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Nanotechnology hasmade a significant impact on basic and clinical cancer research over

the past two decades. Owing to multidisciplinary advances, cancer nanotechnology aims

to address the problems in current cancer treatment paradigms, with the ultimate goal to

improve treatment efficacy, increase patient survival, and decrease toxic side-effects. The

potential for use of nanomedicine in cancer targeting and therapy has grown, and is now

used to advance the four traditional pillars of cancer treatment: surgery, chemotherapy,

radiation therapy and the newest pillar, immunotherapy. In this review we provide an

overview of notable advances of nanomedicine in improving drug delivery, radiation

therapy and immunotherapy. Potential barriers in the translation of nanomedicine from

bench to bedside as well as strategies to overcome these barriers are also discussed.

Promising preclinical findings highlight the translational and clinical potential of integrating

nanotechnology approaches into cancer care.
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INTRODUCTION

Cancer is a leading cause of death globally, with 18 million cases and 9 million deaths worldwide
each year (Bray et al., 2018). Despite a promising decline in mortality rates over the past 10 years,
more than half a million people die annually of cancer in the United States alone (Miller et al.,
2019; Siegel et al., 2019). Traditional cancer treatment options can be classified into distinct pillars:
surgery, chemotherapy, radiation therapy (hereon referred to as external radionuclide therapy, or
ERT) and a more recently added fourth pillar; immunotherapy. Decades of concerted efforts have
radically transformed the face of clinical cancer care and has identified specific weaknesses in each
of these pillars that are now being targeted by designer personalized therapies aimed at improving
survival rates and reducing treatment side-effects.

Since the first FDA approval of the liposomal doxorubicin (Doxil) in the 1990s (Grodzinski et al.,
2019), nanomedicine approaches have emerged as a formidable means to improve the outcomes of
traditional pillars of cancer therapy, each of which has its own set of advantages and disadvantages.
Surgery is by nature more invasive than other treatment options, but can be used as a frontline
treatment for primary tumor masses, for example in cases of prostate cancer (Petrelli et al., 2014).
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Of course, the location of tumor site must be known for surgery
to be effective, which is not always possible, especially in cases
where cancers have become invasive or metastasized to different
organs. Smart nanomedicine can enhance efficacy of traditional
surgical procedures through advances in lymph node mapping
(Ravizzini et al., 2009; Erogbogbo et al., 2011; Rubio et al., 2015)
and intraoperative image-guided surgery to achieve complete
oncological resection (Bradbury et al., 2013; Zheng et al., 2015;
Sun et al., 2017). Further, novel approaches such as NP-mediated
phototherapy of non-resectable or residual tumor margins can
potentially improve curative rates in several cancer types, for
example, thoracic malignancies (Keereweer et al., 2011; Bradbury
et al., 2013; Lee et al., 2015; Locatelli et al., 2015; Hofferberth
et al., 2016; Owens et al., 2016). Theranostic nanomedicine
(combination of diagnostic and therapeutic entities into a single
platform) can potentially improve outcomes in the post-operative
settings as well (Feng et al., 2020). Synergism of precision surgery
and nanomedicine has been explored in depth in other excellent
reviews, and thus the intersection of nanomedicine with surgical
oncology is not a main focus of this review (Singhal et al., 2010;
Wang et al., 2019).

By contrast, chemotherapy, ERT and immunotherapy are
minimally invasive options, and chemotherapy in particular is
now a hallmark of modern cancer treatments (Schirrmacher
et al., 2003). However, basic ERT and chemotherapy often pose
the risk of damage to benign body cells, causing toxicity and
undesirable side effects to the patient, accompanied by very
modest treatment outcomes. In regards to the problem of non-
specificity with chemotherapy, advances in the multidisciplinary
fields of chemistry, biomedical engineering, materials sciences,
biophysical, and biochemical sciences have enabled development
of novel targeted therapies to improve drug formulations and
delivery, as well as overcoming drug resistance (Peer et al.,
2007). ERT has benefitted from multidisciplinary advances in
irradiation techniques and effective nanoscale radiosensitizers
that ensure accurate dose distributions that spare normal
tissues. Immunotherapy, on the other hand, has shown
mixed results, with efficacy varying drastically from patient
to patient and among different cancer types. Nanotechnology
has benefitted immunotherapy through improved delivery of
immunomodulatory compounds that induce local/systemic anti-
tumor immunity or have a tumor priming effect (Martin et al.,
2020). Furthermore, high-performance combinations of these
fundamental pillars themselves or with other emerging treatment
modalities afforded by nano-engineering promises significant
implications across preclinical and clinical settings (Kobayashi
et al., 2010).

In this work, we provide an overview of the recent research
advances in the field of nanotechnology that have dramatically
impacted the pillars of cancer treatment, and discuss the
opportunities and challenges in these emerging areas. We begin
by reviewing advances in targeted drug delivery system, focusing
on the use of NPS in stimuli-responsive chemotherapy, such
as pH, enzyme, ROS, and hypoxia-sensitive systems. We then
move to another traditional pillar of cancer treatment: ERT,
and review the uses of nanotechnology within ERT, paying

special attention to the ability of nanotechnology to combine
ERT with other types of therapy, including both chemotherapy
and immunotherapy. Lastly, we review exciting advances in the
newest pillar: immunotherapy, describing how nanotechnology
may improve therapies targeted to both the innate and adaptive
immune system, including nanovaccines, innate immune cell-
activation, and immune checkpoint inhibition.

TARGETED CHEMOTHERAPY AND DRUG
DELIVERY SYSTEMS

The inability of traditional chemotherapy drugs to distinguish
cancer from self and suboptimal pharmacokinetics, pose several
complications to cancer treatment. Chemotherapy can result
in cardiomyopathy (Shakir and Rasul, 2009; Kumar et al.,
2012; Higgins et al., 2015), neuropathy (Kannarkat et al., 2007;
Windebank and Grisold, 2008), and nephrotoxicity (Weiss and
Poster, 1982; Hanigan and Devarajan, 2003), causing significant
concerns for patient morbidity and mortality. NPs have a high
surface area to volume ratio which makes them efficient in use
for drug loading and delivery (Singh and Lillard, 2009) and
have been recognized as a promising approach to selectively
target the tumor site by passive [enhanced permeability and
retention (EPR) effect (Torchilin, 2011)] or active targeting
(Byrne et al., 2008) approaches, to reduce normal tissue
uptake and undesirable side-effects of chemotherapeutics. Passive
targeting exploits characteristic features of tumors, particularly
leaky vasculature, to enhance the accumulation of drug-loaded
NPs in the tumor. Active targeting approaches achieve enhanced
drug delivery by conjugating drug-loaded NPs with moieties that
specifically bind to receptors overexpressed on target cells, such
as proteins, polysaccharides, and other small molecules (Yoo
et al., 2019). Several recent reviews describe these paradigms
in detail (Byrne et al., 2008; Bazak et al., 2015). Furthermore,
external stimuli such as temperature, light and magnetically-
guided delivery and release of chemotherapeutics are emerging
strategies that promise significant advances in targeted drug
delivery (Dai et al., 2017). For more in depth review stimuli-
responsive drug delivery systems, readers are referred to other
more detailed reviews (Ruoslahti et al., 2010; Mura et al., 2013;
Zhou L. et al., 2018).

Despite being promising, the final outcomes of such strategies
are severely influenced by the intrinsic physiological factors
within the tumor. Hence, smart nanomedicine approaches have
focused on developing NPs carefully engineered to specifically
harness the unique tumor microenvironment (TME) to increase
the specificity and efficacy of the treatment. There are several
distinct physiological features of the TME that can be exploited
by NPs for improved chemotherapy outcomes, including acidic
pH, reactive oxygen species (ROS), overexpression of certain
enzymes, and lack of intratumoral oxygen or hypoxia. In the
following sections, we highlight promising TME-responsive
NPs that offer a universal approach for anti-cancer therapy
by targeting the genral physiological abnormalities found in
all tumors.
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pH-Responsive Nanosystems
The body varies considerably in pH: physiological pH is ∼7.4,
while that at the tumor site ranges from pH 5.7–7.8 (Gao
et al., 2010), due to altered metabolism (glycolysis) and hypoxia
resulting in lactic acid formation (Feron, 2009; Danhier et al.,
2010). This known physiological difference allows for the
development of pH-sensitive nanocarriers that can release their
cargo in a more targeted fashion. These systems generally rely
on change in structure or size upon exposure to acidicity, or
the breaking of a bond sensitive to the acidic pH, which allows
for controlled release of the cargo drug at the tumor site (Gao
et al., 2010; Tao et al., 2018). pH sensitivity can be conferred
to NPs through the use of acid-labile moieties (Li et al., 2016).
For example, platinum pro-drug conjugated polymeric NPs form
large (∼100 nm) nanoclusters (NC) in physiological pH that
enhances their accumulation at the tumor site through prolonged
blood circulation and EPR effect (Li et al., 2016). On exposure
to acidic pH, an amide bond in cleaved, and NCs release small
polyamidoamine prodrug dendrimers (∼ 5 nm) that facilitates
greater tumor penetration and cellular internalization. Another
redox-responsive moiety that has been used to respond to high
concentrations of glutathione is poly(disulfide amide) (PDSA)
(Kong et al., 2019). Other examples of pH sensitive moieties used
to develop acidosis-responsive NPs include acetals, hydrazones,
anhydrides, and Schiff bases (He et al., 2013; Zhang et al., 2016).

Multifunctional inorganic NPs have also been designed for
pH-responsive imaging and drug delivery applications. For
example, Yang et al. reported a novel biodegradable hollow
MnO2 nanocarrier (H-MnO2) co-loaded with chemotherapeutic
doxorubicin (DOX) and a photosensitizer chlorin e6 (Ce6),
utilizing pH sensitivity for both specific imaging and on-
demand drug release (Yang et al., 2017). The NPs were stable at
neutral pH but exhibited time-dependent degradation behavior
in increasingly acidic pH, from 6.5 to 5.5 (Figure 1A), resulting
in enhanced release of both DOX and Ce6 (Figure 1B). pH-
responsiveness of the NPs derived from reaction with either
H+ ions or glutathione present in the TME. H- MnO2

NPs enabled tumor-specific magnetic resonance (MR) imaging
(Figure 1C) as well as efficient drug release, which translated
to greatly reduced tumor burdens when coupled with Ce6-
enabled photodynamic therapy (PDT) (Figure 1D). Of note, H-
MnO2 triggered hypoxia alleviation in the tumor resulted in
enhanced combination chemo-PDT efficacy as well as reversal
of immunosuppressive TME. When further combined with
immune checkpoint inhibitors, the pH-responsive chemo-PDT
by H-MnO2 demonstrated effective abscopal effect by not only
inhibiting the growth of primary tumors, but also of distant
tumor sites that were not irradiated with the laser. The work
highlights a multi-pronged approach to tumor eradication by
pH responsive NPs and makes a compelling case for exploring
experimental therapeutic approaches in conjunction with the
established paradigms for more effective outcomes, that is
desirable for both researchers and patients.

Enzyme-Sensitive Nanosystems
The overexpression of different enzymes in tumors has
been exploited to develop smart microenvironment-responsive

nanomedicine. Tumors are characterized by elevated levels of
enzymes such as galactosidases, phospholipases, cathepsins, and
matrix metalloproteinases (MMPs) (Kessenbrock et al., 2010; Cal
and López-Otín, 2015; Zhang et al., 2019). MMPs in particular,
have been widely harnessed to develop enzyme-responsive
drug delivery systems owing to their involvement in signaling
pathways important for tumor cell growth and migration
and apoptosis (Kessenbrock et al., 2010). Conveniently, one
substrate of MMPs is gelatin, which is biocompatible and non-
immunogenic (Xu et al., 2013). Exploiting this, the authors
prepared mesoporous silica nanoparticles (MSNs) which were
coated with a gelatin matrix, then loaded with DOX (MSN-
Gel-DOX) (Xu et al., 2013). The gelatin matrix prevented
premature release of DOX, and on exposure to MMP-9
in the TME, was degraded, allowing for enhanced DOX
release. This was confirmed in vitro where MMP-9 triggered
increased DOX release from the MSN-Gel-DOX platform in
colon carcinoma cells, as well as in vivo where the as-
developed nanoplatform showed significantly decreased tumor
volumes in HT-29 xenografts when compared to DOX alone.
Importantly, MSN-Gel-DOX depicted lower systemic toxicity in
mice compared to free DOX administration, highlighting the
advantage of rationally-designed nanomedicine approach over
conventional chemotherapy.

Highlighting the possibility for multimodal agents, Wang
et al. developed a cisplatin polyprodrug nanoplatform for
cascade photo-chemotherapy, through co-assembly of near
infrared dye, indocyanine green (ICG) and polyethylene glycol
(PEG) moieties, with repeating cathepsin-B degradable peptides
and cisplatin prodrug units [ICG/Poly(Pt); Figure 2A] (Wang
W. et al., 2018). Cathepsin B is a cysteine protease usually
present in lysosomes that has been shown to be present
in increased levels in tumors, particularly those that are
metastatic and invasive (Gondi and Rao, 2013). In the paper
noted, upon exposure to cathepsin B, the nanoplatform was
degraded, resulting in the cascade chemotherapy beginning
with release of ICG and cisplatin prodrug (Figure 2B). Further,
irradiation with 808 nm light resulted in formation of ROS
and hyperthermia for phototherapy (mediated by ICG) which
promoted subsequent uptake of the cisplatin prodrugs to the
cytosol and resulted in enhanced apoptosis in cathepsin B
positive A549 cells (Figure 2C) in vitro. Enzyme-responsive
treatment efficacy was also observed in vivo, where ICG/Poly(Pt)
+ laser treatment demonstrated higher survival rates in in
resistant A549/DDP mice compared to untreated controls, or
mice treated with only Pt, only cisplatin, or free ICG+laser
(Figure 2D).

A major concern for enzyme-responsive treatment is the
heterogenous expression of target enzymes in different cancer
types. As the exploration of the TME continues, a better
understanding of the expression patterns of enzymes at tumor
sites will enable effective and precise enzyme-responsive drug
delivery systems. It is also expected that newer and more
universally expressed enzymes may discovered that may be
exploited by nanotechnology for drug delivery. For a deeper
overview of the current knowledge and future perspectives in
the field, readers are directed to these excellent reviews on
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FIGURE 1 | (A) pH-dependent nanoparticle decomposition of hollow MnO2-PEG nanoparticles dispersed in solutions of different pH (7.4, 6.5, and 5.5) determined by

the absorbance of MnO2. (B) Percentages of released Ce6 and DOX from H-MnO2-PEG/C&D over time in the presence of 10% fetal bovine serum (FBS) at different

pH values. (C) In vivo axial T1-MR images of a 4T1- tumor bearing mouse taken before and 24 h post i.v. injection of H-MnO2-PEG/C&D. (D) Tumor growth curves in

different groups after various treatments as indicated. Chemo-PDT treatment after injection of pH-responsive H-MnO2-PEF/C&D nanoparticles depicted most

significant reduction in tumor volumes. With permission from Yang et al. (2017). p values were calculated by Tukey’s post-test (***p < 0.001, **p < 0.01, and

*p < 0.05).

enzyme-stimulated drug delivery systems (de la Rica et al., 2012;
Mu et al., 2018).

ROS-Responsive Nanosystems
The physiology of the tumor site is notable also for the elevated
presence of ROS, a byproduct of several physiological processes
such as oncogene activation, metabolism, and mitochondrial
dysfunction, that has been associated with abnormal cancer cell
growth (Trachootham et al., 2009). Interestingly, NPs may also
be used to selectively increase the ROS concentration within
the tumor site to a level toxic to the cells, though this is not
a focus of our discussion of ROS-mediated therapy (Ji et al.,
2019; Kong et al., 2020). Rather, we focus here on endogenous
ROS sensitivity. Several types of NPs have been recognized as
promising for treatment of ROS-related diseases, most notably

cerium oxide, carbon, and manganese NPs (Ferreira et al.,
2018). Of these, ceria (cerium dioxide) NPs have been the most
widely explored for cancer owing to their biocompatibility and
antioxidant behavior (Wason and Zhao, 2013).

Endogenous ROS exploitation for drug delivery has been
achieved through modifying MSNs with hydrophobic phenyl
sulfide (PHS) moieties which protect the nanopores from
being wetted by water and thereby inhibits premature release
of drugs, such as DOX. Conversely, under the stimulation
of endogenous ROS, the PHS groups are oxidized and the
nanopores are wetted, resulting in enhanced DOX release (Cheng
et al., 2017). Although confined to in vitro studies only, the
system represents an excellent example of nanoengineering
approaches to design simple but effective stimuli-responsive
drug delivery nanomedicines. ROS-responsive NPs have also
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FIGURE 2 | (A) Schematic illustration of Enzyme-Responsive Polyprodrug Nanoplatforms, composed of ICG and cisplatin polyprodrug amphiphiles tethered with

repeating cathepsin-B degradable GFLG peptides, PEG-b-P(Pt-co-GFLG)-b-PEG. (B) In vitro Pt release under different treatment conditions: (i) pH 7.4 without papain

(physiological condition), (ii) pH 5.5 with papain, simulating the acidic and enzymatic condition of lysosomes, (iii) pH 5.5 with papain in the presence of a papain

inhibitor, and (iv) pH 5.5 with papain followed by GSH treatment at pH 7.4, mimicking the lysosomal escape into the reductive cytosolic environment. (C) Fluorescence

images of cathepsin B positive A549 cells and cathepsin B negative L-O2 cells upon incubation with ICG/Poly(Pt) after irradiation with 808 nm, 1 W/cm2, 5min. Viable

cells were stained with green Calcein-AM, while dead and late apoptotic cells were stained with red PI. Scale bar: 40 um. (D) Survival curves of resistant A549/DDP

cancerous mice after cascade photo-chemotherapy. Figure adapted with permission from Wang W. et al. (2018).

been designed by exploiting thioketal (TK) containing linkers
in an elegant study by Xu et al. (2017b). The authors designed
a polyprodrug platform from a model drug mitoxantrone
(MTO) polymerized with TK linkers and polyethylene glycol.
Further tumor specificity was endowed via integrin-targeting
RGD ligand. Self-assembled NPs demonstrated enhanced MTO
delivery and tumor inhibition in vivo in LNCaP prostate tumors,
known to have high ROS concentration, compared to free MTO
drug, as well as NPs without ROS-sensitive TK linkers (Xu et al.,
2017b).

Since the levels of ROS change with tumor status, an
innovative strategy was used to combine chemotherapeutic
DOX and photodynamic agent Ce6 in polymeric NPs, capable
of in situ ROS generation and enhanced anti-cancer therapy
(Cao et al., 2018). When irradiated with 660 nm laser, ROS
generated by the activation of Ce6 resulted in cleavage of
the TK linker, causing shrinkage of the NP backbone and
enhanced release of DOX. Compared to control, the treatment
groups demonstrated remarkable therapeutic outcomes in vivo,
highlighting the promising potential of remotely-controlled
light-activated targeted drug delivery systems. Notably, TK-
PPEs administered without internalized Ce6 did not demonstrate
ROS-responsiveness, possibly owing to the lower intrinsic ROS
levels in the tumor. The approach was mirrored by another
group, who reported TK linked, PEGylated NPs with a Ce6
photosensitizer loaded with paclitaxel (PTX; TK-Ce6-PTX NPs)
(Li et al., 2018). In vivo studies revealed prolonged circulation
time of PEGylated NPs. TK-Ce6-PTX NPs with laser irradiation
showed increased tumor tissue concentration of PTX compared
to TK-NP-Ce6-PTX-NPs without irradiation, and had little PTX
uptake in off-target organs. Overall, this strategy overcomes

tumor heterogeneity and can be effective for highly targeted
ROS-mediated multimodal therapy in tumors that typically
demonstrate low ROS concentrations.

Hypoxia-Responsive NPs
Hypoxia is an important biomarker of aggressive tumors, which
is widely associated with poor clinical outcomes for the three
pillars of cancer treatment (Harris, 2002). Hypoxia is a regulator
of numerous pathways that are critical to tumor development
and maintenance, such as angiogenesis and metastasis, though
it may also induce cell death by apoptosis (Harris, 2002).
Resulting from accelerated metabolism or deficient oxygen
delivery, hypoxic TME provides a reducing environment with
increased presence of nitroreductases and azoreductases (Cui
et al., 2011; Liu et al., 2017). Thus, targets of these species such
as nitroaromatic, quinone, and azobenzene derivatives have been
exploited as hypoxia-sensitive moieties in the development of
TME-responsive nanomedicine (Cui et al., 2011; Liu et al., 2017).
For example, hypoxia-activated prodrugs (HAPs), which are non-
toxic compounds designed to undergo reduction to cytotoxic
compounds in the hypoxic environment, have been widely
reported for cancer therapy (Hunter et al., 2016). A number
of HAPs have been interrogated in clinical trials with limited
efficacy that has been attributed to various factors, including poor
extravascular transport and suboptimal micropharmacokinetic
properties (Jackson et al., 2019). Thus nanocarriers have been
designed to improve the accumulation of HAPs at the tumor sites
(Liu et al., 2015a).

More innovative strategies have utilized endogenous hypoxia
sensitivity as a trigger to enhance drug delivery. Son et al.
reported a carboxymethyl dextran (CMD) NP containing a
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hypoxia-sensitive azo moiety as well as black hole quencher
3 (BHQ3) dye (Son et al., 2018). Under hypoxic conditions,
CMD-BHQ3-NPs were reduced to aniline derivative by tumor
intrinsic reductases. These NPs were also loaded with DOX
and demonstrated increased drug release in hypoxic conditions
compared to normoxic conditions. In vivo, the NPs showed high
tumor accumulation, demonstrating potential for the system to
be used for hypoxia-induced drug delivery. Later, a nanosystem
was synthesized with a nitro-imidazole derivative conjugated
to CMD, forming hypoxia-responsive NPs (HR-NPs) that were
loaded with DOX (Thambi et al., 2014). On exposure to hypoxic
conditions, the nitro-imidazole group of the HR-NPs was
reduced to aminoimidazole, successfully demonstrating hypoxia-
responsiveness, and the NPs showed increased DOX release
compared to NPs in the normoxic condition. In vivo studies
showed high accumulation of the HR-NPs in the tumor site,
and slowed tumor growth compared to mice treated with saline
or free DOX. The use of a nitroimidazole derivative to create
hypoxia-responsiveness has also been seen elsewhere (Ahmad
et al., 2016).

Recently, increased attention has been paid to the potential
of combination of PDT and hypoxia-responsive nanoplatforms
(Qian et al., 2016), again highlighting the importance of
multifaceted nanomedicine that can target one tumor in many
ways to improve therapeutic outcomes. Along these lines, there
is room for hypoxia-responsive or hypoxia-alleviating NPs that
can also result in enhanced ERT, which is known to be adversely
affected by hypoxia(also discussed further in the next section)
(Rockwell et al., 2009). Using hypoxia-sensitive NPs followed
by hypoxia alleviating or radiosensitizing NPs may present an
effective strategy for multipronged attack on the tumor site in
future explorations.

A consideration for all stimuli-responsive systems discussed
thus far, is the ability of the NP to maintain the full dose of drug
with which it is loaded during its transport to the tumor site, and
release the full dose upon exposure to the TME. In other words,
NPs need to maintain their specificity for only TME triggers, and
respond only when necessary, to avoid undesirable side effects
which have become a hallmark of traditional chemotherapy. As
our knowledge of tumor physiology as well as tumor vasculature
and how it relates to the TME triggers improves, so does the
potential for improvement in stimuli-responsive nanomedicine.

NANOTECHNOLOGY FOR ENHANCING
EXTERNAL RADIATION THERAPY (ERT)

ERT is one of the long-standing pillars of cancer therapy,
performed either alone in cases where surgery is not possible,
or in conjunction with surgery or chemotherapy. Adjuvant
radiotherapy is a standard in clinical care, whereby residual
tumor margins after debulking surgery are irradiated to prevent
recurrence and relapse (Coffey et al., 2003). ERT utilizes high
energy ionizing beams to directly target the tumor site (Haume
et al., 2016). This poses short term risks such as skin irritation
as well as long term risks such as fibrosis and atrophy to nearby
healthy tissue (Bentzen, 2006). In addition to this complication,

there is evidence to show that hypoxic areas within the tumor
site are more resistant to standard ERT than non-hypoxic areas
(Rockwell et al., 2009). Nanotechnology can play an integral role
in improving radiotherapy through improved treatment delivery,
combination with other treatment modalities and companion
diagnostics (Erdi et al., 2002).

Nanomaterials with high photoelectric cross-sections have
been shown to amplify effective radiation dose locally at
the tumor site, thereby significantly reducing unwanted side
effects and overexposure to radiation (Goel et al., 2017). In
an noteworthy study, Shen et. al. reported a biocompatible,
renal-clearable nanosystem composed of PEGylated tungsten-
gallic acid coordination polymers (W-GA-PEG CPNS) ∼5 nm
in diameter (Figure 3A) (Shen et al., 2017). 64Cu-labeled W-
GA-PEG CPNS demonstrated significant uptake in 4T1 tumor
bearing mice within 4 h post-injection, as revealed by positron
emission tomography (PET, Figure 3B) along with rapid renal
clearance and little long-term retention (Figure 3C). Mice
treated with W-GA-PEG CPN combined with RT demonstrated
significantly reduced tumor volumes and prolonged survival
compared to mice treated with RT alone (Figures 3D,E). Given
that many of the nanoplatforms researched for combination with
RT involve heavy metals, this study addresses a major concern in
improving biocompatibility and natural clearance to avoid long
term toxicity in cancer treatment. Nanoformulations have also
been designed to improve the delivery of radiosensitizers such
as Wortmannin, a potent inhibitor of DNA-dependent kinases,
limited by its insolubility and poor pharmacokinetic profule
(Karve et al., 2012). Uses of nanomaterials in radiosensitization
have been widely explored, becoming the subject of several
reviews (Kwatra et al., 2013; Mi et al., 2016; Goel et al., 2017; Song
et al., 2017).

Another relevant target for NP intervention to improve ERT
is modulating the hypoxic center that exists within solid tumor
sites, as was alluded to previously (Goel et al., 2017; Graham
and Unger, 2018). Anti-cancer effect of ionizing radiations is
dependent on the generation of ROS, which is turn depends
of the oxygen availability in the TME. Thus, hypoxic centers
cause tumor cells to become radiation-resistant and decrease the
efficacy of ERT (Moulder and Rockwell, 1987). Nanotechnology
has enabled a two-pronged attack on this issue: nanocarriers
loaded with hypoxia-activated drugs have been designed for
combinatorial chemo-radiation therapies. A recent noteworthy
study reported a rattle-type nanostructure comprised of an
upconversion nanoparticle core with a mesoporous silica shell
(UCHM) (Liu et al., 2015b). UCHMs loaded with the hypoxia-
sensitive agent tirapazamine (TPZ) demonstrated complete
tumor remission when combined with RT. On the other hand
control mice treated with RT or TPZ alone saw slowed tumor
growth initially, which accelerated significantly over time. This
effect was also seen in the mice treated with UCHMs and RT,
while groups treated with TPZ and RT saw significantly decreased
tumor growth.

Nanomaterials have also been engineered to alleviate
hypoxia and reoxygenate the tumor microenvironment through
enhanced oxygen delivery (Zhou Z. et al., 2018) or in situ oxygen
production (Prasad et al., 2014). An example of the latter strategy
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FIGURE 3 | (A) Schematic illustration for the synthesis and structure of W-GA-PEG CPNs. (B) In vivo PET images of 4T1-tumor-bearing mice after i.v. injection of

64Cu-W-GA-PEG CPNs at different time points. The tumors are indicated with yellow arrows. (C) The W levels in urine and feces of healthy mice after i.v.

administration of W-GA-PEG CPNs (dose = 40 mg/kg) collected at different intervals. (D) Tumor growth curves and (E) survival curves of animals treated with

W-GA-PEG CPN or radiotherapy or both (five mice per group; irradiation dose of X-ray (RT): 6Gy; injection dose of W-GA-PEG CPNs: 20 mg/kg). Figures adapted

from Shen et al. (2017).

comes from Prasad et al. who developed manganese dioxide
(MnO2) nanoparticles conjugated with albumin that react with
endogenous H2O2 to produce O2, with the beneficial side effect
of increasing the local pH to combat tumor acidosis, previously
mentioned as a hallmark of the TME (Prasad et al., 2014). When
injected intratumorally into EMT6 tumor bearing mice, the

MnO2-Albumin NPs caused 45% increase in saturated O2 levels
at tumor periphery compared to mice without NP treatment. In
the future, the ability of NPs to alleviate the hypoxic center may
be employed to sensitize the tumor to lower doses of radiation, so
as to achieve an enhanced treatment with even further reduced
side effects.
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The ability to extend beyond the three pillars and combine
different therapies into one system is one of the biggest
advantages that nanomedicine brings to traditional treatment
regimes. In an exciting study, nanoscale metal-organic
frameworks (nMOFS) were harnessed to combine radiotherapy-
radiodynamic therapy and immune checkpoint blockade for local
and systemic tumor elimination (Lu et al., 2018). The authors
synthesized hafnium nMOFS, which absorbed X-Ray photons
that directly excited a coordinated porphyrin photosensitizer.
This resulted in both radiotherapy and the production of singlet
oxygen species for enhanced radiodynamic therapy even at
low doses. To achieve dual radiotherapy and immunotherapy,
the nMOFs were loaded with an inhibitor of indoleamine 2,3,
dioxygenase, an immunoregulatory enzyme establishes immune
tolerance in the TME. The study ultimately demonstrated in vivo
regression of primary tumors as well as untreated distant tumors
via abscopal effect. Importantly, the authors demonstrated
systemic tumor rejection when re-challenged, indicating the
potential of X-radiation induced in situ vaccination. Overall,
this study serves as a key example of innovative and effective
nanomedicines that synergistically combine multiple pillars of
cancer therapy with promising outcomes.

NANOMEDICINE APPROACHES IN
IMMUNOTHERAPY

The immune system has limited natural ability to fight
cancer, and the TME is often marked by immunosuppressive
and immune-evasive mechanisms (Couzin-Frankel, 2013).
Immunotherapy seeks to re-train the body’s immune system to
recognize cancer as non-self and appropriately respond, without
triggering undesirable autoimmune processes (Pardoll, 2012).
There are several described ways of initiating immunotherapy,
including T cell priming and therapy (Schirrmacher et al., 2003),
antigen release, and checkpoint inhibition (Pardoll, 2012), and
nanotechnology has interacted with all of these domains (Liu
et al., 2018; Goldberg, 2019; Irvine and Dane, 2020).

NPs have been used to deliver immunostimulatory agents,
antigens, cytokines, chemokines, nucleotides, and toll-like
receptor (TLR) agonists that target various immune cells (Fan
and Moon, 2015; Da Silva et al., 2016). In other cases, NP design
has been carefully modulated to help mount anti-tumor immune
responses through their material compositions, geometries, or
surface modifications (Moon et al., 2012; Wang J. et al., 2018).

In cases where adaptive immune responses cannot be
mounted, nanomedicine approaches have been employed
to trigger the innate immune system. In this regard, cancer
nanovaccines and more recently nanotherapies activating
anti-tumor phagocytes (macrophages) and NK cells are
particularly noteworthy (Yuan et al., 2017). For example, a
multivalent nanobioconjugate engager (mBiNE) was developed
to simultaneously target human epidermal growth factor 2
(HER2), which is overexpressed in certain breast cancers,
and calreticulin, a prophagocytic protein (Yuan et al., 2017).
The mBiNe led to enhanced phagocytosis of cancer cells and
enhanced antigen presentation by macrophages in HER2 positive

cells. In vivo studies showed thatmBiNE had enhanced antitumor
efficacy in HER2 positive tumors compared to HER2 negative
tumors. Treatment with mBiNE led to increased presence of
macrophages and T cells in the tumor site. Interestingly, mice
treated with mBiNE also demonstrated resistance to re-challenge
and enhanced antitumor immunity in both HER2 negative and
HER2 positive tumors. Further, cancer nanovaccines based on
dendritic cells (DC vaccines) and NK cells have also shown
significant promise in preclinical studies. The development
of nanovaccines is a highly active area of research, covered
extensively in excellent prior reviews (Irvine et al., 2015; Luo
et al., 2017).

An immunotherapy strategy focusing on the adaptive immune
system, immune checkpoint inhibition (ICI), has demonstrated
excellent therapeutic outcomes and has now become a subject
of intense research both in the clinical and preclinical settings
(Alsaab et al., 2017). Among many targets, ICI may exploit
the unusually high density of the protein, programmed death
ligand (PD-L1) on the tumors, that orchestrates immune evasion
by inhibiting cytotoxic lymphocyte (CTL) function. Anti-PD-
L1 antibodies have shown significant clinical benefit in response
rate, survival, and side effects, making it popular as of late (Alsaab
et al., 2017). However, ICI has been shown to be effective in
only a small subset of patients, and only against certain cancer
types, calling for innovation (Alsaab et al., 2017). An interesting
study utilized the PD-L1 checkpoint inhibition strategy along
with an aldehyde-functionalized dextran superparamagnetic iron
oxide NPs, which were conjugated with a checkpoint inhibitor
and T cell activators. The NPs could be targeted to the
tumor site using an external magnetic field, and once there,
modulated the immunosuppressive environment by increasing T
cell proliferation as well as ICI (Chiang et al., 2018). This created
a twofold immune response that inhibited the tumor growth in
different tumor models in vivo; 4T1 breast cancer and CT-26
colon cancer, providing a promising avenue for future research
in nanotechnology and immunotherapy (Chiang et al., 2018).
Nanotechnology may also combine delivery of PD-L1 antibodies
with PDT for enhanced response, as was done with non-
toxic core-shell NPs (Duan et al., 2016). Apoptosis/necrosis of
tumor cells as well as disrupted vasculature after PDT increased
the tumor immunogenicity by activating both the innate and
adaptive immune systems in the TME. When combined with
the PD-L1 blockade, not only localized but systemic antitumor
response was successfully mounted in syngeneic breast cancer
models (Duan et al., 2016).

ICI targeting cytotoxic T-lymphocyte-associated antigen 4
(CTLA4) has also been thoroughly studied and enhanced by
nanotechnology. Mechanism of action of CTLA4 is under intense
research. CTLA4 has been shown to outcompete T cell co-
stimulatory receptor, CD28 to bind CD80 and CD86 ligands, and
creating an immunosuppressive environment which is conducive
to tumor growth (Pardoll, 2012). It also sequesters CD80 and
CD86 ligands from binding CD28 moeities on the surface of T
cells, thus blocking the co-stimulatory signal required for T cell
activation, as well as actively removing these ligands from APC
surface. CTLA4 blockade serves to enhance CD4+ T cell activity
as well as reverse the immunosuppressive environment normally
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FIGURE 4 | (A) Schematic illustration of PLGA-ICG-R837-based PTT and anti-CTLA-4 combination therapy to inhibit tumor growth at distant sites. (B) Morbidity-free

survival of different groups of mice with metastatic 4T1 tumors after various treatments to eradicate their primary tumors: (1) Surgery, (2) Surgery+antiCTLA4, (3)

Surgery+ PLGA-ICG-R837, (4) PLGA-ICG-R837+laser, (5) Surgery+ PLGA-ICG-R837+antiCTLA4, and (6) PLGA-ICG-R837+ laser + antiCTLA4. (C) CD8+ CTL:

Treg ratios and CD4+ effector T cells: Treg ratios in the secondary tumors upon various treatments. Both ratios were significantly enhanced after combination

treatment with PLGA-ICG-R837-based PTT and anti-CTLA4 therapy. Figure adapted with permission from Chen et al. (2016).

maintained by an increased presence of Treg cells. CTLA4-
blocking antibodies have been an area of ongoing research and
were the first class of immunotherapeutics to be FDA approved
(Pardoll, 2012). However, as with other ICI strategies, CTLA4-
based treatment shows heterogeneous responses. Recently, PLGA
NPs combining ICG and the toll like receptor ligand R387
(PLGA-ICG-R387) were used in combination photothermal-
immunotherapy, such that the photothermal ablation triggered
the release of tumor-associated antigens, which in combination
with anti-CTLA4 checkpoint blockade, resulted in strong
immunological response both locally and at distant tumor sites
(Figure 4A) (Chen et al., 2016). This response led to increased
DC maturation in vitro and in vivo, as well as demonstrated
slowed growth of off-target tumors (Figure 4B). In a long-
term immune-memory study, secondary tumors that were re-
inoculated 40 days after treatment with the PLGA-ICG-R387 and
ablation, showed increased levels of T-cells, IFN-δ, and TNF-
α and delayed tumor growth compared to tumors that had

been re-inoculated 40 days post-surgery alone (Figure 4C). This,
along with other notable work using upconversion NPs triggered
by NIR light to combine CTLA4 checkpoint blockade with
PDT (Xu et al., 2017a), shows the potential for multifunctional
NPs to effectively consolidate treatment options while delivering
improved therapeutic outcomes.

The use of immunotherapy in cancer treatment is a recent and
exciting development. Much is left to be discovered about the
role of the natural immune system in preventing, managing, and
fighting cancer. As more is learned about immunotherapeutics,
the uses of nanotechnology in the domain will almost certainly
evolve beyond those discussed here, especially with regards to
innate immunity and nanovaccines. Further, nanotechnology
may allow for more streamlined combination of immunotherapy
with other modalities such as chemo or radiation therapies as
well as image-guided stratification of immunologically “hot” and
“cold” tumors, all of which can work together to improve patient
outcomes in the future.
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FIGURE 5 | Schematic illustrating the potential of nanotechnology in advancing the pillars of modern cancer treatment toward effective, affordable and accessible

personalized medicine to improve healthcare outcomes.

CONCLUSIONS AND FUTURE
PERSPECTIVES

The level of innovation demonstrated by nanotechnology, as
applied to the pillars of cancer treatment has been phenomenal in
the preclinical arena. As we have covered here, nanotechnology
both has the ability to improve the pillars individually, as well
as facilitate combination therapies with the ultimate goal of
improving clinical outcomes (Figure 5). Translation of these
novel strategies to the clinic, however, has not progressed in
accordance with the literature. In the clinical domain, this
innovation has been conspicuous by its absence, as doxil
and abraxane continue to dominate the clinical utility of
nanotechnology, accounting for > $1 B dollars in sale annually
(Grodzinski et al., 2019). While these figures are impressive,
there is much work to improve, particularly when the balance
of efficacy and safety are concerned. In terms of chemotherapy
and targeted drug delivery, while NPs have already been used
for drugs that are generally hydrophobic or otherwise display
poor pharmacokinetics in vivo, there is room for repurposing
drugs that have been previously rejected (or orphan drugs).
If appropriately formulated, NPs show significant promise in
making them viable options for treatment in the clinic.

As nanotechnology progresses from the research setting to
the clinical one, attention must be paid to the toxicity of not
only drugs themselves, but the delivery systems which are being

developed. Clinical translation of nanosystems depends on their
stability in circulation, ability to negotiate physiological barriers
to access the tumor site and their safety profile. This latter point
has significantly impeded the clinical successes of nanomedicine
so far. As such, NPs which can be cleared naturally by the body
or which degrade after treatment are desirable. It is important to
thoroughly characterize and deconstruct nanoparticle transport
and toxicity not only in the short term, but also long term.
Continued progress of nanofabrication methodologies provides
the potential for incorporating imaging labels onto therapeutic
nanomaterials to develop modular designs that enable non-
invasive delineation of nanoparticles kinetics in vivo in real time
(Goel et al., 2020). Better understanding of NP transport in
different animal models over longer timescales would function
not only to improve treatment outcomes, but also to help
anticipate long term off-target side effects during translational
studies. Avoiding cumulative buildup of NPs in the body is a
crucial long term consideration that remains an important hurdle
to overcome prior to nanomedicines becoming clinically and
commercially viable. Similar considerations are paramount in the
use of nanotechnology for radiation therapy.

Cancer immunotherapy is a rapidly evolving and highly
promising area of research, with great potential for improvement
with nanotechnology. NPs may be used in numerous contexts
encompassing both innate and adaptive immunity, as well as
potential cancer vaccines. The combination of immunotherapy
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and other therapies such as chemo or radiation therapies
facillitated ny nanotechnology may not only increase the efficacy
of treatment and overcome innate immunological “coldness” of
certain tumors, but also lead to more convenient administration
in the clinic. As immunotherapy grows, more emphasis may
be placed on individualized therapies, and the ability to
potentially combine a more general chemotherapeutic treatment
with an individualized immunotherapy could be exciting, both
weakening the tumor and specifically strengthening the host’s
immune response. Furthermore, given the systemic nature of
immunomodulatory therapies, particularly cancer nanovaccines
that are trafficked through the lymphoid structures, it is essential
that thorough biodistribution studies are performed at both
organ and cellular levels. As such, the role of integratedmultiscale
imaging methods is indispensable.

Finally, the versatility of nanotechnology in cancer requires
concerted efforts and interdisciplinary cooperation between
scientists, academics, clinicians and regulatory authorities.
Continued support from funding agencies and improved
cross-talk between academia and industry will be essential to

move cancer nanomedicine forward. While significant attention
is paid to improving nanomedicine design, it is equally important

to design rigorous clinical trials based on appropriate patient
selection and stratification, as well as identification of unique
avenues in cancer treatment that will benefit from integration
of nanotechnology.
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