoparticles (UCNPs) are the
most frequently optically trapped particles because they show
low biotoxicity and present biocompatible excitation routes.
They can absorb light of low energy and emit photons of
higher energy through a non-linear process, e.g., emitting visible
light after the successive absorption of two or more infrared
photons (Labrador-Páez et al., 2018; Zheng et al., 2019). Thus,
the combination of infrared biocompatible laser wavelengths
with visible luminescence facilitates the detection and tracking
of the trapped particle, making them great candidates for bio-
applications as contactless local probes.

Multiple applications of NPs:Ln have been explored. Their
temperature-sensitive luminescence can be used for local non-
invasive temperature sensing of cells (Rodríguez-Sevilla et al.,
2016; Drobczynski et al., 2017). Moreover, their polarized
emission allows the measurement of the viscosity of the
cytoplasm and the detection of single cells (Rodríguez-Sevilla
et al., 2016b; Ortiz-Rivero et al., 2019). Other applications include
the measurement of the size of bacteria and the labeling of RNA
and cancer biomarkers for their quantification in bioassays (Li
et al., 2017, 2018; Xin et al., 2017).

For all the aforementioned outstanding characteristics and
the multitude of applications as remote contactless biosensors,
the use of NPs:Ln for OT has been growing in the last decade.
For these reasons, we have chosen to focus our attention on
the OT of NPs:Ln and the challenges that the community is
currently facing. In the next sections, we will firstly introduce
the fundamentals of OT and its limitations for single NP:Ln
manipulation. Then, we will discuss how these can be overcome,
and we will envision future fields of application of OT of NPs:Ln.

OPTICAL TRAPPING: FUNDAMENTALS

Optical manipulation is based on the optical forces that a
tightly focused laser beam can exert on a particle thanks to the
interaction between the electromagnetic field of the light and
matter. The magnitude of these optical forces depends on the
properties of the light (power, polarization, and beam shape), but

predominantly on the characteristics of the particle (size, shape,
and polarizability) (Ashkin et al., 1986; Rohrbach and Stelzer,
2001; Bendix et al., 2014).

From a simplified point of view, the optical force exerted on
a particle could be visualized as the combination of the gradient
and scattering forces. The gradient force acts as a restoring force
that attracts the particle toward the maximum intensity of the
laser beam, while the scattering force points in the same direction
as the beam propagates and destabilizes the trap, pushing the
particle away from the stable position. These forces should be
balanced for achieving stable trapping conditions.

In the case of particles much smaller than the wavelength
of the trapping light (Rayleigh regime), the scattering force can
be neglected and the dynamics of the trapped particle can be
described, taking into account only the action of the gradient
force (Spesyvtseva and Dholakia, 2016). This is only completely
true for nanoparticles with diameters smaller than some tens
of nanometers. Bigger nanoparticles are still pushed by the
optical scattering force, although its effect is usually neglected for
simplification, as NP stable trapping can only be achieved when
the gradient force overcomes the scattering force. The gradient
force acting on the NP can be expressed as

Fgrad =
1

2
αNP∇〈ETRAP

2〉, (1)

where ETRAP is the electric field of the trapping light and αNP is
the polarizability of the particle

αNP = 4πε0VNP
εNP − εm

εNP + 2εm
, (2)

which depends on the volume of the particle (VNP), and the
electric permittivity of vacuum (ε0), the surrounding medium
(εm), and the nanoparticle (εNP). Thus, in this situation, the
optical force decreases as the volume of the particle does. This
is the main limitation in OT of NPs.

For biological applications, NPs are manipulated in liquid
media. Thus, the trapped particle is subjected to the temperature-
dependent Brownian fluctuations which destabilize it and make
it oscillate around the equilibrium position. If the optical force
is not large enough to compensate this motion (i.e., if the
optical potential does not exceed at least 10 times the thermal
energy kBT, where kB is the Boltzmann constant and T, the
temperature), the particle will escape the optical trap, making its
manipulation impossible.

For this reason, optical forces should be enhanced enabling
the manipulation of NPs in liquid media. From expression (1),
the magnitude of the optical force depends on the power of the
trapping beam (i.e., Fgrad ∝ ETRAP

2). However, increasing the
trapping power in favor of higher optical forces would present
side effects related to the absorption of the trapping radiation
by either the particle or the medium. This could lead to a
deterioration of the sample, but more importantly, it can cause
an increase in temperature that would enhance the Brownian
fluctuations (Peterman et al., 2003; Rodríguez-Sevilla et al.,
2017b). Therefore, this solution is usually ruled out.
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Other properties of the beam can also be tailored for the
enhancement of the optical force. Expression (1) shows that
the force depends on the gradient of the intensity of the beam
(i.e., Fgrad ∝ ∇〈ETRAP

2〉). For this reason, far-field optical
manipulation of small particles makes use of high numerical
aperture objective lenses to focus the laser beam to a small
spot comparable to the particle size (Bartlett and Henderson,
2002; Rohrbach, 2005). However, the diffraction limit (∼ λ

2NA )
restricts the smallest spot that can be generated for a given
trapping wavelength (λ) and numerical aperture (NA). For this
reason, novel trapping strategies have been developed for OT of
entities much smaller than the trapping wavelength (see section
Optical Force Increase Based on the Reduction of the Optical
Trap Volume).

The properties of the particle can also be tailored to
enhance the optical force. The polarizability of the particle
depends on the material of which it is made but also on
the molecules that surround it (see section Optical Force
Increase Based on Surface Modifications). In addition, it depends
on the nanoparticle morphology. Anisotropic nanoparticles
may show a certain degree of polarization. Their effective
induced polarization is non-isotropic, which produced an
optical torque to align the electric field with the particle
polarization. Thus, the stable orientation inside the optical trap
is strongly dependent on the incident electric field and the NP
geometrical axis.

The trapped particle can add new functionalities to the optical
manipulation tool, since it not only is useful to control its
position and motion but also can be used as a force transducer.
For this purpose, the optical trap should be calibrated. This
can be done by different techniques that are based on the
analysis of the motion of the trapped particle (Sarshar et al.,
2014). These dynamics can be detected imaging the particle
(video-tracking) or from the intensity fluctuation produced
in the laser beam when it is scattered by the particle (Bui
et al., 2018). The luminescence of NPs:Ln is advantageous
since particles much smaller than the diffraction limit can
be detected. However, the emission should be intense enough
for a good signal-to-noise ratio. This is hard to achieve for
very small particles due to their weak emission and the short
acquisition times (high frame rates) required to effectively
detect the particle dynamics. Although techniques have been
developed for the use of limited frame rate (Wong andHalvorsen,
2006), NPs:Ln facilitate the use of this method thanks to
their outstanding resistance to photobleaching that permit, for
example, to track the particle for long periods of time. Single
NP:Ln luminescence has been reported by different groups
that managed to achieve the emission spectra of individual
trapped nanoparticles based on drop-casting a diluted suspension
(Schietinger et al., 2010; Gargas et al., 2014). However, for
most bio-applications, the interest falls on assessing single NP
emission in a colloidal suspension (Haro-Gonzalez et al., 2013;
Rodríguez-Sevilla et al., 2015). The luminescence of single
NP:Ln in solution has been spectroscopically characterized,
which enabled the comparisons of the performance between
different particles, and to study inter-particle interactions
(Roder et al., 2015; Zhou et al., 2020).

OPTICAL TRAPPING OF
LANTHANIDE-DOPED NANOPARTICLES

As explained in section Optical Trapping: Fundamentals, it is
challenging to manipulate NPs with conventional OT strategies
as the optical forces decrease with the particle volume. In
this section, we describe different strategies used to increase
the magnitude of the optical forces, which either modify the
particle surface (section Optical Force Increase Based on Surface
Modifications) or reduce the optical trap volume (section Optical
Force Increase Based on the Reduction of the Optical Trap
Volume). Table 1 summarizes the most relevant NPs:Ln used to
date, as well as the maximum optical forces achieved.

Optical Force Increase Based on Surface
Modifications
OT of NPs:Ln is challenging because they are dielectric particles
with low polarizability (αNP) and the trapping force scale with
αNP. Expression (2) shows that αNP depends on the dielectric
constants of the NP and that of the environment, so that αNP

optimization can be achieved by modifying the NP material
and/or the surrounding medium. A large number of methods
for surface modification of NPs have been reported (Wang et al.,
2011b; Hirsch, 2020), which enhance the NPs:Ln luminescence
(i.e., easing the tracking) and their colloidal stability, while
providing the possibility of subsequent bioconjugation. However,
despite its interest, the optimization of the optical forces acting
on single NP:Ln through its surface modification is a route
that has not been thoroughly explored. Some synthesis/surface
modification strategies are included in Table 1.

Colloidal NPs present a superficial charge which interacts
with the solvent’s ions. These changes distribute around the
particle forming an electric double layer characterized by the
zeta potential, as depicted in Figures 1A,B, which influences
αNP. The NPs may have a surface coating to improve their
colloidal properties and zeta potential. For the optimization of
αNP, Rodríguez-Rodríguez et al. (2015) studied the influence
of the surface coating of 8-nm SrF2:Er,Yb NPs:Ln on the
trapping efficiency. They increased αNP by replacing the cationic
species on the NP surface by more mobile ones in solution.
This modification led to an almost 50-fold enhancement in
the trapping efficiency, showing that the contribution of the
surface coating to the net polarizability dominates over that
of the NP:Ln core material. This study was continued by
Rodríguez-Sevilla et al. (2018), determining the optical forces
acting on NaYF4:Er,Yb NPs:Ln of different sizes (ranging from
5 to 100 nm). They experimentally demonstrated that the optical
forces (parameterized by the trapping factor Q) acting on a
NP:Ln depend on the electrostatic properties (zeta potential)
of the interface between the NP and the surrounding medium
more strongly than on their volume (see expression 2 and
Figure 1C). Alternatively, selecting the rightmedium (the solvent
molecules) can be essential to optimizing the zeta potential
value. Likewise, the temperature of the medium, which affects
its permittivity (Catenaccio et al., 2003) and conductivity (Cao
et al., 2019) and indirectly αNP, can lead to the enhancement
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TABLE 1 | Classification of the most relevant techniques used on NPs:Ln to enhance their optical force.

References Nanoparticle Size (nm) Synthesis method Max. trap efficiency

(pN µm−1 W−1)

Strategy used

Synthesis/surface modification

Anbharasi et al. (2020) LiYF4:Yb,Er 238 Hydrothermal 0.0055 Calcination

Rodríguez-Rodríguez et al. (2015)

and Rodríguez-Sevilla et al. (2015)

SrF2:Yb,Egr 8 Hydrothermal 0.33 Surface charge tailoring

Kang et al. (2019) NaYF4:Yb, Er 370 Thermal decomposition 1 Hydrophobic

encapsulation and

ligand exchange

Rodríguez-Sevilla et al. (2018) NaYF4:Yb,Er 8–200 Thermal decomposition 25 Core–shell

Reduction of the optical trap volume

Mor et al. (2014) NaYF4:Yb,Er 230 Flame-fusion and

hydrothermal

PFM

Schietinger et al. (2010) NaYF4:Yb,Er 30 Microwave-assisted AFM tip

Xin et al. (2017) KLu2F7:Yb,Er 120 Hydrothermal 14.1 Fiber tip

Leménager et al. (2018) NaYF4:Gd,Yb,Er 600–2,000 Solvothermal 4 Dual fiber tweezers

Kumar et al. (2020) NaYF4:Eu l:220 0,

d:120

Solvothermal 6 Dual fiber tweezers

Li Y. et al. (2017) NaYF4:Yb,Tm @

SiO2-NH2

28 Hydrothermal 448 (trapped E-coli

covered with NPs)

Fiber tip +

bio-microlens

They are divided depending on the strategy used: synthesis/surface modification of the nanoparticle or reduction of the optical trap volume. Where “l” and “d” refers to lenght and

diameter, respectively. PFM, photonic force microscopy.

of the optical forces, though the Brownian motion increase may
be detrimental.

Optical Force Increase Based on the
Reduction of the Optical Trap Volume
An alternative strategy to improve the optical forces acting on
single NP:Ln consists of the reduction of the optical trap size to
increase the electric field gradient [see expression (1)]. When the
dimensions of a bulk material are reduced, new properties appear
such as the ability to confine light into a regionmuch smaller than
the wavelength (Koya et al., 2020). With that purpose, plasmonic
effects and optical resonances have been employed to enhance the
trapping forces and luminescence of NPs:Ln.

Optical nanotweezers are metallic or dielectric nanostructures
that can generate strong electromagnetic field gradients as they
can confine the light to a subwavelength region using lower laser
powers than conventional OT (Shoji and Tsuboi, 2014; Huang
and Yang, 2015). Their development was mainly motivated by the
aim to suppress the scattering forces for NP trapping (Min et al.,
2013).

Nanotweezers have been proven to allow the manipulation
and detection of single NP and small molecules, controlling
their motion in the nanoscale. Different plasmonic and dielectric
nanostructures have been developed for OT of luminescent NPs
(e.g., polystyrene fluorescent beads or quantum dots Yoo et al.,
2018; Xu and Crozier, 2019; Kotsifaki et al., 2020). Furthermore,
the luminescence of the trapped particle can be excited by
an additional beam or through an upconversion process using
the trapping beam. Although the manipulation of sub-30-nm
dielectric nanoparticles by plasmonic optical tweezers has been

demonstrated, the manipulation of NPs:Ln by this technique is
yet to be achieved (to our knowledge), which would bring the
outstanding capabilities of these particles to the nanoscale.

In a different strategy, several studies have developed
innovative optical tweezers based on optical fibers, which was
firstly demonstrated by Fuh et al. (1987) and Constable et al.
(1993). As an alternative to bulky high-numerical aperture
objective lenses, optical fibers can create a sub-diffraction spot
at their tip if it is judiciously modified, i.e., providing it with
a lenticular shape (Li et al., 2015; Li Y.-C. et al., 2016; Li Y.
et al., 2017). This has the advantage of compactness and high
manipulation flexibility due to their reduced size. Moreover, it
also results in different trapping and luminescence recording
configurations. The focusing capabilities of the optical fiber
can be optimized by modifying the shape of its tip and, for
example, overcome the diffraction limit (Berthelot et al., 2014;
Asadollahbaik et al., 2020; Zhao et al., 2020). Direct trapping
of NPs:Ln has been achieved with a single fiber-coupled laser,
reducing drastically the size of the experimental setup. H.
Xin et al. used a tapered fiber tip capable of tightly focusing
the output light resulting in a high-intensity gradient. As
shown in Figure 1D, they employed this strategy to measure
the length of single bacterium by co-trapping in a row a
KLu2F7:Yb,Er NP:Ln of 120 nm (with a trap stiffness of 14.1
pN/m W), a single E. coli bacterium, and then a second NP:Ln
(12.8 pN/mW). In comparison with other Yb, Er co-doped
NPs:Ln included in Table 1, their trapping stiffness was several
orders of magnitude larger, demonstrating the efficiency of
this approach.

Another approach to optimize OT of NPs is based on dual
fiber tweezers. Counter-propagating traps based on two opposite
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FIGURE 1 | Optical trapping of a NP:Ln in a solvent by different systems based on the reduction of the optical trap volume. (A) A ligand-free lanthanide-doped

dielectric NP (permittivity εNP) in a medium (permittivity εm). (B) A dielectric NP:Ln coated with ligands (coating permittivity εc). The electric double layer is indicated by

the circles. (C) Optical trapping strength, represented by the Q-factor, as a function of the zeta potential for different types of NP:Ln. Adapted with permission from

Rodríguez-Sevilla et al. (2018). Copyright 2018 American Chemical Society. (D) Bright-field (top) and dark-field (bottom) images of two NPs:Ln (I and II) and an E. coli

bacterium trapped in a row by optical fiber tweezers. Adapted with permission from Xin et al. (2017). Copyright 2017 John Wiley and Sons. (E) Schematic of a dual

optical fiber tweezer system. (F) Schematic and microscopy image of a single fiber tip trap including the auxiliary fiber tip used for particle emission recording of a

single NP:Ln. OSA Open Access License for OSA-Formatted Journal Article PDFs (Leménager et al., 2018). (G) Tip of an optical fiber with an array of coupled

spherical microlenses that are able to trap nanoparticles. The fiber probe also records the detection signal. The sequential growth, in backscattering signal, as different

nanoparticles are trapped by the microlenses is shown in (H). Adapted with permission from Li Y. et al. (2016). Copyright 2016 American Chemical Society.

fibers have been proven to be able to stably trap NPs:Ln for the
study of their luminescence. Although the optical forces exerted
on the NPs have not been reported, their magnitude is expected
to be higher than for conventional OT. For example, Leménager
et al. (2018) recorded the anisotropic emission of trapped
NaYF4:Er,Yb,Gd nanorods in three orthogonal directions using
distinct methods: through the microscope objective, by coupling
it into one of the trapping fiber tip, and by coupling it into a third
fiber (see Figures 1E,F). In a similar way, Kumar et al. (2020)
studied nanorods of NaYF4:Eu, measuring their 3D orientation
by europium ion polarization-dependent luminescence.

The dual-beam configuration can be further improved by its
combination with the modification of the fiber tip, adding a
micro-lens. The main advantage of using microscopic lenses over
typically macroscopic ones is their considerably smaller focusing
spot size and mobility inside the sample. This has been reported
to enhance the optical forces for nanosized polystyrene particles
so it could also be used for NP:Ln. For instance, Asadollahbaik
et al. positioned 3D-printed diffractive Fresnel lenses at the tip

of the fibers in a counter-propagating arrangement. This novel
miniaturized optical setup can produce a variety of NA with a
large working distance and a reduced trapping spot, increasing
the trap stiffness by a factor of 35–50 (1762.87 pN/µm W). On
the other hand, a microlens can also be realized by a colloidal
particle such as a dielectric microcylinder or microsphere.

When it is optically trapped, the particle focuses the light
and a nanosized photonic jet is generated at its shadow-
side surface. Photonic nanojets can propagate over a distance
corresponding to several optical wavelengths without significant
divergence, and their waist size is below the diffraction
limit, depending on the microlens diameter, diffraction index,
and laser wavelength (Chen et al., 2004; Neves, 2015).
In addition, the light backscattering and the nanoparticle
luminescence can be enhanced and recorded, making fiber-
coupled microspheres suitable for NPs:Ln optical manipulation.
Li et al. reported different types of cells as natural bio-
microlens. Then, NPs:Ln were coupled to pathogenic bacteria,
which then were subsequently trapped individually or in
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chains. The maximum trapping efficiency they obtained
was 448 pN µm−1 W−1 for an NP:Ln-covered E. coli
bacterium. More complex systems present a parallel photonic
nanojet array, produced by assembling and binding microlenses
on a single optical fiber tip, as depicted in Figures 1G,H

(Li Y. et al., 2016; Schäffner et al., 2020).

FUTURE PERSPECTIVES AND
CONCLUSIONS

Lanthanide-doped nanoparticles present unique, environment-
sensitive, selective, and bio-compatible spectroscopic
characteristics that stand out among other dielectric luminescent
nanoparticles. Hence, they are ideal for optical trapping, a
non-invasive and versatile tool used to manipulate small objects.
Their main drawback is their reduced size of nanoparticles,
which is below the diffraction limit of the optics system
and reduces the achievable optical forces. In this review,
we have analyzed the strategies that have been developed
or would be of potential use to overcome this limitation,
i.e., the modification of the lanthanide-doped nanoparticle’s
characteristics and the optimization of the optical tweezer setup.

Some of these techniques can also enhance the luminescence of
the lanthanide-doped nanoparticle, which is of great interest for
numerous applications. Despite the potential of the reviewed
techniques, their implementation is an underdeveloped field.
We think these already proven strategies could open the door to
widen the application of lanthanide-doped nanoparticles, which
present better capabilities and multifunctionalities than other
commonly used nanoparticles.
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