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The pandemic that started in Wuhan (China) in 2019 has caused a large number of deaths,
and infected people around the world due to the absence of effective therapy against
coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2). Viral maturation
requires the activity of the main viral protease (Mpro), so its inhibition stops the progress of
the disease. To evaluate possible inhibitors, a computational model of the SARS-CoV-2
enzyme Mpro was constructed in complex with 26 synthetic ligands derived from
coumarins and quinolines. Analysis of simulations of molecular dynamics and molecular
docking of the models show a high affinity for the enzyme (ΔEbinding between −5.1 and
7.1 kcal mol−1). The six compounds with the highest affinity show Kd between 6.26 × 10–6

and 17.2 × 10–6, with binding affinity between −20 and −25 kcalmol−1, with ligand efficiency
less than 0.3 associated with possible inhibitory candidates. In addition to the high
affinity of these compounds for SARS-CoV-2 Mpro, low toxicity is expected considering
the Lipinski, Veber and Pfizer rules. Therefore, this novel study provides candidate
inhibitors that would allow experimental studies which can lead to the development of
new treatments for SARS-CoV-2.
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INTRODUCTION

In recent years, different viruses have emerged in around of the world. These diseases are a
generation of respiratory diseases in infected patients, also due to the rapid dissemination of the
diseases. These kinds of viruses include the severe acute respiratory syndrome coronavirus (SARS-
CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), avian influenza A/H7N9 and
H5N1 viruses, and Nipah virus (Yuen et al., 1998; Peiris et al., 2003; MacNeil and Rollin, 2012; Marsh
and Wang, 2012; To et al., 2012; To et al., 2013; Zaki et al., 2012; Chan et al., 2015). The capacity of
these viruses to evolve and infect humans has been associated with the close interaction occurring
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between human populations and different animal species in
markets of densely populated areas (Chan et al., 2015). In
December 2019, cases of atypical pneumonia began to be
observed in the city of Wuhan (China) (Lu et al., 2020; Zhu
et al., 2020). By January 2020, the etiological agent was classified
as a new member the of family Coronaviridae and genus
β-coronavirus (2019-nCoV) that differ from SARS-CoV and
MERS-CoV. The genome of 2019-nCoV shares an 82%
sequence identify to SARS-CoV (Elfiky, 2020; Hui et al., 2020;
Rothan and Byrareddy, 2020; World Health Organization, 2020).
As a matter of fact, its genome has high similarity with the
genome of a bat coronavirus (96.2% identity), which has allowed
the virus to be associated with a zoonotic origin (Lu et al., 2020;
Wu et al., 2020; Zhou et al., 2020). According to the International
Committee Virus Taxonomy the new β-coronavirus was called
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
and on February 11 the set of symptoms associated with this new
virus was designated as COVID-19 by the World Health
Organization (WHO) (Zhang et al., 2020b). The evolution of
infections at a global level increased as the number of cases and
deaths, with the most affected countries being the USA, India,
Brazil, Russia, France and United Kingdom (COVID-19 Map -
Johns Hopkins Coronavirus Resource Center, 2020), which
together have presented more than 50% of the global cases in
more than 180 countries, declaring it a pandemic on March 11
(WHO Director-General’s opening remarks at the media briefing
on COVID-19–20 March, 2020).

Consequently, developed and developing countries are
working on the generation of vaccines or antivirals find a
solution in the short or medium term. In this context, many
governments, medical institutions, and scientists have tried
various treatments used for other diseases with promising but
so far inconclusive results. These treatments include
Chloroquine, Hydroxychloroquine, Camostat, Nafamostat,
Umifenovir, Tenofovir, Ramdesidir, Sofosbuvir, Galidesivir,
Lopinavir, and indinavir, which are used to treat other
diseases but have shown a degree of inhibitory activity of
SARS-CoV-2 (Chu et al., 2004; Sissoko et al., 2016; Yamamoto
et al., 2016; Mulangu et al., 2019; Cortegiani et al., 2020; Deng
et al., 2020; Elfiky, 2020; Grein et al., 2020; Hirota et al., 2020;
Hoffmann et al., 2020). Each of these compounds has different
modes of action and targets such as antiviral drug (RNA-
dependent RNA polymerase (RdRp), viral proteases and
membrane fusion clathrin-mediated endocytosis (CME),
antimalarial drug (elevation of the endosomal pH and ACE2)
and serine protease inhibitor (TMPRSS2) (Chu et al., 2004;
Sissoko et al., 2016; Yamamoto et al., 2016; Mulangu et al.,
2019; Cortegiani et al., 2020; Deng et al., 2020; Grein et al.,
2020; Hirota et al., 2020; Hoffmann et al., 2020; McKee et al.,
2020).

Like all other coronaviruses, SARS-CoV-2 is composed by
single-stranded RNA as their genetic material with an
approximate length of 29,891 nucleotides and a 5′-cap
structure and 3′-poly-A tail, encoding 9,860 amino acids
(Chan et al., 2020). This RNA encodes both the structural and
non-structural proteins of the virus. Among the structural
proteins, there is the Spike (S) (present in all coronaviruses),

Nucleocapsid (N), Matrix (M), and Envelope (E) (Chan et al.,
2020; Walls et al., 2020; Wrapp et al., 2020). Proteases and RNA-
dependent RNA polymerase constitute the non-structural
proteins of the virus. The genome contains at least six open
reading frames (ORFs), the first of these ORF occupies about 60%
of the length of the genome and translates two polyproteins
known as pp1a and pp1ab, which are processed by the main
protease (Mpro, also called 3CLpro) and papain-like proteases
(PLPs) (Jin et al., 2020a; Zhang et al., 2020b; Chen et al.,
2020). Consequently, inhibiting Mpro activity blocks virus
replication and thus affects the life cycle of SARS-CoV-2.
Compounds derived from coumarins and quinoline have been
tested against various viruses (McKee et al., 2020; Mishra et al.,
2020). Quinolines have recently been used in experimental
treatments for SARS-CoV-2 infected persons in several
countries (Arshad et al., 2020; Lopez et al., 2020; Mori et al.,
2020) and it has been proposed that coumarins inhibit the
replication of several viruses including influenza (Pavurala
et al., 2018), HIV (Jesumoroti et al., 2019), Dengue (Coulerie
et al., 2013), Chikungunya (Hwu et al., 2019), hepatitis (Hwu
et al., 2008) and filoviruses (EBOLA, Marburgvirus (MARV) and
Cuevavirus) (Liu et al., 2019).

In this study, we evaluated twenty-sixth molecules derived
from coumarins and quinolines as promising SARS-CoV-2 Mpro

inhibitors, and so, by using computational biochemistry
protocols we tried to find the most appropriate molecules that
can act as potential anti-SARS-CoV-2 activity drugs. Six of the
compounds evaluated are highlighted, which are CTR9, 7HC6,
CTR6, 7HC5, 7HC3 and 8HQ6. We performed molecular
docking (rigid), efficiency calculations of ligands,
pharmacological and toxicological property predictions
(ADMET), and molecular dynamics simulations (MD)
simulations, together with MM-GBSA binding free energy
predictions to identify the binding characteristics for
identifying the inhibitors of SARS-CoV-2 Mpro.

COMPUTATIONAL METHODS

Compounds Set
In this work, we use twenty-sixth ligands selected for their
possible capability to inhibit SARS-CoV-2 protease Mpro. The
coumarins and quinolines derivatives were extracted from two
compound series that have been synthesized by the laboratories of
applied chemistry of the Universidad de Ibagué, in Ibague-
Colombia. The work was based on strategies that the authors
have reported in the literature (García-Beltrán et al., 2013; Mena
et al., 2015; Aguirre et al., 2017; Garćia-Beltran et al., 2017). 13b is
our reference molecule and was obtained from the Protein Data
Bank (PDB) (Zhang et al., 2020b) (PDB id: 6Y2F). These
molecules were designed in silico and evaluated using docking
methodologies and physicochemical and pharmacokinetic
descriptors, and to predict ADME parameters. Their chemical
structures are shown in Figure 1. Their molecular conformations
were optimized using PM6-D3H4 semi-empirical method
(Stewart, 2007; Řezáč and Hobza, 2012) as implemented in
MOPAC2016 (Stewart, 2016) software. The optimized
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molecules were used for molecular docking simulations in order
to study the interactions established by these compounds in the
SARS-CoV-2 Mpro pocket.

Molecular Docking
We made molecular docking analyses to examine the potential
binding modes of ligands to the main protease Mpro of SARS-
CoV-2, as potential inhibitors. Then, based on structural
information obtained from the crystal structures of Mpro in
complex with other ligands we established the binding site of
the proposed inhibitors for SARS-CoV-2 Mpro. In addition to
delimit the binding region of possible inhibitors to Mpro (Dai
et al., 2020; Jin et al., 2020a; ul Qamar, 2020; Xu et al., 2020; Zhang
et al., 2020a, Zhang et al., 2020b). We established the key residues
for catalysis according to experimental and theoretical data.

Finally, we used AutoDock (v 4.2.1) and AutoDock Vina
(Trott and Olson, 2010) for all dockings in this study. The
initial 3D inhibitors structures were drawn using Discovery
Studio (Dassault Systèmes BIOVIA, 2017) 3.1 (Accelrys, CA)
which were optimized (considering the RMS gradient of
0.001 kcal/mol) using the PM6-D3H4 semi-empirical method
(Stewart, 2007; Řezáč and Hobza, 2012) implemented in the
MOPAC2016 (Stewart, 2016) software. PM6-D3H4 introduces
dispersion and hydrogen-bonded corrections to the PM6
method. The ligand files were prepared using the
AutoDockTools package (Sanner, 1999) provided by
AutoDock through accepting all rotatable bonds; moreover,
the atomic charges are computed toward the PM6-D3H4
procedure, and non-polar hydrogen atoms are merged. The
semi-empirical method has shown to increase significantly

FIGURE 1 | 2D chemical structure of ligand under study.
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docking accuracy and cluster population of the most accurate
docking (Bikadi and Hazai, 2009; Fanfrlík et al., 2010; Hou et al.,
2013). The crystal structure of SARS-CoV-2 Mpro (PDB Code:
6YB7, https://www.rcsb.org/structure/6YB7), was downloaded
from the PDB (Berman et al., 2000). The resolution of the
retrieved structure was 1.25 Å. The SARS-CoV-2 Mpro was
treated with the Schrödinger’s (Schrödinger, 2020) Protein
Preparation Wizard (Madhavi Sastry et al., 2013); polar
hydrogen atoms were added, non-polar hydrogen atoms
were merged, and charges were assigned. Docking was
treated as rigid and carried out using the empirical free
energy function and the Lamarckian Genetic Algorithm
provided by AutoDock Vina (Morris et al., 1998). The
docking grid dimensions were 30.75 × 30.75 × 30.75 Å,
making the binding pocket of SARS-CoV-2 Mpro the
center of mass between amino-acid residues (Cys145 and
His41) of the catalytic site. All other parameters were set as
defined by default through AutoDock Vina. Dockings were
repeated 50 times with space search exhaustiveness set to 100.
The best interaction binding energy (kcal·mol−1) was selected
for evaluation and analyzed according to the potential
intermolecular interactions (protein/ligand), such as
hydrogen bonding, hydrophobic interactions and the
cation–π, π–π stacking. Docking results 3D representations
were used. VMD molecular graphics system (Humphrey et al.,
1996).

Ligand Efficiency Approach
Ligand efficiency (LE) calculations were performed using one
parameter Kd . The Kd parameter corresponds to the
dissociation constant between a ligand/protein, and their
value indicates the bond strength between the ligand/
protein (Abad-Zapatero, 2007, Abad-Zapatero, 2013;
Abad-Zapatero et al., 2010). Low values indicate strong
binding of the molecule to the protein. Kd calculations
were done using the following equations:

ΔG0 � −2.303RT log(Kd) (1)

Kd � 10
ΔG0

2.303RT (2)

where ΔG0 corresponds to binding energy (kcal mol−1) obtained
from docking experiments, R is the gas constant whose value is
1.987207 cal/mol K and T is the temperature in degrees Kelvin.
At standard conditions of aqueous solution at 298.15 K, neutral
pH and remaining concentrations of 1 M. The ligand efficiency
(LE) allows us to compare molecules according to their average
binding energy (Reynolds et al., 2008; Abad-Zapatero, 2013).
Thus, it determined as the ratio of binding energy per non-
hydrogen atom, as follows (Abad-Zapatero, 2007, Abad-
Zapatero, 2013; Abad-Zapatero et al., 2010; Cavalluzzi et al.,
2017):

LE � −2.303RT
HAC

log(Kd) (3)

where Kd is obtained from eq. (2) and HAC denotes the
heavy atom count (i.e., number of non-hydrogen atoms) in a
ligand.

ADMET Properties
The purpose of calculating ADMET profiles is to supply, with
reasonable accuracy, a preliminary prediction of the in vivo
behavior of a compound to assess its potential to become a
drug (Yu and Adedoyin, 2003). The molecules used in this
study were submitted to the calculation of their absorption,
distribution, metabolism, excretion and toxicological properties
(ADMET). Also, the physicochemical properties such as
molecular hydrogen bond acceptor (HBA), hydrogen bond
donor (HBD), molecular weight (MW), topological polar
surface area (TPSA), rotatable bond count (RB) and octanol/
water partition coefficient (LogP) were calculated using
SwissADME webserver (Daina et al., 2017). Compound
toxicological properties were analyzed taking into account the
Lipinski, Veber and Pfizer toxicity empirical rules, see Table 1.
(MacLeod-Carey et al., 2020).

Molecular Dynamics Simulations
MDs calculations were performed for the lowest six binding
energy docking and the compound 13b, which is our reference
ligand. These calculations were also obtained from Protein Data
Bank (PDB id: 6Y2E). The ligands were bound to SARS-CoV-
2 Mpro protein (PDB ID:6YB7) in aqueous solutions with an
explicit solvent TIP3P water model (Neria et al., 1996) (≈16.000
water molecules). Protonation states of ionizable residues
corresponding to pH 7.0 were determined by H++ web
interface for computes pK values of ionizable groups in
macromolecules and adds missing hydrogen atoms according
to the specified pH of the environment (Anandakrishnan et al.,
2012). Besides, NaCl ions were modeled to neutralize the
systems and maintain an ionic concentration of 0.15 mol/L.
The compounds were parameterized by GAFF Force Field
for organic molecules. (Wang et al., 2004; ÖzpInar et al.,
2010), using the Antechamber module in AmberTools18 with
AM1-BCC charges, (Jakalian et al., 2000). The protein structures
were modeled with the force field ff14SB. (Salomon-Ferrer et al.,
2013). The simulations were carried out using a standard
MD protocol: (I) Minimization and structural relaxation of
water molecules with 2000 steps of minimization (downward
step) and MD simulation with an NPT (300 K) assembly by
1,000 ps using harmonic restrictions of 10 kcal molÅ−2 for
protein and ligand; (II) minimization of the complete

TABLE 1 | Empirical rules for predicting oral availability and toxicity of a
compound.

Properties Oral availability Toxicity Pfizer 3/75 rules

Lipinski rules Veber rules

MW ≤500 – –

LogP ≤5 – ≤3
HBA ≤10 – –

HBD ≤5 – –

TPSA – ≤140 ≥75
RB – ≤10 −
MW: Molecular weight, LogP: octanol/water partition coefficient, HBA: Hydrogen Bond
Acceptor, HBD: Hydrogen Bond Donor, TPSA: Topological Polar Surface Area and RB:
Rotatable Bond.
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structure considering 2000 downstream minimization steps and
6,500 steps of conjugate gradient minimization; (III) the
minimized systems were progressively heated to 300 K, with
harmonic restrictions of 10 kcal mol Å−2 in the carbon skeleton
and ligand during 0.5 ns; (IV) the system was then balanced by

0.5 ns maintaining the restrictions and then by 5 ns without
restrictions to 300 K in a canonical assembly (NVT); and (5)
finally, a production dynamic was carried out with an isothermal
isobaric assembly (NPT) without restrictions for 200 ns at 310 K
and 1 atm with a temporary passage of 2 fs. In the MD

TABLE 2 | Molecular docking study between selected ligands and SARS-CoV-2 Mpro. Intermolecular docking values, presented with their interaction energy (ΔEbinding),
H-bond residues, interacting residues are shown and Ligand efficiency calculation for SARS-CoV-2 Mpro complexes.

Compound Docking results Ligand Efficiency

ΔEbinding

(kcal mol−1)a
H-bondsb Residue interactionsb Kd LE

(kcal mol−1)

13bc –7.2 Leu167; Glu166 Arg188; Asn142; Asp187; Cys145; Gln189; Glu166; Gly143; His164;
His163; His41; Leu167; Leu27; Met165; Met49; Phe140; Pro168;
Ser144; Thr25; Thr26

5.29 × 10–6 0.167

CTR6 –7.1 Met49; Gln189; Glu166;
Gln192

Arg188; Asn142; Cys145; Gln189; Gln192; Glu166; Gly143; His41;
Leu167; Met49; Pro168; Thr190; Thr25

6.26 × 10–6 0.253

7HC6 –6.7 Glu166; Ser46 Arg188; Cys145; Cys44; Gln189; Gln192; Glu166; His41; Met165;
Met49; Ser46; Thr25; Thr45

12.3 × 10–6 0.304

7HC5 –6.6 – Cys145; Glu166; His164; His163; His41; Met165; Met49; Phe140;
Ser144; Ser305

14.6 × 10–6 0.347

CTR9 –6.6 Met165; Asn142 Asn142; Cys145; Cys44; Glu166; Gly143; His164; His163; Leu141;
Met165; Met49; Phe140; Ser144; Ser46; Thr25; Thr45

14.6 × 10–6 0.300

7HC3 –6.6 – Cys145; Glu166; His164; His163; His41; Leu141; Met165; Met49;
Phe140; Ser144; Ser305

14.6 × 10–6 0.347

8HQ6 –6.5 – Cys145; Cys44; Glu166; His164; His41; Leu141; Met165; Met49;
Phe140; Ser144; Ser305; Thr25

17.2 × 10–6 0.309

CTR4 –6.5 His163; Glu166; Met49 Asn142; Cys145; Cys44; Glu166; His163; His172; Leu141; Met165;
Met49; Phe140; Ser144; Ser305; Ser46; Thr25; Thr45

17.2 × 10–6 0.240

CTR5 –6.4 His163; Thr26; Gly143;
Thr25

Asn142; Cys145; Glu166; Gly143; His163; Leu141; Met165; Phe140;
Ser144; Thr24; Thr25; Thr26

20.4 × 10–6 0.278

CTR1 –6.3 His41; Glu166; Arg188;
Leu27; Thr25

Arg188; Asn142; Cys145; Gln189; Gln192; Glu166; Gly143; His41;
Leu27; Met165; Met49; Thr190; Thr25; Thr26

24.1 × 10–6 0.273

CTR3 –6.3 Glu166; His163; Asn142 Asn142; Cys145; Cys44; Glu166; His163; His172; Leu141; Met165;
Met49; Phe140; Ser144; Ser305; Ser46; Thr25; Thr45

24.1 × 10–6 0.262

8HQ5 –6.3 Gln189 Cys145; Gln189; Glu166; His163; Met165; Met49; Phe140; Ser144;
Ser305

24.1 × 10–6 0.350

8HQ7 –6.2 – Cys145; Gln189; Glu166; His163; Met165; Met49; Phe140; Ser144;
Ser305

28.6 × 10–6 0.344

78HC2 –6.1 His163 Asn142; Cys145; Gln189; Glu166; His163; Met165; Phe140; Ser144 33.8 × 10–6 0.358
CTR7 –6.1 Thr25; Cys44 Arg188; Cys44; Gln189; Gln192; Glu166; His41; Leu167; Met165;

Met49; Pro168; Ser46; Thr190; Thr25; Thr45
33.8 × 10–6 0.234

CTR2 –6.1 Leu141; Thr25; His163;
Asn142

Asn142; Cys145; Glu166; Gly143; His163; Leu141; Leu27; Met165;
Met49; Phe140; Ser144; Ser46; Thr25

33.8 × 10–6 0.203

CTR8 –6.0 Gly143 Asn142; Cys145; Glu166; Gly143; His163; Leu141; Met165; Phe140;
Ser144; Thr25; Thr26

40.1 × 10–6 0.285

78HC1 –5.7 – Cys145; Glu166; His163; Leu141; Met165; Phe140; Ser144; Ser305 66.5 × 10–6 0.380
7HC2 –5.7 – Cys145; Glu166; His164; His163; Leu141; Met165; Phe140; Ser144;

Ser305
66.5 × 10–6 0.356

7HC4 –5.7 Phe140; Asn142 Asn142; Cys145; Glu166; Gly143; His163; His41; Leu141; Leu27;
Met165; Phe140; Ser144

66.5 × 10–6 0.335

7HC1 –5.6 – Cys145; Glu166; His164; His163; His41; Met165; Phe140; Ser144;
Ser305

78.6 × 10–6 0.373

8HQ4 –5.6 Glu166 Arg188; Cys145; Gln189; Glu166; His163; Leu141; Met165; Met49;
Phe140; Ser144; Ser305

78.7 × 10–6 0.350

7HC7 –5.5 His163; Phe140 Cys145; Glu166; His163; Leu141; Met165; Phe140; Ser144 93.2 × 10–6 0.392
8HQ8 –5.4 Met165 Asn142; Cys145; Glu166; His41; Met165; Met49 110 × 10–6 0.337
8HQ2 –5.3 Glu166 Cys145; Glu166; His163; Met165; Phe140; Ser144; Ser305 130 × 10–6 0.378
8HQ3 –5.3 Glu166 Cys145; Gln189; Glu166; His163; Met165; Met49; Phe140; Ser144;

Ser305
130 × 10–6 0.353

8HQ1 –5.1 – Asn142; Glu166; His164; His163; Leu141; Met165; Phe140; Ser144;
Ser305

182 × 10–6 0.392

aIn each site, the energy was calculated to see which site had the highest degree of union with the ligand.
bThe reason of 3 Å was the length of the Hydrogen bond ranges from 2.6 Å to 3.1 Å based on observations from the PDB.
cThe ligand 13b is our reference ligand and was obtained from PDB (id: 6Y2E).
His41 and Cys145 residues of the catalytic site are highlighted with bold font.
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simulation, the temperature was controlled by the Langevin
dynamics with a collision frequency of 1 ps−1 (NVT) and the
pressure with the Berendsen barostat (NPT). Besides, the Particle
Mesh Ewald (PME) method with a cut-off value of 10 Å was used
to treat nonbonding and long-range electrostatic interactions.
All MD simulation calculations were performed using the
AMBER-GPU Implementations18 (Mermelstein et al., 2018).
Molecular visualization of the systems and MD trajectory analysis
was carried out with the VMD software package (Humphrey et al.,
1996).

Free Energy Calculation
The molecular MM/GBSA method was employed to estimate the
binding free energy of the protease-ligand complexes. For
calculations from a total of 200 ns of MD, the last 50 ns were
extracted for analysis, and the explicit water molecules and ions
were removed. The MM/GBSA analysis was performed on three
subsets of each system: the protein alone, the ligand alone, and the
complex (protein-ligand). For each of these subsets, the total free
energy (ΔGtot) was calculated as follows:

ΔGtot � HMM + Gsolv − TΔSconf (4)

where HMM is the bonded and Lennard–Jones energy terms;
Gsolv is the polar contribution of solvation energy and non-
polar contribution to the solvation energy; T is the
temperature; and ΔSconf corresponds to the conformational

entropy (Hayes and Archontis, 2012). Both HMM and Gsolv

were calculated using AMBER 18 program with the
generalized Born implicit solvent model (Götz et al., 2012;
Song et al., 2019). ΔGtot was calculated as a linear function of
the solvent-accessible surface area, which was calculated with
a probe radius of 1.4 Å (Abroshan et al., 2010). The binding
free energy of SARS-CoV-2 Mpro and ligand complexes
(ΔGbind) were calculated by the difference where G_tot
values are the averages over the simulation.

ΔGbind � Gtot(complex) − Gtot(protein) − Gtot(ligand) (5)

Non-Covalent Interactions
The principal cluster of main component analysis of trajectory
were analyzed with the non-covalent interaction index (NCI)
(Johnson et al., 2010; Contreras-García et al., 2011) using
NCIPLOT program (Contreras-García et al., 2011) to identify
and map non-covalent interactions, such hydrogen bonds, steric
repulsion, and van der Waals interactions, using the
promolecular densities (ρpro), computed as the sum of all
atomic contributions. The NCI is based on the electron
density (ρ), its derivatives and the reduced density gradient (s).
The reduced density gradient is given by:

s � 1

2(3π2)1/3
∇ρ
ρ4/3

(6)

FIGURE 2 | The best seven docking poses of different ligands in SARS-CoV-2 Mpro binding pocket. Snapshots of (A) CTR6, (B) 7HC6, (C) 7HC5, (D) CTR9, (E)
7HC3, (F) 8HQ6 and (G) 13b during docking simulations. The yellow dotted line usually represents intermolecular interactions, like hydrogen bonds.
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These interactions are local and manifest in real space as
low-gradient isosurfaces with low densities which are
interpreted and colored according to the corresponding
values of sign(λ2)ρ. The surfaces are colored on a blue-
green-red scale according to the strength and type of
interaction. Blue indicates strong attractive interactions,
green indicates weak van der Waals interactions, and red
indicates a strong non bonded overlap.

RESULTS AND DISCUSSION

Molecular Docking Analysis
The docking results, which were conducted to estimate the possible
binding sites of potential inhibitors on SARS-CoV-2 Mpro. The
genetic material of SARS-CoV-2 expresses multiple proteins (more
than 20 proteins), among these proteins the main protease (Mpro)
is identified, a molecule similar to 3 chymotrypsin (3CLpro) that
shows a similarity of 96.1% with the 3CLpro of SARS-CoV. 3CLpro

plays a very important role in replication and transcription
processes of the virus genome (Hui et al., 2020). Therefore,
3CLpro is a strategic drug target in the inhibition of the SARS-
CoV cycle. The protease is active as a homodimer, structured by the
dimerization of two protomers designated as monomer A and
monomer B, and the catalytic dyad in each protomer is defined by

Cys145 and its residues (Zhang et al., 2020b). This has led to the
development of multiple studies with experimental and
computational approaches in search of possible inhibitors that
can effectively block the activity of this protease (Balaramnavar
et al., 2020; Dai et al., 2020; Gao et al., 2020; Jin et al., 2020a; Jin
et al., 2020b; Ngo et al., 2020; Zhang et al., 2020b). Work with the
3C-like proteinase from SARS coronavirus revealed that the
Cys145 residue is key at the active site of 3CLpro (Huang et al.,

FIGURE 3 | Root Mean Square Deviation (RMSD) as a function of simulated times for the complexes formed between SARS-CoV-2 Mpro and (A) CTR9, (B) 7HC6,
(C) CTR6, (D) 7HC3, (E) 8HQ6 and (F) 7HC5 molecules.

FIGURE 4 |Radius of gyration for the SARS-CoV-2Mpro in complex with
CTR9, 7HC6, CTR6, 7HC3, 8HQ6 and 7HC5, during 200 ns simulation time.
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2004), this advance allowed the mentioned residue to be an
attractive target for covalent ligands to bind acting as inhibitors
of 3CLpro. This amino acidic residue is also a popular target for
covalent inhibitors because of its intrinsic reactivity at physiological
pH (Cuesta et al., 2020). Tung Ngo et al. report in recent studies
that additionally Glu166 residue has a prominent and important
role in binding ligands to SARS-CoV-2 Mpro (Ngo et al., 2020).

Twenty-seven inhibitors, including the reference ligand 13bwere
evaluated in silico anti-SARS-CoV-2 activity. The results of this study
of molecular docking calculations indicate the strong interactions of
molecules derived from coumarins and quinolones targets the Cys-
His catalytic dyad (Cys145 and His41) in the binding pocket of
SARS-CoV-2Mpro. The results of the binding of these molecules are
presented in Table 2. Meanwhile, the binding to various amino acid
residues due to their presence in the conserved region of the active
site in all compounds is seen and presents a very important role in
enzymatic catalysis.

Docking results with SARS-CoV-2 Mpro, indicated that all
ligands present binding energies between −5.3 and
−7.2 kcal mol−1 (Table 2), with a difference of 0.1 kcal mol−1

between 13b and CTR6, which means that the level of stability
is very similar between these two protease-complex ligands.
AutoDock Vina, presents that the ligand 13b attached to the
co-crystal, and the re-coupled ligand 13b presents an RMSD
value of 3.1 Å, suggesting a partially acceptable value of the

coupling method. Furthermore, it shows that the compound
CTR6 gives the lowest energy (−7.1 kcal-mol−1) in complex
with the protease, which is the best score when compared to
other docked compounds used in this study. CTR6 gives better
score than 7HC6 (−6.7 kcal mol−1), 7HC5 (−6.6 kcal mol−1), CTR9
(−6.6 kcal mol−1), 7HC3 (−6.6 kcal mol−1), 8HQ6 (−6.5 kcal
mol−1) and the other compounds. The coumarins and
quinolines derivatives are located inside the protein pocket, by
means of electrostatic and hydrophobic interactions with the
residues Arg188, Asn142, Asp187, Cys145, Gln189, Glu166,
Gly143, His164, His163, His41, Leu167, Leu27, Met165, Met49,
Phe140, Pro168, Ser144, Thr25 and Thr26. In relation to 13b, it
shows two hydrogen bonding interactions with Leu167 and
Glu166 residues. In the case of CTR6, 7HC6 and CTR9 in
complex with SARS-CoV-2 Mpro (Figure 2 and Table 2) show
possible hydrogen-bonding interactions with the residues Ser46,
Met49, Asn142, Met165, Glu166, Gln189 and Gln192 (H-donor).
This allows us to conclude that the hydrogen bonds and
hydrophobic forces, are the majority interactions that dominate
these complexes. Interactions between the rest of the compounds
and SARS-CoV-2 Mpro are reported in Table 2.

Ligand Efficiency Analysis
The parameters dissociation constant (Kd) and ligand efficiency
(LE) were used to compare the affinity of the molecules studied

FIGURE 5 | Normal Mode Analysis and RMSF of the α-carbon. A main component analysis was carried out using the last 100 ns trajectories, and the main normal
mode of movement was obtained. The displacement was plotted for each residue of SARS-CoV-2Mpro in complex with CTR9, 7HC6, CTR6, 7HC3, 8HQ6 and 7HC5. In
grey boxes represented pocket site residues. His41 and Cys145 residues of the catalytic site are highlighted with bold font.
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and SARS-CoV-2 Mpro. The Kd of a ligand-protease complex, the
values shown indicate the strength of the protein-ligand
interaction. Very low values are an indicator that the ligand
has a very close bond to the protein. LE represents the average
bonding energy per non-hydrogen atom, giving standardized
values allowing to compare the molecules derived from
coumarins and quinolines of different sizes, see Table 2. The
six best ligands obtained from the docking exhibit low Kd values,
which leads to the conclusion that these complexes are the most
stable of the series presented, these ligands are CTR6, 7HC6,
7HC5, CTR9, 7HC3 and 8HQ6, including the reference ligand
13b. The results are coherent with those obtained in the molecular
docking, where these complexes according to the values ofΔEbinding
showed greater stability. Default tolerable values of LE of inhibitor
candidate compounds should show LE values >0.3 kcal-mol−1.
According to the values, the compounds 7HC6, 7HC5, CTR9,
7HC3 and 8HQ6 are excellent prospects to be used as SARS-CoV-
2 Mpro inhibitors.

Molecular Dynamics Simulation and MM/
GBSA Analysis
Molecular dynamics simulations were performed in 200 ns to
analyze the steady nature and conformations stability of ligand-
SARS-CoV-2 Mpro complexes (ligands: CTR9, 7HC6, CTR6,
7HC3, 8HQ6 and 7HC5).

The RMSD was used to estimate the stability of protein-ligand
systems. RMSD trajectories of SARS-CoV-2 Mpro-ligand
complexes during 200 ns simulation indicated that the
complexes formed with the ligands during the DM simulations
have a high stability during the simulation time (Figure 3). The
structure does not show significant changes, in this case there is
an increase of the RMSD until reaching a point in which the
values fluctuate around values of 0.5 and 1.8 Å of RMSD. After a
Molecular dynamics of 200 ns the structures remain within the
parameter that considers the system to be in equilibrium,
therefore, no complex suffered structural destabilization during
the simulation. Deviations with a maximum difference of 3.0 Å of

FIGURE 6 | Fraction of intermolecular hydrogen bonds for SARS-CoV-2 Mpro interacting with (A) CTR9, (B) 7HC6, (C) CTR6, (D) 7HC3, (E) 8HQ6 and (F)
7HC5. The graph bar shows the most common hydrogen bonds formed between the residues on the pocket and the inhibitors. Values obtained from CPPTRAJ
script in AMBER.
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RMSD (Carugo, 2003) indicate that the system is in equilibrium,
situation that is fulfilled for the simulation of the possible SARS-
CoV-2 Mpro indicating equilibrium states of the ligands within
the active site of protease. Also, RMSD curves for 7HC5 and
CTR6 are remarkably more stable than those of CTR9, 7HC6,
7HC3 and 8HQ6. To complement the analysis carried out from
the RMSD, the study of the Radius of Gyration (RGyr) was carried
out for the same runs. From RGyr analysis Figure 4, we can
conclude that the RGyr of ligands 7HC5 and 7HC3 have values
that oscillate in an interval close to 3.0 Å, for the case of CTR9,
8HQ6 and 7HC6 have values fluctuating in an interval close to
3.5 Å and for the CTR6 ligand it has values higher than 4.0 Å. The
stable values during the 200 ns simulation for RGyr indicate that
ligand binding at the active site of the protein does not induce
major conformational changes in the protein structure.

With the purpose of identifying the deviation of the ligand
from respect to its initial position and the movement of proteins
residues, the Normal Mode Analysis (NMA) and Root Mean
Square Fluctuations (RMSF) values were calculated averaging
over all the conformations sampled during the last 100 ns
simulation. The NMA and RMSF were calculated using the Cα
atom of each amino acid residue as a reference and the graph was
used to represent the fluctuations in the residue level. NMA plot

in Figure 5 shows a similar trend of residue fluctuation profile for
the complex with an average NMA of 1.0 × 10–6 fluctuations. The
two CTR6-protease and 7HC3-protease complexes showed a
comparatively higher fluctuation in some residues. This trend
in the quadratic displacement figure of the complex suggests that
the binding of the six compounds to the protein showed stability
and no effect on the flexibility of the protein was observed in the
whole range of the simulations. The N-terminus to C-terminus of
the proteins normally present great fluctuations and in most cases
their movement does not represent importance. As shown in
Figure 5, the RMSF graph, all the compounds made the residues
present the same fluctuation, except for the two 8HQ6-protease
and 7HC5-protease complexes showed a comparatively higher
fluctuation in some residues. We consider and from the
theoretical point of view, that these ligands present
movements in the active site to settle in the best orientation,
reason why part of the amino acidic residues fluctuate more than
normal. However, other ligands exhibit good behavior and their
RMSF values show that they can handle the fluctuations of the
residues. On the active site of the protease, the fluctuation values
of the main residues (Zhang et al., 2020a) (His41, His163, His164,
Phe140 and Cys145) of the six selected molecules were similar
among them. The results of the MD simulation indicate that two

FIGURE 7 | Schematic representations of main component analysis of their respective production run for ligands (A) CTR9, (B) 7HC6, (C) CTR6, (D) 7HC3, (E)
8HQ6 and (F) 7HC5 bound to SARS-CoV-2 Mpro. The surrounding amino acid residues in the binding pocket of SARS-CoV-2 Mpro within 3Å from ligands. The yellow
dotted line usually represents intermolecular interactions, like hydrogen bonds.
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of the ligands obtained from the coupling analysis (CTR9 and
7HC6) remain close to their initial locations even in uncontrolled
simulations, which points to the constitution of stable complexes.
From these results it can be clearly deduced that it is likely that the
molecules CTR9 and 7HC6 play the same role in inhibiting
SARS-CoV-2 Mpro as 13b.

The analyses of trajectories indicate that during most of the
simulation the ligands CTR9, 7HC6, CTR6, 7HC5, 7HC3 and
8HQ6maintain hydrogen bonds with residues of the active site of
SARS-CoV-2 Mpro. However, the number of hydrogen bridges
formed was different for each ligand (Figure 6). CTR9 formed

three hydrogen bridges between the residues Cys44, His41 and
Thr26, highlighting the participation of the residues Glu166,
Cys145, Asn142 and Asp187. 7HC6 formed two hydrogen
bridges between the residues Thr24 and Thr25, highlighting
the participation of the residues Leu27, Ser46, Met49 and
Glu166. In the case of CTR6, three hydrogen bridges between
the residues Glu166, Gln189 and Thr190 were determined,
highlighting the participation of the residues Arg188 and
Ser46. 7HC3 formed one hydrogen bridge with the residue
Glu166, highlighting the participation of the residues His163,
Met49 and Phe140. Three hydrogen bridges are formed between
8HQ6 and the residues Asp187, Glu166 and His163, highlighting
the participation of the residues Gln189, Phe140, Ser144 and
Val186. Finally, 7HC5 formed one hydrogen bridge with the
Glu166 residue, highlighting the participation of the residues
Leu50, Asn142 and Phe140. These residues, see Figures 6 and 7,
are consistent with previous theoretical-experimental studies
carried out by Dai et al. (Dai et al., 2020), where they detail
the interaction that some of the synthesized compounds have
with the active site of the protease.

The noncovalent interactions analysis labeled all the
hydrogen-bonding interactions in total agreement with the
molecular dynamics simulations, providing a qualitative
confirmation of these interactions, using a topological and

FIGURE 8 | Schematic representations of main component analysis of their respective production run for NCIPLOT isosurface gradient (0.6 au) of ligands (A)
CTR9, (B) 7HC6, (C) CTR6, (D) 7HC3, (E) 8HQ6 and (F) 7HC5 on the structure of SARS-CoV-2 Mpro. The color scale is −2.0 < ρ < 2.0 au.

TABLE 3 | Predicted binding free energies (ΔGbinding) calculated from molecular
dynamics simulation through the MM/GBSA protocol for SARS-CoV-2 Mpro

complexes.

Ligand ΔGbinding (kcal·mol−1)

13ba −29.1 ± 0.12
CTR9 −24.8 ± 0.12
7HC6 −24.7 ± 0.07
CTR6 −22.8 ± 0.10
7HC5 −22.6 ± 0.08
7HC3 −20.5 ± 0.11
8HQ6 −20.5 ± 0.11

aThe ligand 13b is our reference ligand and was obtained from PDB (id: 6Y2E).
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visual analysis of a scalar field related to the electron density
(Figure 8). These results suggest that the better inhibitors
character is due to direct mechanisms.

Finally, the binding free energy (MM-GBSA) was estimated
subsequent to the MD simulation; the last 50 ns for all the
complexes and the results are given in Table 3. CTR9 and
7HC6 compounds depicted the lowest binding free energy
(−24.8 and −24.7 kcal mol−1) with SARS-CoV-2 Mpro, while
the compounds CTR6, 7HC5, 7HC3 and 8HQ6 showed
relatively higher binding energy (−24.7, −22.8, −22.6, −20.5
and −20.5 kcal mol−1). On the other hand, the reference
compound 13b showed the lowest binding free energy
(−29.1 kcal mol−1) with the SARS-CoV-2 Mpro in comparison
to compound CTR9, with a slight difference of 4.3 kcal mol−1.
Although compound 13b has a lowest binding free energy, it
presents the problem of breaking the rules of Lipinski and Veber
rules, however compound CTR9 does not.

ADMET Properties
In the search for new drugs, safety is very important and the
regulations related to ADMET (Absorption, Distribution,
Metabolism, Excretion and Toxicity), most of the time are the
cause for a drug to fail. Therefore, it is of utmost importance to
identify aspects such as the toxicity of compounds in early stages
of development and thus avoid the loss of resources and time.
(Sivamani et al., 2012). To evaluate the best ligands as potential
anti-SARS-CoV-2 activity drugs; we have calculated some
pharmacokinetic properties (Table 4). These results were
compared to Veber’s (Veber et al., 2002), Pfizer’s (Hughes

et al., 2008) and Lipinski’s rule (Lipinski et al., 2001). in the
development of new drugs if a molecule complies only with one of
the Lipinski’s rule is not an appropriate candidate and it is not
relevant to continue with the study, however, by presenting a
greater number of rules the probabilities of being a candidate
begin to increase and deepen their study. In accordance with
Veber’s rule, if a compound does not satisfy at least two
parameters, it is not a candidate for further development. In
addition, Pfizer 3/75 toxicity rules have also been taken into
account in this study, concluding that if any of the proposed
ligands do not meet the established parameters, then it is not a
suitable candidate.

ADME prediction showed that in most cases, all the
compounds proposed in this study satisfy with the Veber’s,
Pfizer’s and Lipinski’s rule. This suggests that these ligands
could be safe molecules for use as anti-SARS-CoV-2 activity
drugs. In the case of reference ligand 13b presents a violation of
Lipinski’s and Veber’s rule, due to their molecular weight,
topological polar surface area and rotatable bond count. The
values of these properties are higher than the admissible limit,
making this substance fat-soluble which indicates a tendency to
be more toxic and less selective to their target. In the case of the
six best compounds found in the docking simulations (CTR6,
7HC6, 7HC5, CTR9, 7HC3 and 8HQ6), all of them satisfactorily
meet the Veber’s, Pfizer’s and Lipinski’s rule. These compounds
represent most promising compounds to molecular dynamics
simulation and MM-GBSA.

CONCLUSION

This paper predicts that compounds derived from coumarins
and quinolines that can be successfully potential drugs to
treat viral diseases such as COVID-19. Herein, we used a
computational chemistry protocol to identify the ligands
most promising candidates that may inhibit main protease
of SARS-CoV-2 activity determined by means of this protocol
involves of molecular dockings, molecular dynamics
simulations, MM-GBSA, NCI and ADMET properties to
predict whether these compounds are appropriate to be
utilized in an anti-COVID-19 therapy. We identified six
compounds (CTR9, 7HC6, CTR6, 7HC5, 7HC3, 8HQ6)
that are already synthesized (García-Beltrán et al., 2013;
Mena et al., 2015; Aguirre et al., 2017; Garćia-Beltran
et al., 2017) with a potential inhibition of main protease of
SARS-CoV-2. These compounds might be repurposed against
COVID-19. These hits were described as drug-like
compounds and showed harmless ADMET properties and
may aid in developing and optimizing more efficient and
potent COVID-19 inhibitors. Trajectory analysis showed that
the studied complexes display structural stability during the
MD runs. These results encourage further in vitro and in vivo
investigations and also preventively boost the traditional use
of coumarins and quinolines derivatives preventively. We
anticipate that the insights obtained in the present study may
prove valuable for researching and developing novel anti-
COVID-19 therapeutic agents in the future.

TABLE 4 | ADME molecular descriptors of compounds designed to inhibit
SARS-CoV-2 Mpro.

Compound MW (g/mol) LogP HBA HBD TPSA (Å2) RB

13b 593.67 2.27 7 4 164.70 17
CTR6 388.41 0.94 6 4 123.24 6
7HC6 304.34 0.93 6 2 77.15 4
7HC5 259.3 2.27 4 1 53.68 2
CTR9 309.27 −0.16 7 5 140.23 6
7HC3 261.27 1.40 5 1 62.91 2
8HQ6 287.36 1.16 5 2 59.83 4
CTR4 378.42 0.65 6 4 123.24 10
CTR5 325.27 −0.71 8 6 160.46 6
CTR1 323.3 −0.31 7 5 140.23 7
CTR3 337.32 0.02 7 4 129.23 8
8HQ5 242.32 2.52 3 1 36.36 2
8HQ7 244.29 1.65 4 1 45.59 2
78HC2 236.18 0.62 6 3 107.97 2
CTR7 364.39 0.83 6 4 123.24 9
CTR2 486.35 1.99 7 4 129.23 14
CTR8 293.27 0.31 6 4 120.00 6
78HC1 226.61 1.54 4 2 70.67 1
7HC2 219.24 1.63 4 2 62.47 3
7HC4 229.23 1.61 4 2 62.47 3
7HC1 205.21 1.29 4 2 62.47 2
8HQ4 216.28 2.22 3 2 45.15 4
7HC7 210.61 2.03 3 1 50.44 1
8HQ8 212.25 1.85 3 2 45.15 3
8HQ2 188.23 1.53 3 2 45.15 2
8HQ3 202.25 1.85 3 2 45.15 3
8HQ1 193.63 2.30 2 1 33.12 1
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