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The metal-free cousins of metal-organic frameworks, covalent organic frameworks

(COFs), are a class of pre-designable crystalline polymers composed of light elements

and connected by strong covalent bonds. COFs are being given more and more

attention in the electrochemical sensor field due to their fascinating properties, such

as highly tunable porosity, intrinsic chemical and thermal stability, structural diversity,

large specific surface area, and unique adsorption characteristics. However, there are

still some key issues regarding COFs that need to be urgently resolved before they

can be effectively applied in electrochemical sensing. In this review, we summarized

recent achievements in developing novel electrochemical sensors based on COFs, and

discussed the key fundamental and challenging issues that need to be addressed,

including the mechanisms underlying charge transport, methods to improve electrical

conductivity, immobilization methods on different substrates, synthesis strategies for

nanoscale COFs, and the application of COFs in different fields. Finally, the challenges

and outlooks in this promising field are tentatively proposed.

Keywords: electrochemical sensor, covalent organic frameworks (COFs), electrical conductivity, nanoscale COFs,

conductive substrate, metal-covalent organic frameworks (MCOFs)

INTRODUCTION

Covalent organic frameworks (COFs), a new class of multifunctional porous crystalline materials,
are two- or three-dimensional (2D or 3D) porous crystalline materials built by light elements (C,
B, O, Si, and N) via strong covalent bonds (C-N, C=N, C=C-N, B-O) (Xue et al., 2017; Chen
et al., 2019; Wang and Zhuang, 2019; Zhu et al., 2019). Since the first report in 2005 by Cote
et al. (2005), COFs have attracted more and more attention due to their fascinating properties, and
many novel COFs have been synthesized (Waller et al., 2015; Lohse and Bein, 2018). Compared
with other materials, COFs have many unique properties, such as highly tunable porosity, large
specific surface area, unique adsorption characteristics, ordered channel structure, and intrinsic
chemical and thermal stability, which make them outstanding in many fields including separation,
gas adsorption, analysis, energy conversion and storage, and electrochemical sensing (Wu and
Yang, 2017; Wang J. et al., 2018; Zheng et al., 2019). Ordered network configuration and multiple
active acupoints give COFs a large adhesion surface, which is superior to 2D graphene nanosheets.
In comparison with another class of porous crystalline material MOFs, COFs have thermal and
chemical stabilities due to the involvement of covalent bonds (Li et al., 2020b; Yusran et al., 2020b).
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To ensure the growth of the crystalline structures, the
chemical reactions involved in the construction of COFs need
to be reversible to render the self-healing ability to repair
structural defects caused by mismatched covalent linkages.
Up to now, researchers have proposed six synthetic methods
for COFs, which refers to solvothermal, ionothermal, room-
temperature, mechanochemical synthesis, interfacial synthesis,
and microwave synthesis (Geng et al., 2020). Solvothermal
synthesis is one of the most common methods to fabricate
COFs, occurring in a sealed system at a specific temperature and
pressure (Chen et al., 2019). For example, BND-TFB COFs were
synthesized through the solvothermal method with improved
material quality and a shorter reaction time. Ordered and
amorphous microporous polytriazine networks were prepared
through ionothermal synthesis by the trimerization of nitriles in
a ZnCl2 melt at 400◦C (Vitaku and Dichtel, 2017). The material
exhibited a very large surface area that can be used for gas storage,
sensors, or catalyst carriers (Kuhn et al., 2008). TpBD-based
COFs were prepared via room-temperature synthesis, which is
an attractive way to construct COFs for the case of fragile organic
units or sensitive substrates (Yang et al., 2015). Mechanochemical
synthesis is a simple, economical, and green method in which
building blocks are mixed in a mortar and ground under ambient
conditions to yield the COFs (Geng et al., 2020). The interfacial
synthetic strategy is a novel and efficient method for fabricating
COF thin films with controllable thickness. For the very first
time, mesoscale covalent self-assembly was explored to fabricate
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self-standing crystalline porous thin films without defects at
the liquid-liquid (DCM-water bilayer) interface (Sasmal et al.,
2019). Microwave synthesis is a simple and efficient approach to
building COFs. The melamine-based porous polymeric network
SNW-1 was synthesized by a microwave-assisted synthesis route
(Zhang et al., 2012).

Electrochemical sensors work by reacting with analytes
to produce electrical signals which are proportional to its
concentration. A typical electrochemical sensor consists of
a sensing electrode (or working electrode) and a counter
electrode separated by a thin electrolytic layer (Karimi-Maleh
et al., 2019). Recently, electrochemical sensing has gained
extensive attention in multiple fields, such as pharmacy, clinical
diagnosis, environmental monitoring, and food safety, because
of its low cost, sensitive response, and simple operation (Yan
et al., 2019; Yang et al., 2019; Liang et al., 2020). COFs
have been widely exploited in electrochemical sensing due
to their unique properties (Liang et al., 2019a; Sun et al.,
2019a), which can improve the sensitivity of electrochemical
sensors. For example, COFs possess a highly ordered porous
structure, functional groups, and available holes, providing a
large active surface in which to load electroactive molecules.
In addition, their better biocompatibility also improves the
stability of the electrochemical sensor (Ding et al., 2014; Li
et al., 2020a). However, some key issues regarding COFs
need to be urgently resolved before they can be effectively
applied in electrochemical sensing. Herein, we present a critical
review on the recent advances of COFs and their application
in electrochemical sensors, with focus on the mechanism
and method/strategy for improving electrical conductivity, the
immobilization on different substrates, miniaturization, and
application in electrochemical sensors (Figure 1). The challenges
and outlooks toward COF-based electrochemical sensing are
also discussed. We hope that the review will guide readers to
design and develop COF-based materials for electrochemical
sensing applications.

IMPROVING THE ELECTRICAL
CONDUCTIVITY OF THE COFs

A topology design diagram can be used to guide the synthesis of
2D or 3D COFs in which the geometry of the selected organic
monomers determine the primary-order structure in either a

2D or 3D manner (Geng et al., 2020), as shown in Figure 2. In
2D COFs, planar building blocks are covalently connected in the
lateral crystallographic direction and further stacked together in
the vertical direction by van der Waals. By contrast, the design
of 3D COFs requires at least one building block to possess
Td or orthogonal geometry that controls the development
of the skeletons into a 3D structure. To ensure the growth
of the crystalline structures, the chemical reactions involved
in the formation of COFs need a certain reversibility which
creates the self-healing ability to repair structural defects (Huang
et al., 2016). However, the self-healing process is not sufficient,
resulting in abundant defects in COFs. In addition, the low
molecular conjugation of π-electrons cause electron localization.
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FIGURE 1 | Schematic illustration of COF-based electrochemical sensing.

The issues lead to the intrinsic poor conductivity of bulk COFs,
which limits their application in electrochemical sensing.

There are two mechanisms for charge transport in COFs:
hopping transport and ballistic (or band-like) transport
(Figure 3) (Xie et al., 2020). In hopping mode, the charge
carriers (electrons/holes) hop between isolated, non-bonded
neighbor sites (donor and acceptor sites), where the charge
carriers are localized. As for band transport, the charge carriers
are delocalized and continuous energy bands are formed.
Conductive COFs can be therefore categorized into two
categories: through space and through bonds (Meng et al., 2019).
Instead of a single bond connection including borate and imine
linkage, full annulation of building blocks through aromatic
linkages can promote efficient charge delocalization, suggesting
a promising strategy for conjugated 2D structure generation
to achieve a through-bond charge transport (Guo et al., 2013).
Through-space charge transport relies on maximizing orbital
overlap with lowered energy for charge transport through a
strategic choice of building blocks. For example, π-stacking was
explored to design COF-based materials with improved electrical
conductivity (Wan et al., 2011). The principal strategy to guide
the synthesis of conductive COFs is to obtain a highly conjugated
and crystalline structure with few defects.

The low intrinsic conductivity of COFs still imposes a great
challenge for their applications in electrochemical sensing (Meng
et al., 2019; Wu et al., 2019; Xu L. et al., 2019). This problem
could be overcome via the following methods and strategies
including doping with oxidants and guest molecules, template
synthesis, introducing conductive polymers,π-conjugated planar
2D structures, and the metalation of COFs.

The electrical conductivity of COFs can be improved by
designing high-supply electronic blocks with electron acceptor

FIGURE 2 | Basic topological diagrams for the design of 2D and 3D COFs.

Reproduced with permission from Geng et al. (2020). Copyright 2020,

American Chemical Society.

dopants. For example, the electrical conductivity of COFs could
be tuned by doping with iodine or TCNQ, resulting in high
conductivity up to 0.28 S/m (Cai et al., 2014). In addition, this
doping strategy is broad enough that it can be used to improve
the electrical conductivity of many kinds of COFs.

Template synthesis is another powerful method to improve
the conductivity of COFs on a conductive template surface.
COFs with highly ordered pore channels (COFTTA−DHTA) were
synthesized on an amino-functionalized carbon nanotube (NH2-
f-MWCNT) from TTA and DHTA via imine linkages (Sun et al.,
2017). The MWCNT@COFTTA−DHTA not only had electrical
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FIGURE 3 | Schematic diagrams of charge transport modes (band transport and hopping transport) (A) and pathways (B). Reproduced with permission from Calbo

et al. (2019). Copyright 2019, The Royal Society of Chemistry.

conductivity but also possessed excellent crystallinity, regular
pore channels, and a high surface area. The COFBTA−DPPD-
rGO composite was also synthesized by this method at room
temperature under ambient conditions (Xu L. et al., 2019).
Coupling the improved conductivity from rGO, COFBTA−DPPD-
rGO exhibited an enhanced electrochemical performance,
which might be attributed to the synergistic effect of the π-
conjugated COFBTA−DPPD being fully covered on the conductive
rGO surface.

Introducing a conductive polymer into the channel of
COFs can also increase its conductivity. PEDOT is one of
the most widely investigated conductive polymers because
of its excellent electronic properties and high stability. One
strategy includes electropolymerizing PEDOT into the pores
of redox-active 2D COF films (Mulzer et al., 2016). PEDOT-
modified COF films can accommodate high charging rates
(10–1,600C) without compromising performance and exhibit
10-fold current response relative to unmodified films and
stable capacitances for at least 10,000 cycles. However, the
disadvantages of electropolymerization and requirement of COF
films as a precursor make it difficult to scale up to high-
throughput production lines for practical application. Recently,
a novel method to introduce PEDOT to improve the electrical
conductivity of the COFs was reported by using an in-situ
solid-state polymerization inside the nanochannels (Wu et al.,
2019). The resulting PEDOT@AQ-COFs showed an electrical
conductivity value of 11 0 S/cm at room temperature and
a remarkably improved storage performance. This approach
will serve as a promising strategy for increasing the electrical
conductivity of COFs and extending the applications of
COF materials.

The fourth method is the molecular design strategy focusing
on planar 2D COFs, in which the formation of π-conjugated
sheets can promote the delocalization of charge, has yielded
metallic conductivities (Meng et al., 2019). A novel intrinsically
conductive 2D COF was synthesized through the aromatic
annulation of 2,3,9,10,16,17,23,24-octa-aminophthalocyanine

nickel (II) and pyrene-4,5,9,10-tetraone. The intrinsic bulk
conductivity of the COF material could be up to 0.0025 S/m,
and increased by 3 orders of magnitude upon I2 doping. In
addition, 3D electroactive TTF-based COFs were reported with
high crystallinity and large permanent porosity, in which these
TTF-based COFs were redox active to form organic salts that
exhibit outstanding electric conductivity (Li et al., 2019).

In order to further enhance the electric conductivity, metal
ions were introduced into the COFs lattice to form conductive
metal-covalent organic frameworks (MCOFs), which can be
synthesized through either direct synthesis or post-synthetic
metalation by using planar and large π-electronic macrocycles
as the building and paring units for the metal (Dong et al.,
2020; Xie et al., 2020). Compared with metal free COFs, MCOFs
not only have higher intrinsic conduction, but also exhibit
superior electrocatalytic activity due to the presence of a metal
component. 2D and 3D MCOFs have been prepared by using π-
electron rich building blocks, such as porphyrin (Lin et al., 2015),
phthalocyanine (Spitler et al., 2012), bipyridine (Aiyappa et al.,
2016), and dehydrobenzoannulene (Baldwin et al., 2016).

IMMOBILIZATION OF COFs ON
DIFFERENT SUBSTRATES

It is an essential procedure to modify COFs on different
electrodes for electrochemical sensing applications. The
fabrication of ultrathin COF films is still very challenging, since
the poor COF-substrate affinity hampers the nucleation of COF
crystallites. Herein, immobilization methods and strategies
for COFs on different substrates were summarized, such as
solvothermal growth/deposition, electrophoretic deposition,
electrochemical deposition, interfacial polymerization, and
drop-coating, as shown in Table 1.

Solvothermal growth/deposition is found to be an efficient
method to immobilize DAB-TFP COF thin films on different
substrates (indium tin oxide, fluorine doped tin oxide, and
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TABLE 1 | Immobilization methods and strategies for COFs on different substrates.

Substrates COFs Synthetic units Immobilization

methods

Thickness References

GCE POR-COFs TAPP Electrochemical

deposition

/ Tavakoli et al., 2019

ITO COF-300 Tetrakis(4-aminophenyl) methane/terephthalaldehyde Electrophoretic deposition 0.4–24µm Rotter et al., 2019

ITO COF-5 Benzene-1,4-diboronic

acid/2,3,6,7,10,11-hexahydroxytriphenylene hydrate

Electrophoretic deposition 0.4–24µm Rotter et al., 2019

ITO BDT-ETTA COF BDT/ETTA Electrophoretic deposition 0.4–24µm Rotter et al., 2019

AAO Imine-based COFs 1,3,5triformylphloroglucinol/p-phenylenediamine Solvothermal growth / Shi et al., 2019

PSF TpPa-COFs 1,3,5triformylphloroglucinol/p-phenylenediamine Interfacial polymerization 0.29–1.12µm Wang R. et al., 2018

α-Al2O3 COF-320 tetra-(4-anilyl) methane and

4,4′-biphenyldicarboxaldehyde

Solvothermal growth 4µm Lu et al., 2015

GO COF-1 1,4-benzenediboronic acid Solvothermal growth 10–250 nm Zhang X. et al., 2019

GCE COF BDBA/1,4-dioxane–mesitylene Drop-coating / Zhang T. et al., 2019

Au electrode DAAQ-TFP COF DAAQ/TFP Solvothermal growth 60–560 nm DeBlase et al., 2015

ITO/FTO/platinum 2D COFs DAB/TFP Solvothermal growth 200 nm Gou et al., 2016

platinum substrates) (Gou et al., 2016). The oriented thin films of
a redox-active 2D β-ketoenamine COF on Au was first fabricated
by solvothermal growth, and the film thickness was controlled
by varying the initial concentrations of the monomers (DeBlase
et al., 2015). The oriented COF film modified electrode exhibit
a 400% increase in capacitance scaled to the electrode area as
compared to those functionalized with the randomly oriented
COFs powder (Figure 4). Recently, COF-1 with an ordered
channel structure and precise pore size was synthesized and
attached onto the surface of graphene oxide (GO) by in-situ
growth, which improves the dispersity and stability in water over
COF-1 (Zhang X. et al., 2019).

The fabrication of COF film and coatings on conducting
substrates was demonstrated in an electric field by electrophoretic
deposition, which is suitable for depositing 2D and 3D COFs
linked by imine or boronate ester bonds, such as BDT-ETTA
COFs, COF-300, and COF-5 (Rotter et al., 2019). By controlling
the key parameters including particle concentration, duration,
and applied potential, deposition with precise thickness can
be achieved. In addition, co-deposition of different COFs as
well as COFs/Pt nanoparticles from mixed suspensions were
also presented.

Solvent intractability and sluggish condensation kinetics
have limited the synthesis and processing of 2D or 3D
COFs. In order to resolve the problem, poly(5,10,15,20-
tetrakis(4-aminophenyl)porphyrin)-COFs (POR-COFs) with a
high crystalline order were electrochemically synthesized via the
formation of phenazine linkages by controlling the temperature,
potential scanning rate, and electrode materials and co-
crystallization with pyridine (Tavakoli et al., 2019). The pyridine
sublattice not only stabilized the Py-POR-COFs superlattice but
also controlled the interlayer spacing and stacking in this class of
materials, resulting in enhanced ORR activity.

A facile and simple strategy, interfacial polymerization,
was developed for the direct synthesis of imine-typed COFs
on polysulfone substrates to produce composite membranes
(Wang R. et al., 2018). The prepared membranes exhibited

superior long-term stability and stability even in highly
acidic/basic conditions. The COFs/polysulfone composite
membranes had the advantage of large-scale production,
showing potential application for the treatment of wastewater
and the removal of pharmaceutical wastes from water.

The synthesized COFs can also be dripped onto different
electrodes and then dried at room temperature to achieve their
modification. For example, COF nanosheets were modified on
GCE by this method for signal amplification, which was applied
for sensitive biomarker detection (Zhang X. et al., 2019).

NANOSCALE COFs

Large size COFs lead to low active area, low mass transfer
rate, and difficult modification as well as poor stability
on the electrode, which will influence the stability,
reproducibility/repeatability, and sensitivity. Theminiaturization
of COFs will solve this problem. The existing methods for
nanoscale COF preparation includes the polymer-assisted
solvothermal method, high-power ultrasonic exfoliation, steric
hindrance-induced chemical exfoliation, and the template
synthesis. However, these procedures are usually tedious
and need strict synthetic conditions. Recently, a nanoscale
COF prepared via a facile synthetic approach under ambient
conditions was reported (Guan et al., 2019). Imine-linked TPB-
DMTP-COFs was prepared through the reaction of 1,3,5-tris
(4-aminophenyl) benzene and 2,5-dimethoxyterephthaldehyde
under mild conditions (CH3CN, 25

◦C, 12 h) with the aid of
acetic acid and polyvinylpyrrolidone (PVP). Unlike traditional
solvothermal COFs synthesis, this approach does not need
any vigorous reaction conditions, such as a solvothermal and
inert atmosphere. More importantly, scaling up to a gram-scale
nanoscale COF synthesis was easily achieved. In order to decrease
the size of COFs, a template-mediated synthesis of hollow tubular
COFs using a twostep strategy was reported by Pachfule et al.
(2015). ZnO nanorods were wrapped with COF layers by a
typical Schiff-base reaction of 1,3,5-triformylphloroglucinol and
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FIGURE 4 | Oriented thin film of DAAQ-TFP COFs for efficient redox processes. Reproduced with permission from DeBlase et al. (2015). Copyright 2015, American

Chemical Society.

FIGURE 5 | Synthesis of COF nanotubes via a template-mediated strategy. Reproduced with permission from Pachfule et al. (2015). Copyright 2015, The Royal

Society of Chemistry.

p-phenylenediamine. Then the inside templates were etched
by acid to leave the hollow nanostructures in quantitative
yield (Figure 5).

APPLICATIONS OF COFs IN
ELECTROCHEMICAL SENSING

Based on their structural characteristics, COFs are endowed
with unique properties, and have been successfully applied in
electrochemical sensing. Nowadays, an electrochemical sensing
platform based on COFs is widely used in the fields of
environmental pollutant and biomedicine analysis. Herein, the
applications of COFs in different fields are comprehensively
summarized (Table 2). Furthermore, we focus the application of
electroactive COFs in ratiometric electrochemical sensors which
will be a promising field.

Application of COFs in Different Analytical
Fields
Environmental Analysis

Endowed with an intrinsic absorption capability, COF-based
electrochemical sensors have been widely used in the detection
of environmental pollutants including hydrazine, explosives,

catechol, nitrophenol, hydroquinone, bisphenol A, paraquat, and
heavy metals. Porous and redox-active COFs were demonstrated
to remove and detect hydrazine (Liang et al., 2020). Benefiting
from a combination of the enhanced electron transfer and
high surface area of DQ–COF, the electrochemical sensor
exhibited a low detection limit, wide linear range, and high
anti-interference ability. In addition, a sensitive and selective
sensor was developed based on TAPB-DMTP-COFs for the
detection of lead in an aqueous medium (Zhang et al., 2018b).
This COFs were synthesized with 1,3,5-tris (4-aminophenyl)
benzene (TAPB) and 2,5-dimethoxyterephaldehyde (DMTP).
The novel sensor showed a broad linear range, low detection
limit, high sensitivity, good stability and reproducibility, which
may be assigned to the many active sites and high surface
area of TAPB-DMTP-COFs. Under optimum conditions, the
method showed an excellent linearity to the concentration
of lead in the range of 0.0050–2.0µM with a detection
limit of 1.9 nM. This method not only demonstrates the
feasibility of COF-based sensors for the detection of trace
metal ions, but also broadens the detection range application
of COF-based hybrid materials in electroanalytical chemistry.
An Fe3O4-based magnetic COFs nanosphere (Fe3O4@AT-COFs)
with a different surface morphologic structure is reported
by facile ambient temperature synthesis, which shows the
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TABLE 2 | The analytical performances of electrochemical sensors based on different COFs.

Electrode Analyte Technique Potential Detection limit Linear range Sensitivity References

DQ-COF/Ni/ITO Hydrazine AP 0.8 V 0.07µM 0.5–1,223µM 1.81 µA cm−2µM−1 Liang et al., 2020

p-COF/AE EGFR DPV 0.2 V 5.64 × 10−3 pg

mL−1

0.05–100 pg mL−1 / Yan et al., 2019

3D-KSC/COFTAPB−PDA/PtNPs H2O2 AP 0.04V 0.006µM 0.0185–5.4µM

5.4–3055.4 µM

2.58 µA cm−2µM−1

449.33 µA cm−2 mM−1

Yang et al., 2019

3D-KSC/COFTAPB−PDA/CuNPs Glucose AP 0.5 V 1.54µM 4.69–1,570µM

1,570–7,070 µM

2.128mA cm−2 mM−1

0.829mA cm−2 mM−1

Yang et al., 2019

Au NPs/BPene/Fe3O4-COF/GCE PSA DPV 0.3 V 30 fg mL−1 0.0001–10 ng mL−1 / Liang et al., 2019a

MIP/GO@COF/GCE SDZ DPV 0.9 V 0.16µM 0.5–200µM / Sun et al., 2019a

MIP/GO@COF/GCE Acetaminophen DPV 0.4 V 0.032µM 0.05–20µM / Sun et al., 2019a

TAPB-DMTP-COFs/AuNPs/

GCE

CGA DPV 0.17V 0.0095µM 0.010–40µM / Zhang et al., 2018a

COFDHTA−TTA/GCE H2O2 DPV −0.5 V

−0.3 V

2.42µM

1.70µM

8.06–400µM

5.66–400 µM

/ Xu M. et al., 2019

COFDHTA−TTA/GCE pH DPV −0.5–0.5 V / 11–3 64.2 mV/pH Xu M. et al., 2019

GOD/

COFDHTA−TTA/GCE

Glucose DPV −0.3 V

−0.53 V

0.38µM

0.18µM

1.26–6,000µM

0.60–6,000 µM

/ Xu M. et al., 2019

WP6@Ag@COF/GCE PQ CV −0.755V 0.014µM 0.01–50µM / Tan et al., 2019

TAPB-DMTP-COF/

CPE

Lead DPASV −1.2 V 0.0019µM 0.0050–2.0µM / Zhang et al., 2018b

COFETTA−TPAL-Fc (COOH)2/GCE H2O2 DPV −0.5/0.45 V 0.33µM 1.1–500µM Liang et al., 2019b

MIP/MoS2/NH2-

MWCNT@COF/GCE

SMR DPV 1.03V 0.11µM 0.3–200µM / Sun et al., 2019b

2HP6@Au@CP6@COF/GCE SP DPV −0.4∼-0.1 V 0.0017µM 0.005–120µM / Tan et al., 2020

COFp−FeporNH2−BTA/GCE H2O2 DPV −0.2 V 2.06 nM 6.85–7,000 nM / Xie et al., 2020a

COFp−FeporNH2−BTA/GCE pH DPV −0.9–0.15 V / 3–9 −41.2 mV/pH Xie et al., 2020a

COFThi−TFPB-CNT/GCE pH DPV −0.6–0.3 V / 1–12 54 mV/pH Wang L. et al., 2020

COFThi−TFPB-CNT/GCE AA DPV −0.05V 17.68µM 53.04–4,000 µM/

4–8 mM

/ Wang L. et al., 2020

CTpPa-2/GCE BPA DPV 0.2–1.0 V 0.02µM 0.1–50µM / Pang et al., 2020

CTpPa-2/GCE BPS DPV 0.2–1.0 V 0.09µM 0.5–50µM / Pang et al., 2020

TB-Au-COFs-Ab2/GCE cTnI SWV −0.4 V 0.17 pg mL−1 0.5–10,000 pg mL−1 / Zhang et al., 2018c

Fe3O4@AT-COF/MGCE PNP DPV −0.772V 0.2361µM 10–3,000µM 0.7588 µA cm−2µM−1 Wang Q. et al., 2020

Fe3O4@AT-COF/MGCE ONP DPV −0.616V 0.6568µM 10–3,000µM 0.7799 µA cm−2µM−1 Wang Q. et al., 2020

PtNPs@COFs-MWCNTs/GCE Tanshinol DPV 0.4 V 0.018µM 0.002–1.1mM 10.089 µA cm−2mM−1 Zhang et al., 2020

COF-3-BPPF6-CPE HQ DPV 0.17V 0.31µM 1–2,000µM / Xin et al., 2020

COF-3-BPPF6-CPE CC DPV 0.26V 0.46µM 1–2,000µM / Xin et al., 2020

GCE/DAT-COF HQ DPV 0.03V 0.13µM 0.20–500µM / Arul et al., 2020

GCE/DAT-COF CC DPV 0.13V 0.07µM 0.20–500µM / Arul et al., 2020

GCE/DAT-COF RC DPV 0.56V 0.08µM 0.20–500µM / Arul et al., 2020

Fe3O4@NHCS/GCE Dopamine DPV 0.35V 6.3 nM 0.01–40µM / Lu et al., 2020

Fe3O4@NHCS/GCE Uric acid DPV 0.42V 36.1 nM 0.10–40µM / Lu et al., 2020

Fe3O4@NHCS/GCE Guanine DPV 0.75V 143.2 nM 0.50–30µM / Lu et al., 2020

Fe3O4@NHCS/GCE Adenine DPV 1.08V 123.5 nM 0.50–40µM / Lu et al., 2020

COF@NH2-CNT/GCE Furazolidone DPV −0.4 V 77.5 nM 0.2–100µM / Sun et al., 2020

Fe3O4@TAPB-DMTP-COFs/GCE Luteolin DPV 0.2 V 7.2 nM 0.010–7µM / Xie et al., 2020b

advantages of higher surface area, good water dispersity,
long-term stability, excellent electrical conductivity, and pre-
concentration effect (Wang Q. et al., 2020). The prepared
Fe3O4@AT-COFs exhibited high electrocatalytic activity toward
PNP and ONP, and the simultaneous detection of PNP and
ONP was achieved with a wide linear detection range of

10–1,000 µM and low detection limits (LOD) of 0.2361µM and
0.6568µM, respectively.

Biomedical Analysis

In addition to its application in environmental pollution, an
electrochemical sensing platform based on COFs also plays
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FIGURE 6 | General design of electroactive COFs. (a) Typical design of electroactive bulk COFs and exfoliated COFs. (b) Typical bottom-up design of electroactive

COFs with reactive skeletons. (c) Typical bottom-up design of electroactive COFs with reactive functional groups. (d) Typical bottom-up design of electroactive COFs

with reactive metals. (e) Typical design of electroactive COF hybrids. (a) Reproduced with permission. Reproduced with permission from Yusran et al. (2020a).

Copyright 2020, WILEY-VCH.

a prominent role in biomedicine, such as epidermal growth
factor receptors, living cancer cells, prostate specific antigens,
cardiac troponin I, glucose, ascorbic acid, dopamine, uric
acid, guanine, adenine, luteolin, hydrogen peroxide, chlorogenic
acid, furazolidone, tanshinol, sulfadiazine, and acetaminophen.
Recently, porphyrin-based COFs (P-COFs) were synthesized,
which are a potential candidate for the sensitive detection
of target cancer markers or living cells (EGFR and living
Michigan cancer foundation-7) (Yan et al., 2019). P-COFs
presented high electrochemical activity, good stability in aqueous
solution, excellent bio-affinity, and this material enabled strong
immobilization of the aptamer strands. The fabricated aptasensor
was demonstrated for the analysis of EGFR and living cancer
cells, with the advantages of good anti-interferences ability,
stability, and reproducibility.

An electroactive 2D COFThi−TFPB nanosheet packaged on
amino-functionalized CNT was designed as a ratiometric
electrochemical AA sensor, showing satisfactory selectivity,
reproducibility, and stability (Wang L. et al., 2020). The
COFThi−TFPB was synthesized by a dehydration condensation
reaction between 1,3,5-tris (p-formylphenyl) benzene (TFPB)
and thionine (Thi) and this porous crystalline material
was a highly ordered 2D nanosheet. A highly selective
and sensitive electrochemical sensing platform based on
2HP6@Au@CP6@COFs was successfully established for the
determination of dangerous and explosive sodium picrate
(SP) (Tan et al., 2020), in which Au nanoparticles play an

electrocatalytic role and 2HP6 as well as CP6 contribute to the
aggregation and identification of SP on the electrode surface.
Recently, Xu described a facile one-pot strategy to immobilize
COFs on an amino-functionalized carbon nanotube (NH2-CNT)
support at room temperature via π-π interactions. The COFs-
CNT composites modified electrode showed a high specific
surface area (147.3 m2 g−1), and excellent electrical conductivity,
which exhibited an excellent analytical performance for the
detection of the nitrofuran antibacterial agent furazolidone
(Sun et al., 2020).

Application of Electroactive COFs in
Electrochemical Sensors
The incorporation of electroactive moieties in the structure
endows electroactive COFs with great potential for
electroanalysis application. Electroactive COFs possess abundant
accessibly active sites which contribute to the electrochemical
reaction and avoid overpotential. Electroactive COFs can be
designed by incorporating electroactive sites (e.g., electron-rich
species and metal) in their frameworks, or hybridizing COFs
with other electroactive components with following scheme in
Figure 6 (Yusran et al., 2020a).

An electroactive iron porphyrin-based covalent organic
framework (COFp−FeporNH2−BTA) was synthesized via
aldehyde-ammonia condensation reaction between
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1,3,5-benzenetricarboxaldehyde and 5,10,15,20-tetrakis(4-
aminophenyl)-21H, 23H-porphine, followed by post-
modification with Fe2+. The synthesized COFp-Fepor
NH2-BTA showed a good electrochemical redox property
and electrocatalytic activity toward the reduction of hydrogen
peroxide (Xie et al., 2020a). The electrochemical sensor based on
COFp−FeporNH2−BTA showed a wide linear range from 6.85 nM
to 7µM with the detection limit of 2.06 nM (S/N = 3) for the
detection of hydrogen peroxide. Recently electroactive COFs
were used to construct a ratiometric electrochemical sensor.
Wang reported an electroactive COF with multiple redox-
active states synthesized by an amine-aldehyde condensation
reaction between 4, 4′,4′′-(1,3,5-triazine-2,4,6-triyl) trianiline
and 2,5-dihydroxy terethaldehyde (COFDHTA−TTA), which was
applied for the construction of a ratiometric electrochemical
sensor for the detection of hydrogen peroxide and pH level
based on both current and potential signals (Xu M. et al.,
2019). An electroactive COFs composite was also prepared
by a dehydration condensation reaction between 1,3,5-tris(p-
formylphenyl) benzene (TFPB) and thionine (Thi) wound
with carbon nanotubes (CNT) to construct the ratiometric
electrochemical sensing of ascorbic acid (Wang L. et al., 2020).

CONCLUSIONS AND OUTLOOKS

This critical review briefly summarized the key properties of
COFs that influence the electroanalytical performances, and
corresponding solutions were discussed in detail, which will
serve as a guide for the novel design and fabrication of an
electrochemical sensor. Although COFs have been used to
construct an electrochemical sensing platform for the sensitive
analysis of biomedicine, environmental pollutants, and others,
and some intriguing developments have been made, COFs in the
electrochemical sensing field is still in its initial stage. To promote
the development of electrochemical sensors based on COFs,
the following challenges and outlooks should be considered
in future work: (1) novel synthesis strategies (for example,
microfluidic synthesis) need to be developed for conductive,
nanoscale, and electroactive COFs for enhanced sensitivity and
electrocatalytic activity. (2) Finding a simple and efficient surface

modification method/strategy on conductive substrates is an
urgent problem that needs to be resolved in the future. (3) The
intrinsic fragility, powdered crystalline state, and large size of
COFs lead to a low active area, low mass transfer rate, and
difficult modification as well as poor stability on the electrode.
Therefore, simple and facile synthesis methods for nanoscale
and hydrogels/aerogels COFs need to be further investigated. (4)
The antifouling capability and biocompatibility of COF-based
materials still need to be studied and improved for the analysis of
biological samples. (5)With the enhanced thermal, chemical, and
mechanical stability, biomolecules encapsulated in COFs may
be further explored to broaden their operational conditions and
extend their potential applications in electrochemical sensors.
(6) Molecularly imprinted COFs used in electrochemical sensors
need to improve in their selectivity and sensitivity. (7) It will be
an efficient method to improve the performances of conduction
and sensing by using COFs as nanocarriers to encapsulate
organic molecules that can be released through specific stimuli
(Chang et al., 2019).
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