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Nitrogen-free amorphous carbon thin films prepared via sputtering followed by

graphitization, were used as precursor materials for the creation of N-doped carbon

electrodes with varying degrees of amorphization. Incorporation of N-sites was achieved

via nitrogen plasma treatments which resulted in both surface functionalization and

amorphization of the carbon electrodematerials. X-ray photoelectron spectroscopy (XPS)

and Raman spectroscopy were used to monitor composition and carbon organization:

results indicate incorporation of predominantly pyrrolic-N sites after relatively short

treatment cycles (5min or less), accompanied by an initial etching of amorphous regions

followed by a slower process of amorphization of graphitized clusters. By leveraging

the difference in the rate of these two processes it was possible to investigate the

effects of chemical N-sites and C-defect sites on their electrochemical response. The

materials were tested as metal-free electrocatalysts in the oxygen reduction reaction

(ORR) in alkaline conditions. We find that the introduction of predominantly pyrrolic-N

sites via plasma modification results in improvements in selectivity in the ORR, relative to

the nitrogen-free precursor material. Introduction of defects through prolonged plasma

exposure has a more pronounced and beneficial effect on ORR descriptors than

introduction of N-sites alone, leading to both increased onset potentials, and reduced

hydroperoxide yields relative to the nitrogen-free carbonmaterial. Our results suggest that

increased structural disorder/heterogeneity results in the introduction of carbon sites that

might either serve as main activity sites, or that enhance the effects of N-functionalities

in the ORR via synergistic effects.
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INTRODUCTION

Carbon electrode materials are ubiquitous in energy applications
due to several important desirable characteristics, namely, their
earth-abundance, low cost, good scalability and processability,
high conductivity, versatile morphology, tunable microstructure
and crystallinity, and good mechanical properties (Georgakilas

et al., 2015; Salanne et al., 2016; Dou et al., 2019). Carbon
materials have been widely explored for the fabrication of
electrochemical capacitors, batteries and fuel cells (Inagaki

et al., 2010; Marom et al., 2011; Dou et al., 2019) and are
expected to continue to play an important role in future energy

technologies as the world transitions to a more sustainable
economy with reduced reliance on fossil fuels (Salanne et al.,
2016; Perathoner and Centi, 2018; Dou et al., 2019; Domìnguez
et al., 2020).

The incorporation of N-sites has emerged as an effective
strategy for enhancing and expanding on the electrochemical
performance of carbon materials. Nitrogenated carbons and
nanocarbons have become important in the area of non-precious
and metal-free electrocatalysts for fuel cell applications (Wong
et al., 2013; Gong et al., 2015), while also being proposed as
materials for supercapacitors in energy storage (Deng et al., 2016;
Salanne et al., 2016; Yang and Zhou, 2017). As a consequence,
nitrogen incorporation strategies have been explored for a range
of carbon electrode materials, including carbon nanotubes (Gong
et al., 2009; Tang et al., 2009), graphene (Wei et al., 2009; Qu
et al., 2010), graphite (Zhou et al., 2010), nanofibers (Maldonado
and Stevenson, 2005) and amorphous/non-crystalline carbons
(Wang et al., 2010; Zhang et al., 2015; Yamamoto et al., 2018;
Dou et al., 2019). Nitrogen incorporation results in complex
and interrelated effects on the electrochemical properties of
carbons, resulting from a combination of electronic (Behan et al.,
2017), chemical and structural changes (Serp and Figueiredo,
2009; Dou et al., 2019). Functional N-sites such as pyridinic-
N (NPy), pyrrolic-N (NPr), graphitic-N (NG), and N-oxides
(NOx) can be incorporated into the carbon structure (Serp
and Figueiredo, 2009) resulting in reactive centers that can
significantly affect interfacial interactions with redox species
and intermediates (Choi et al., 2014; Guo et al., 2016; Wu
et al., 2017; Behan et al., 2018, 2019b) and, consequently,
electrocatalytic activity. Nitrogen sites can also affect the
electronic properties of carbon electrodes, as they might serve
as both n-type or p-type dopants (Zhao et al., 2011; Ma
et al., 2018), and can increase carbon conductivity and metallic
character (Robertson, 2002; Choi et al., 2014; Behan et al.,
2017; Hoque et al., 2019). Furthermore, the role of nitrogen
atoms as impurities and the experimental methods used for its
incorporation can affect the organization of the carbon scaffold,
introducing voids, vacancies, defects and non-graphitizable
regions that have dramatic effects on both capacitive and
faradaic responses (Zhou et al., 2010; Legrain et al., 2015;
Salanne et al., 2016; Stamatin et al., 2016; Zhang et al., 2016;
Behan et al., 2017, 2019a; Ng et al., 2018; Dou et al., 2019;
Hoque et al., 2019; Jia et al., 2019; Saurel et al., 2019). The
importance of improving our understanding and control over the
interplay among disorder, functional sites, and electrochemical

performance has been highlighted in the recent literature as
one of the frontiers in the development of new carbon-based
materials for energy technologies (Legrain et al., 2015; Zhang
et al., 2016; Bommier et al., 2019; Dou et al., 2019; Saurel
et al., 2019). Therefore, there is great interest in developing
approaches for achieving control over nanostructuring and
chemical functionality to enable a better understanding of
structure-function correlations, and novel strategies for the
synthesis of smart carbons with tailored ad-/chemisorption sites
at heteroatom and carbon defect centers (Salanne et al., 2016;
Dou et al., 2019).

In this work we have used nitrogen-free amorphous carbon
thin films as precursor materials for the creation of carbon
electrodes with constant N/C composition that possess varying
degrees of amorphization. Incorporation of N-sites was achieved
via low-energy reactive plasma; plasma/N2+ bombardment
methods have previously been used to introduce isolated defects
in highly ordered pyrolytic graphite (Kondo et al., 2012),
however their effect on amorphous or partially graphitized
systems remains unexplored. Our results show that plasma
methods enable a fast, self-limiting chemical modification of
the disordered carbon surface in parallel with an increase
in amorphization degree that occurs at a lower rate. By
leveraging the difference in the rate of these two processes
it was possible to decouple the effects of chemical N-sites
and C-defect sites on the electrochemical response of these
materials and understand the role of the two contributions
on their capacitive and faradaic response. X-ray photoelectron
spectroscopy (XPS) and Raman spectroscopy were used to
monitor composition and carbon organization. Electrochemical
impedance spectroscopy (EIS) was used to characterize their
capacitive response. Finally, the materials were tested as metal-
free electrocatalysts in the oxygen reduction reaction (ORR)
under alkaline conditions to identify correlations between
composition and ORR activity descriptors. We find that the
introduction of predominantly pyrrolic-N sites via plasma
modification results in improvements in activity and selectivity
in the ORR, relative to the nitrogen-free precursor material.
Introduction of defects through prolonged plasma exposure
has a more pronounced and beneficial effect on ORR activity
descriptors than introduction of N-sites alone, that cannot
be justified on the basis of changes in N-site composition
or microroughness. We propose that increased structural
disorder/heterogeneity results in the introduction of carbon sites
that could serve as the main sites or enhance the activating effects
of N-functionalities in the ORR.

MATERIALS AND METHODS

Chemicals and Materials
Tetrabutylammonium hexafluorophosphate (TBAPF6)
(≥99.0%, electrochemical analysis), acetonitrile (MeCN,
99.8%, anhydrous), sulfuric acid (95–97%), hydrogen
peroxide (>30% w/v), potassium hydroxide (semiconductor
grade pellets, 99.99%) were purchased from Sigma
Aldrich and used without further purification. Glassy
carbon (GC) disks (HTW Sigradur R© radius 2.5mm)
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and B-doped Si wafers (MicroChemicals; resistivity
5–10� cm) were used as substrate materials for
carbon deposition.

Substrate Preparation
GC disks were used as deposition substrates for all
electrochemical experiments. Disks were polished as previously
described (Hoque et al., 2019): first, using 1,200 grit sandpaper
and 1µm alumina slurry (Buehler); second, using 1µm slurry
on nylon paper; finally, using 0.3 and 0.05µm slurries on
MicroCloths R© pads (Buehler) to a mirror finish. Between
polishing steps, GC disks were sonicated for 20min in
Millipore water to avoid cross-contamination between alumina
particle sizes. Clean disks were mounted in a custom-made
Teflon R© holder prior to sputter deposition of amorphous
carbon electrodes (vide infra). Si wafers were used for all
spectroscopic characterization experiments. Wafers were cleaned
in piranha solution (3:1 H2SO4:H2O2; CAUTION piranha
solutions are explosive in contact with organics), rinsed with
plenty of Millipore water and finally dried with Ar prior
to deposition.

Deposition of Carbon Electrode Materials
Nitrogen-free amorphous carbon thin film materials were
synthesized via magnetron sputtering followed by post-
deposition thermal graphitization (Figure 1). DC-magnetron
sputtering from a graphite target (99.999%) was carried out
in a deposition chamber (Torr International) at base pressure
<2 × 10−6 mbar; carbon was sputtered for 40min onto GC
disks at an Ar pressure of 2–7 × 10−3 mbar achieved at a
flow of 50mL min−1, as previously reported (Cullen et al.,
2012; Behan et al., 2017). The resulting carbon films are
topographically smooth, with thickness of ca. 70 nm and with
high graphitic content (>80% sp2-centers) (Cullen et al., 2012;
Behan et al., 2017). Sputtered electrodes were then graphitized
in a tube furnace under N2 flow for 1 h at 900◦C, resulting in
graphitized amorphous carbon film electrodes with smooth
topography (Behan et al., 2018). These materials were used as
precursors for the creation of nitrogenated carbons via plasma
surface modifications. Surface nitrogenation was carried out
in a custom-built 25mm O.D. quartz plasma chamber with
a base pressure of 10–25 mbar, equipped with an induction
coil connected to an RF generator (13.56 MHz, ENI). N2 gas
was fed at 20mL min−1 using a mass flow controller (Brooks
Instruments), maintaining a pressure of 160 mbar during plasma
treatments. The graphitized nitrogen-free electrodes were
exposed to the N2-plasma at ∼10W RF coupled power for 5, 10,
and 20 min.

Characterization
XPS was performed in a VG Scientific ESCAlab Mk II system
(<2 × 10−8 mbar), using Al Kα X-rays (1486.6 eV); core-
level spectra were collected with analyzer pass energy of
20 eV and survey spectra were collected with analyzer pass
energy of 200 eV. Peaks were fitted with Voigt functions
after Shirley background subtraction using commercial

software (CasaXPS); at.% compositions were obtained
from peak area ratios after correction by Scofield relative
sensitivity factors (C = 1.0, N = 1.8, O = 2.93). Raman
spectra were measured in backscattering configuration using
a Renishaw 1,000 micro-Raman system equipped with an
Ar+ laser with 488 nm excitation. The incident beam was
focused by a Leica microscope with a 50× magnification
objective and short-focus working distance; incident power
was kept <2 mW to avoid sample damage. Spectra were
baseline corrected using commercial software prior to
analysis (Wire 3.2).

Electrochemical studies were carried using a three-electrode
cell thermostated at 25◦C and controlled by a Metrohm Autolab
AUT50324 potentiostat. A Hydroflex hydrogen electrode
(Gaskatel) and an Ag/Ag+ electrode (IJCambria) were used
as references in aqueous and organic electrolyte, respectively.
The Ag/Ag+ reference electrode was prepared using 1.0mM
AgNO3 in MeCN, yielding a reference potential of 0.320V
vs. SHE, determined as described in previous work (Hoque
et al., 2019). The carbon disk electrodes were mounted in a
Teflon disk holder (Pine Instruments) and used as working
electrodes; all contacts were confirmed to be ohmic with <8�

resistance. Graphite rods (Goodfellow) were used as counter
electrodes. Cyclic voltammetry (CV) was carried out in 0.1M
TBAPF6 in MeCN, at 50mV s−1 using iR compensation.
Electrochemical impedance spectroscopy (EIS) was recorded
in the range 0.1–104 kHz using a 10mV AC amplitude at open
circuit potential (OCP). The equivalent series capacitance was
obtained from Mott-Schottky plots (NOVA software) collected
at the frequency indicated in each plot, with steps of 0.05V;
300 s equilibration time was allowed between potential steps.
The specific capacitance was obtained via normalization by
the geometric area of the electrodes; this was determined in
0.1M TBAPF6/MeCN using a reference polished GC disk to
account for capillary wetting within the Teflon shielding in
MeCN (De Levie, 1965) and a specific capacitance value of
30 µF cm−2 reported for GC in TBA+/MeCN (Kim et al.,
2010). Studies of the oxygen reduction reaction were carried out
using a rotating disk electrode (RDE) and a rotating ring-disk
electrode (RRDE) tip (Pine Instruments). The electrochemical
cell was cleaned using piranha solution; working electrodes
were first cycled between 0.05 and 1.1 VRHE (potential vs.
RHE, i.e., reversible hydrogen electrode) in Ar-saturated 0.1M
KOH (20 cycles). Then, ORR polarization curves at 50mV s−1

were obtained in O2-saturated 0.1M KOH electrolyte under
rotation. CVs in Ar-saturated 0.1M KOH were used to subtract
the capacitive current contribution, while current densities
were calculated by normalizing the current by the geometric
area. All voltammograms were obtained with iR compensation
using commercial software (NOVA); the uncompensated
resistance was determined via EIS prior to each experiment.
RRDE experiments were carried out by holding the Pt ring
insert at a constant potential of 1.2 VRHE; the peroxide yield

was calculated as H2O2% = 100 × 2
(

IR/N
ID+IR/N

)

, where IR and

ID denote the ring and disk currents, respectively, and N is
the collection efficiency determined experimentally (N = 0.26)
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FIGURE 1 | Schematic representation of carbon deposition and modifications used in our experiments.

(Behan et al., 2019b). The number of electrons was calculated
according to n = 4ID/(ID + IR/N).

RESULTS AND DISCUSSION

Chemical and Structural Characterization
of anC:N Electrode Materials
Nitrogen-free electrodes were prepared in the form of thin solid
films via magnetron sputtering from a graphite target onto
GC disk electrodes, as shown schematically in Figure 1. Films
were subsequently annealed under N2 atmosphere for 1 h at
900◦C resulting in graphitized amorphous carbon electrodes
(anC) (Behan et al., 2018), that were used as the precursor
material for nitrogen functionalization. The anC electrodes
were modified in a reactive N2-plasma for 5, 10, and 20min
resulting in electrodematerials denoted anC:Np5, anC:Np10, and
anC:Np20, respectively.

Figure 2A shows XPS survey spectra of anC, anC:Np5,
anC:Np10, and anC:Np20 electrodes. Spectra show the
characteristic peaks of C 1s, O 1s, and N 1s photoemissions at
∼285, 532, and 400 eV, respectively. The N 1s peak is absent
in the case of anC, the N-free precursor material, as discussed
in detail in previous work from our group (Behan et al., 2018),
however, it is clearly detectable after only 5min exposure to
the N2-plasma thus indicating that this treatment leads to
functionalization of the carbon electrode with N-sites. The
amount of nitrogen and oxygen incorporated into the films
was calculated from the area ratios AN1s/AC1s and AO1s/AC1s,
respectively, after correction for the relative sensitivity factors;
the at % composition thus calculated is reported in Table 1. The
presence of oxygen likely originates from air exposure prior to
characterization and residual water vapor in the quartz chamber.
The compositional analysis shows that nitrogen and oxygen
contents increase after 5min of plasma treatment and plateau for
longer plasma exposures. This suggests that the most significant

changes in heteroatom content occur in <5min under our
reactive plasma conditions.

Figure 2B shows a comparison of the high resolution C
1s peak of the carbon electrodes. All C 1s spectra show an
asymmetric line characteristic of amorphous carbon materials
with a maximum at ca. 284.5 eV, corresponding to the binding
energy of sp2-centers in a graphitized scaffold (Díaz et al., 1996).
Plasma treatments result in an increase in the full width at half
maximum (fwhm) of the C 1s peak (Table 1), that is consistent
with the introduction of heteroatoms and/or with changes in
the degree of graphitization of the carbon structure (Maldonado
et al., 2006; Behan et al., 2018). The C 1s peak was fitted using
fourmain components (Behan et al., 2018) as shown in Figure 2C
for anC:Np5: 284.4 eV corresponding to sp2-centers, 285.2 eV
assigned to sp3-centers, 286.5 eV assigned to C-O/C-N groups,
and 288.5 eV that can be attributed to C - O contributions. The
spectral overlap between C–O and C–N peaks precludes a more
detailed and unambiguous resolution of their contributions to
the C 1s line (Perini et al., 2015; Behan et al., 2018). Best-fit
results of C 1s spectra of all carbon electrodes are reported in
Supporting Information.

Figures 2D–F show the high resolution N 1s spectra and
best-fits for anC:Np5, anC:Np10, and anC:Np20 electrodes,
respectively. All spectra are broad thus indicating that a mixture
of N-functional groups results from plasma exposure. Spectra
were fitted using five main contributions (Biniak et al., 1997;
Rodil et al., 1999; Maldonado et al., 2006; Sharifi et al.,
2012) corresponding to pyridinic-N (NPy, 398.9 eV), pyrrolic-
N (NPr, 400.0 eV), graphitic-center (NGc, 400.9–401.3 eV),
graphitic-valley (NGv, 402.1–402.6 eV), and N-oxides (NOx)
and possibly π-π∗ shake-up satellites at high binding energies
(>403 eV). The relative contributions of these five components
do not vary significantly with plasma exposure time (see
Supporting Information): pyrrolic-N accounts for the largest
contribution (ca. 45%) in all three nitrogenated materials,
followed by graphitic-N (ca. 30%) and pyridinic-N (ca. 22%)
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FIGURE 2 | (A) Survey scans and (B) high resolution C 1s spectra of anC, anC:Np5, anC:Np10, and anC:Np20 electrodes; (C) shows details of the C 1s

decomposition for anC:Np5 into four main contributions. High resolution N 1 s spectra of (D) anC:Np5, (E) anC:Np10, and (F) anC:Np20 together with their best-fit

decompositions into NPy (398.9 eV), NPr (400 eV), NGc (401 eV), NGv (402.5 eV), and NOx and satellites (>403 eV). Individual peak contributions are offset from the

spectral envelope for the sake of clarity.

sites. Overall, the XPS data indicates that N-functional group
incorporation occurs rapidly, within 5min of plasma exposure
time, and that longer exposures do not affect either the N/C
content or the distribution of N-functionalities.

The structure of the carbon scaffold of the nitrogenated anC:N
carbon materials was investigated via Raman spectroscopy; the
Raman characterization of the nitrogen-free anC material has
been reported elsewhere (Behan et al., 2018). Figures 3A–C show
baseline-corrected Raman spectra in the 900–1,900 cm−1 range
of anC:Np5, anC:Np10 and anC:Np20, respectively; spectra are
shown after normalization by the main peak intensity to facilitate
comparison. All spectra display the characteristic peaks assigned
to the G and D bands at ∼1,580 and 1,380 cm−1, respectively.
The G peak is associated to stretching modes of carbon atoms
in sp2-centers, in either rings or unsaturated chains. The D
peak is associated to a breathing mode of sp2-centers in six-
membered rings and it becomes Raman active if the symmetry
of graphene clusters is broken due to the presence of defects
(Ferrari and Robertson, 2000; Waidmann et al., 2001; Ferrari
et al., 2003). Spectra were fitted using three Gaussian functions
following previous methods (Laidani et al., 1997; Das et al., 2002;
Behan et al., 2018): two functions were used to model G and D
contributions, whereas the third one was introduced to model
the A peak at ca. 1,510 cm−1. This third peak is ascribed to

TABLE 1 | C 1s fwhm values and at % composition of nitrogen-free and plasma

treated carbon electrodes obtained from XPS analysis.

Sample O/C N/C C1s fwhm (eV)

anCa 5.3% – 1.6

anC:Np5 11% 16% 2.2

anC:Np10 11% 17% 2.4

anC:Np20 14% 17% 2.4

a—Data from Behan et al. (2018).

C-C stretching modes in the amorphous network that connects
graphitic crystallites and that displays a mixture of three- and
four-fold bonded carbon atoms (Laidani et al., 1997; Das et al.,
2002).

Spectral parameters obtained from the fits are shown in
Table 2; parameters for the nitrogen-free material are also
reported for comparison. The results show that after plasma
exposure there is an increase of the ID/IG ratio and of the fwhm
value of G and D peaks relative to the nitrogen-free anCmaterials
that is indicative of increased defects in graphitic regions (Ferrari
et al., 2003; Ferrari and Robertson, 2004; Sadezky et al., 2005;
Martins Ferreira et al., 2010). The IA/IG ratio decreases at
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FIGURE 3 | Raman spectra and peak best-fits of (A) anC:Np5, (B) anC:Np10,

and (C) anC:Np20; spectra are normalized relatively to the G band intensity.

TABLE 2 | Raman spectral parameters for anC and anC:Np5, anC:Np10, and

anC:Np20 electrode materials.

Sample ID/IG IA/IG G peak (cm−1) D peak (cm−1)

position fwhm position fwhm

anCa 0.74 0.23 1,598 85 1,379 274

anC:Np5 0.83 0.20 1,596 89 1,386 308

anC:Np10 0.82 0.23 1,597 87 1,385 306

anC:Np20 0.85 0.25 1,597 89 1,386 303

a—Data from Behan et al. (2018).

first, relative to anC, likely due to rapid etching of amorphous
regions connecting graphitized clusters. After longer times the
IA/IG ratio instead increases, indicating that prolonged plasma
exposure results in amorphization of the carbon scaffold. The
parameter trends are consistent with a process involving, first, an
increase in graphene edges/defects through reactive etching and
modification of amorphous regions interconnecting graphitized

clusters, followed by further amorphization at the expense of
ordered graphitic clusters.

Electrochemical Studies of anC:N
Electrode Materials
The chemical and structural characterization of anC:N materials
indicates that they possess similar functional groups, with
predominantly pyrrolic-N groups at the surface resulting from
plasma treatments. Raman spectroscopy indicates that plasma
exposure leads to increased amorphization and defect density in
the carbonmaterial, thus offering a route to exploring the effect of
disorder on the capacitive, and faradaic electrochemical response
of nitrogenated materials with similar surface functionalities.

To investigate the effects of nitrogenation and amorphization
on the capacitive properties we used an organic electrolyte of
large ionic radii to minimize pseudo-capacitive contributions
arising from redox functional groups at the carbon surface
(Gerischer et al., 1987; Hahn et al., 2004; Wiggins-Camacho
and Stevenson, 2009; Barranco et al., 2010; Vaquero et al., 2012;
Hoque et al., 2019). Figure 4A shows cyclic voltammograms
(CVs) in 0.1M TBAPF6 solutions in acetonitrile at 50mV
s−1 for anC:Np5, anC:Np10 and anC:Np20 materials, together
with that obtained for the nitrogen-free anC electrode under
identical conditions. The CVs display the characteristic shape
of a capacitive response, while no faradaic peaks are discernible
within the chosen potential window. Larger capacitive currents
were observed at nitrogenated electrodes than at anC.

EIS over the range 0.1–104 Hz in 0.1M TBAPF6 in acetonitrile
reveals further details on the effect of plasma exposure on
interfacial capacitance. Figures 4B,C display Bode plots of
absolute impedance (|Z|) and phase angle (φ) at OCP (−0.28
to 0.05V vs. Ag/Ag+) for plasma-treated anC:Np5, anC:Np10
and anC:Np20 electrodes; the Bode plot of the nitrogen-free
anC precursor is also shown for comparison. The nitrogen-free
anC material displays a response close to that of an equivalent
RC circuit, with a capacitive contribution dominant at low
frequency and a resistive response at high frequency; the values
of φ ≈ −70◦ at 0.1Hz indicates deviations from ideal capacitive
behavior, which instead should yield a value of−90◦. The short
5min exposure to plasma results in a significant reduction in
the |Z| value at low frequency, relative to the nitrogen-free
anC precursor. Interestingly, the φ value also decreases to ca.
−75◦ at 0.1Hz, suggesting a response that is closer to that
of a pure ideal capacitor (−90◦). This is in agreement with
Raman results which suggest that over short exposure times,
nitrogenation might take place at the expense of amorphous
surface regions. Further plasma exposure for 10 and 20min leads
to an additional decrease in |Z| value that plateaus between
anC:Np10 and anC:Np20 electrodes. The phase plot shows
evidence of an increase in the characteristic time constant in
the order anC < anC:Np5 < anC:Np10 that is consistent with
an increase in the interfacial capacitance, while for anC:Np20
it is possible to observe more pronounced deviations from
ideality and evidence of at least a second partially resolved time
constant. The EIS data therefore indicate that plasma treatments
result in structural/electronic reorganizations of the carbon
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FIGURE 4 | (A) Cyclic voltammograms of anC:Np5, anC:Np10, and

anC:Np20 electrodes in Ar-saturated 0.1M TBAPF6 in acetonitrile at 50mV

s−1; the CV of the nitrogen-free anC material is also shown for comparison.

Impedance modulus (B) and phase (C) obtained from EIS data (Bode plots) in

the same solution at open circuit potential (OCP −0.28–0.1 V vs. Ag/Ag+) are

also shown for the electrode materials.

scaffold that progress over 5–20min exposure times, despite the
chemical N-functionalities remaining approximately constant at
the carbon surface after only 5min of exposure.

The interfacial capacitance of the electrode materials was
investigated as a function of potential in the same electrolyte.
Figures 5A,B show Mott-Schottky plots of the equivalent series
capacitance obtained at 0.1Hz and 10Hz, respectively, at
potentials in the range −0.8 to +0.8V vs. Ag/Ag+ (Hoque
et al., 2019). The plot of the nitrogen-free anC material shows
the characteristic response of a p-type semiconductor under

conditions in which the capacitance is dominated by the space
charge layer (Memming, 2001). This is in agreement with
previous reports of p-type behavior for nitrogen-free amorphous
carbon electrodes obtained in either organic or aqueous
electrolytes (Colavita et al., 2007; Hoque et al., 2019). Plasma
treatment results in a change in capacitance values at 0.1 and
10Hz, however the p-type character of the material is preserved,
indicating that the introduction of N-sites via this surface
treatment does not significantly change the semiconducting
character. This is in stark contrast to the effect of bulk nitrogen
incorporation which instead was shown by our group to result in
a capacitive response with greater n-type character (Hoque et al.,
2019) in amorphous carbons. The minimum of the interfacial
capacitance at 0.1Hz (see Supporting Information) was found
to increase by ca. 60% after 5min exposure, while leveling off
at approximately twice the value of the nitrogen-free material
after 10min. This is consistent with the introduction of both
N-sites and defects; these are known to result in (i) an increased
density of mid-gap localized/surface states (Van Tuan et al., 2012;
Zhong et al., 2014; Velický et al., 2019; Toh et al., 2020) which
lead to increased interfacial capacitance (Wiggins-Camacho and
Stevenson, 2009; Tian et al., 2015; Velický et al., 2019), albeit at
the expense of delocalization; and (ii) an increase in electrode
roughness and consequently its electrochemical specific surface
area (ECSA). A similar increase of the capacitance by a factor of 2
is observed at 10Hz; notably, a comparison of values obtained at
0.1 vs. 10Hz indicates dispersion in the capacitive response. This
is generally observed in disordered/heterogeneous electrodes
(Pajkossy, 1994; Kerner and Pajkossy, 2000), and had been
previously reported also in the case of bulk-doped nitrogenated
amorphous carbons (Hoque et al., 2019). The absence of a
further increase in capacitance when increasing the exposure
time from 10 to 20min, suggests that additional amorphization
negatively affects long-range properties and metallic character
of the carbon material, in agreement with observed trends
following ion bombardment of graphene (Van Tuan et al., 2012;
Zhong et al., 2014) and after progressive bulk nitrogenation in
amorphous carbons (Behan et al., 2017; Hoque et al., 2019).

ORR Activity of Plasma-Treated N-Doped
Carbons
The electrocatalytic activity of plasma-treated carbon materials
was investigated in O2-saturated 0.1M KOH via RDE methods.
Figure 6A shows linear sweep voltammograms (LSV) at 50mV
s−1 of anC, anC:Np5, anC:Np10 and anC:Np20; all curves are
shown after subtraction of the capacitive current background.
The nitrogen-free material shows a clear onset in the cathodic
current, associated with the reduction of O2 and a well-defined
plateau indicating a mass-transport limited current (Behan et al.,
2019b). The onset potential (Eon), defined as the potential at
which the current density reaches a value of 0.1mA cm−2, is a
useful descriptor to compare electrocatalyst performance (Behan
et al., 2019a); values observed for all electrode materials are
summarized in Table 3. The nitrogen-free anC electrode yields
an Eon comparable to that of glassy carbon or undoped carbon
nanofiber electrodes (Stamatin et al., 2016). Exposure to nitrogen
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FIGURE 5 | Mott-Schottky plots of anC, anC:Np5, anC:Np10, and anC:Np20 carbon materials obtained in 0.1M TBAPF6 in acetonitrile at (A) 0.1Hz and (B) 10Hz.

plasma results, first, in a slight negative shift of Eon, as shown
in greater detail in Figure 6B; however, longer exposures result
in a progressive improvement reaching 0.72 VRHE after 20min
of exposure. This indicates that, despite anC:Np5 and anC:Np20
having similar surface N/C concentrations, the greater structural
disorder in the carbon matrix observed in anC:Np20 leads to
significant improvements in Eon. Plasma exposure also yields a
general increase in the limiting current density, although the
mass-transport limited regions of anC:N electrodes show poorly
defined plateaus. A non-zero slope in this region is typically
observed for electrocatalysts with a distribution of different
active sites; its presence in Figure 6A is therefore consistent with
an increase in structural disorder upon plasma exposure, also
evidenced by Raman and EIS results.

The selectivity of plasma-treated anC:N electrodes toward the
4e reduction pathway was investigated using rotating ring disk
electrode (RRDE) experiments. The most desirable product of
the ORR for energy applications is the one resulting from a 4e
transfer, i.e., hydroxide/water; however, a partial 2e reduction to
hydroperoxide is also possible, as below:

O2 + 2H2O+ 4e− → 4OH−E◦ = 1.229V vs. RHE (Hoare, 1985)

(1)

O2 +H2O+ 2e− → HO−
2 +OH−E◦ = 0.695V vs. RHE (Hoare, 1985)

(2)

In RRDE experiments the Pt ring electrode is used to quantify
the amount of hydroperoxide produced at the disk electrode
via the anodic reaction corresponding to the reverse of (2).
Figure 6C shows plots of ring (top) and disk (bottom) current
obtained at 1,600 rpm and 50mV s−1 in 0.1M KOH. The onset
of the ring current mirrors the onset of the disk current in all
cases, thus confirming that hydroperoxide detected at the ring
arises from the cathodic process taking place at the disk. The
differences in ring current reveal significant differences in ORR

selectivity at anC:N electrodes. Figure 6D show the calculated
yield of hydroperoxide (bottom) and average number of electrons
transferred (top) as a function of potential. It is evident from
these two figures that for the nitrogen-free anC electrodes
the preferred product is hydroperoxide. All three plasma-
treated materials show much lower yields of hydroperoxide and
higher average number of electrons as reported in Table 3. The
differences in selectivity among plasma-treated materials suggest
that despite possessing the worst onset, anC:Np5 is the most
selective toward the 4e reduction pathway.

It is interesting to compare ORR activity indicators obtained
for plasma treated thin film electrodes, with those obtained
for bulk N-doped and ammonia-modified thin film electrodes,
also synthesized from sputtered precursors and reported in
our previous work (Behan et al., 2019a,b). In the case of
plasma-treated anC:N, all electrodes were based on a highly
graphitized nitrogen-free precursor film that was then modified
via low energy plasma, yielding predominantly pyrrolic-N and a
progressively greater density of defects. The introduction of N-
sites imparts ORR activity, as evidenced by improvements in Eon,
limiting current densities and selectivity, while contributions to
the activity by O-sites resulting from plasma treatment might
also play a role (Wu et al., 2017) in the observed general
improvement. However, N/C and O/C content, as well as
functionality composition remain similar across anC:N materials
and therefore do not fully explain the observed activity trends.
On the other hand, the disorder/amorphization that accompanies
plasma modifications appears essential for modulating the
activity descriptors. A comparison of onset potentials shows that
they follow the order anC:Np5 < anC < anC:Np10 < anC:Np20.
It cannot be ruled out that changes in the onset potentials
may arise due to microscopic roughness. However, this appears
unlikely, as the changes in interfacial capacitance cannot justify
the observed Eon trend: the minimum capacitance of anC is
lower than that of anC:Np5, while that of anC:Np20 samples
is smaller than that of anC:Np10. Therefore, we propose that
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FIGURE 6 | (A) RDE voltammetry obtained in O2-saturated 0.1M KOH solutions at 50mV s−1 and 900 rpm for anC, anC:Np5, anC:Np10, and anC:Np20; (B) shows

details of the onset region including the reference 0.1mA cm−2 current density used to estimate Eon values. (C) RRDE data showing disk (bottom) and ring (top)

currents at 1,600 rpm. (D) Calculated H2O2% yield (bottom) and average number of electrons (top) from data in (C).

TABLE 3 | Summary of key indicators or ORR activity and selectivity obtained for

nitrogen-free and plasma-treated carbon electrode materials.

Sample Eon (VRHE) @0.1mA cm−2 H2O2% @0.3 VRHE n @0.3 VRHE

anC 0.65 67 2.6

anC:Np5 0.62 38 3.2

anC:Np10 0.69 47 3.0

anC:Np20 0.72 57 2.9

the most probable origin of improved onsets is an increase in
the concentration of structural defects, such as edges and bond
distortions, which have been proposed to be active sites in the
electrocatalysis of the ORR (Favaro et al., 2013; Byers et al.,
2014; Jia et al., 2016, 2019) and other reactions of importance for
sustainable energy technologies (Dabo et al., 1998; Siahrostami
et al., 2017; Kumatani et al., 2019).

Finally, it is interesting to note that despite improvements
in Eon and values of n = 3 resulting from nitrogen plasma
treatments, none of the anC:N carbon film electrodes displayed
the high Eon values (0.83 VRHE) and remarkable selectivity
(n = 4) observed for highly graphitized carbon thin films
electrodes with lowN/C content but ca. 50:50 ratio of pyridinic-N
and graphitic-N (Behan et al., 2019b). This suggests that the
N-site composition remains critical for achieving the best
performances. Further studies of model electrodes containing
exclusively pyrrolic-N and controlled combinations of the
same with pyridinic-N and graphitic-N might improve our

understanding of synergies between these sites, as previously
demonstrated by our group for other N-functionalities (Behan
et al., 2019b).

CONCLUSION

In this work we used model thin film electrodes based
on metal-free sputtered deposited amorphous carbon to
investigate the effects of nitrogenation via plasma treatment
on the electrochemical and electrocatalytic response of carbon
materials. Sputtered and graphitized nitrogen- and metal-
free carbon films were used as precursors to prepare model
electrodes with different degrees of surface modifications.
Plasma treatments result in both chemical and structural
changes, as N-sites and C-defect sites were introduced following
ion bombardment. Interestingly, chemical modifications occur
rapidly and N/C concentration and N-site composition stabilize
after relatively short exposure times; however, structural changes
progress at slower rate. This provided us an opportunity
to understand the individual contributions of chemical and
structural changes to the overall electrocatalytic response of the
materials in the ORR, an important reaction for sustainable
energy technologies.

A combination of spectroscopic and electrochemical methods
was used to study the composition and the electrochemical
response of the materials in supporting electrolyte and in
the presence of O2 in alkaline solutions. The introduction
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of predominantly pyrrolic-N at the carbon surface was found
to only slightly affect the electrochemical performance of the
materials in the ORR, in the absence of enhancement in
structural disorder. It is the combination of N-site and C-
defects that appears to have the greatest effects on ORR activity
affecting both onsets and selectivity. We attribute this to the
availability of a higher density and a wider distribution of active
surface sites available to the reaction which is evidenced also
in changes in the interfacial properties observed via optical and
impedance spectroscopy.

Our results suggest that structural defects in the
carbon matrix play an essential role in imparting and
modulating electrocatalytic activity at metal-free carbons. The
nanostructuring that typically accompanies surface modification
reactions is likely as important as the introduction of the localized
heteroatom functionality and must be taken into account for the
design of carbon electrodes with tailored reactivity.
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