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A new photocatalyst denoted as mTHPC/pCN was prepared by modifying protonated

graphitic carbon nitride (pCN) by meso-tetrahydroxyphenylchlorin (mTHPC). Relevant

samples were characterized via various methods including zeta potential measurements,

X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron

spectroscopy, N2 adsorption–desorption, transmission electron microscopy,

ultraviolet-visible–near-infrared spectroscopy, electrochemical impedance spectroscopy,

photocurrent response measurements, electron spin resonance spectroscopy, and

phosphorescence spectroscopy. Compared with pCN, mTHPC/pCN shows enhanced

absorption in the visible and near-infrared regions and thus higher photocatalytic activity

in hydrogen evolution. A possible mechanism for mTHPC/pCN is proposed.

Keywords: g-C3N4, meso-tetrahydroxyphenylchlorin, photocatalytic, hydrogen evolution, visible/near-infrared
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INTRODUCTION

Graphitic carbon nitride (g-C3N4) is a new type of photocatalyst with unique physicochemical
characteristics (Zheng et al., 2015). The π-conjugated system of g-C3N4 allows for the transfer
of charge carriers, and a band gap of around 2.7 eV allows it to work under visible (VIS) light
(Wang et al., 2009; Ong et al., 2017). In addition, g-C3N4 is thermally and chemically stable. It can
be prepared by the thermal polycondensation of inexpensive nitrogen-containing carbon-based
precursors such as thiourea, melamine, urea, cyanamide, and dicyandiamide without difficulty
(Panneri et al., 2017).

However, the low efficiency in VIS light absorption, high recombination rate of photogenerated
electrons and holes, low conductivity, and low specific surface areas (SSAs) of g-C3N4 may limit
its photocatalytic performance (Zou et al., 2016; Mishra et al., 2019). g-C3N4 nanorods/nanotubes
(Li et al., 2015; Liu et al., 2017), nanasheets (Zhang J. S. et al., 2015; Murugesan et al., 2019), and
porous structures (Zeng et al., 2016; Liu M. J. et al., 2019) have been developed. Metal elements
(e.g., Ag; Ge et al., 2011, Cu; Fan et al., 2016, Au; Caux et al., 2019, Pt; Zhou et al., 2019) and
non-metal elements (e.g., C; Zhao et al., 2015, N; Fang et al., 2015, P; Ran et al., 2015, Br; Lan
et al., 2016, O; Wei et al., 2018, S; Xiao et al., 2020) have been doped into g-C3N4. In addition,
g-C3N4-based heterojunctions (e.g., Bi2O2CO3/g-C3N4; Wang Z. Y. et al., 2016, CoTiO3/g-
C3N4; Ye et al., 2016, Ag2MoO4/g-C3N4; Zhang and Ma, 2017b, C/g-C3N4; Shen et al., 2017,
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Ag6Mo10O33/g-C3N4; Zhang and Ma, 2017a, MoS2/g-C3N4; Liu
Y. Z. et al., 2018, Bi3O4Cl/g-C3N4; Che et al., 2018, TiO2/g-
C3N4; Tao et al., 2019,WO3/g-C3N4; Fu et al., 2019, CdS/g-C3N4;
Qiu et al., 2020, ZnO/g-C3N4; Gao et al., 2020, Ba5Nb4O15/g-
C3N4; Wang et al., 2020, Co3(PO4)2/g-C3N4; Shi et al., 2020,
Cs3Bi2I9/g-C3N4; Bresolin et al., 2020) have been developed to
enhance the photocatalytic performance. However, few studies
have aimed at extending the light absorption range of g-C3N4 to
the near-infrared (NIR) region.

In the total solar spectrum, the ultraviolet (UV) light (λ
< 400 nm), VIS light (400 < λ < 700 nm), and NIR light
(λ > 700 nm) account for ∼5, 43, and 52%, respectively
(Li et al., 2016). Therefore, the development of g-C3N4-
based photocatalysts that can absorb NIR light is important.
Photosensitizers are the general term of molecules that can
absorb light and transfer energy to other materials. Some
researchers modified g-C3N4 with photosensitizers such as
phthalocyanine (Zhang et al., 2014), a combination of organic
dye and zinc phthalocyanine derivative (Zhang X. H. et al.,
2015), µ-oxo dimeric iron (III) porphyrin (Wang D. H.
et al., 2016), zinc phthalocyanine (Liu Q. W. et al., 2018),
mesotetrakis (carboxyphenyl) porphyrins (Da Silva et al., 2018),
copper octacarboxyphthalocyanine (Ouedraogo et al., 2018), zinc
phthalocyanine derivative (Zeng et al., 2019), multiporphyrin
(Yang et al., 2019), zinc (II) 1, 8(11), 15(18), 22(25)-tetrakis (4-
carboxylphenoxy) phthalocyanine (α-ZnTcPc) (He et al., 2019),
porphyrin (Tian et al., 2019), Chlorin e6 (Ce6) (Liu et al., 2020a),
3,4,9,10-perylenetetracarboxylic acid anhydride (PTCDA) (Yuan
et al., 2020), tetra (4-carboxyphenyl) porphyrin iron (III) chloride
(FeTCPP) (Zhang et al., 2020), protoporphyrin (Pp) (Liu et al.,
2020b), and naphthalimide-porphyrin (Li L. L. et al., 2020).
However, more examples in this regard are needed because this is
a very interesting topic.

meso-Tetrahydroxyphenylchlorin (mTHPC or temoporfin)
is an NIR light–absorbing photosensitizer used for clinical
applications and photodynamic therapy (Navarro et al., 2014).
In addition, mTHPC is a second-generation photosensitizer that
shows some favorable characteristics under NIR light irradiation
(Hinger et al., 2016). For example, multiwalled carbon nanotubes
were modified with mTHPC for cancer treatment (Marangon
et al., 2016). Polymeric micelles were modified with mTHPC
for treating cardiovascular diseases (Wennink et al., 2017).
Gold nanoparticles were modified with mTHPC for cancer
therapeutic (Haimov et al., 2018). Poly(D,L-lactide-co-glycolide)
acid nanoparticles were modified with mTHPC for in vitro
photodynamic therapy (Boeuf-Muraille et al., 2019). However, to
the best of our knowledge, g-C3N4 was not modified by mTHPC
for photocatalysis.

Supplementary Figure 1 shows the chemical structures of
mTHPC and bulk graphitic carbon nitride (bCN). mTHPC
has many hydroxyl (–OH) groups, and bCN has many –C–
N– groups, making the surfaces of both materials negatively
charged (Supplementary Figure 2) and thus difficult to combine
with each other. Herein, protonated graphitic carbon nitride
(pCN) was obtained by treating bCN with hydrochloric acid
(HCl) solution (Xie et al., 2018). The surface zeta potential
of pCN is positively charged (Supplementary Figure 2), so the

negatively charged mTHPC may be combined with pCN to
yield a composite photocatalyst (Figure 1) that can work more
efficiently under VIS light and NIR light.

EXPERIMENTAL SECTION

Synthesis of Bulk Graphitic Carbon Nitride
(bCN)
bCN was prepared by high-temperature calcination in a muffle
furnace. The details are as follows: 12 g melamine was placed in
a 50mL quartz crucible with a lid, and then the quartz crucible
was placed in a muffle furnace. The heating rate was set to be
5◦C · min−1. The muffle furnace was heated to 550◦C, and the
temperature was held for 2 h (Cui et al., 2018a). After the muffle
furnace was cooled down, the remaining powders (bCN) were
collected and ground for further use.

Preparation of pCN
pCN was obtained by treating bCN with HCl solution. The
details are as follows: 1 g bCN was placed in 200mL HCl
solution (1mol · L−1), and the slurry was magnetically stirred
at room temperature for 4 h (Cui et al., 2018b). Subsequently,
the sediment was collected by high-speed centrifugation, washed
with deionized water three times, and dried at 80◦C for 12 h. The
obtained powders (pCN) were ground for further use.

Preparation of mTHPC/pCN and
mTHPC/bCN
mTHPC/pCN was synthesized as follows: 0.5 g pCN was put
into 200mL deionized water, and then 0.05 g mTHPC was
added, and the slurry was subjected to magnetic stirring for
2 h at room temperature. Subsequently, the sediment was
collected by high-speed centrifugation, washed three times by
deionized water, and dried at 80◦C for 12 h. The obtained
powders (mTHPC/pCN) were collected. In addition, a reference
sample denoted as mTHPC/bCN was prepared under the same
experimental conditions.

Characterization
The surface zeta potential data were obtained from a Zetasizer
Nano ZS device (Malvern Instruments). X-ray diffraction (XRD)
data were recorded using a Bruker Advanced D8 (Bruker
Corp., Germany) instrument. Fourier transform infrared (FTIR)
spectra were recorded by a Nicolet Nexus 470 instrument
(Nicolet Instrument Corp., USA). X-ray photoelectron spectra
(XPS) were analyzed by an ESCALAB 250 XPS instrument.
Nitrogen (N2) adsorption–desorption were determined by a
Tristar 3000 analyzer. Transmission electron microscopy (TEM)
images were taken using a JEM-2100F microscope (JEOL,
Japan). UV-VIS-NIR absorption spectra were measured by
a Cary 5000 spectrophotometer. Electrochemical impedance
spectra (EIS) and photocurrent response curves were obtained
through a CHI660C electrochemical workstation. Electron spin
resonance (ESR) spectra were recorded by a Bruker model A300
spectrometer at room temperature. Phosphorescence spectra
were tested on a Hitachi F-4600 spectrometer under an excitation
wavelength of 808 nm.
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FIGURE 1 | Scheme showing the synthesis of mTHPC/pCN.

Photocatalytic Hydrogen Evolution
Photocatalytic hydrogen generation experiments were carried
out as follows: 10mg photocatalyst was placed in a 150mL
quartz reactor, 18mL H2PtCl6 solution (0.045mg · mL−1) was
added, and then 2mL triethanolamine (TEOA) was added.
Subsequently, the mixed system was sonicated in an ultrasonic
machine for 10min to allow for the even dispersion of the
photocatalyst and then purged with N2 for 30min to remove air
from the solution and the reactor. During photocatalytic process,
the temperature of the photocatalytic reaction was controlled
at about 12◦C by using circulating cooling water, and a 300-W
xenon (Xe) lamp was used as light source. A filter was used to get
VIS-NIR light (λ > 420 nm). Another filter was used to get NIR
light (λ > 780 nm).

The distance from the light source to the reaction system was
4 cm. The optical power density of the light source was 120 mW ·

cm−2 under VIS-NIR light irradiation and 10 mW · cm−2 under
NIR light irradiation. The mixed gas composed of H2 produced
by photocatalysis and N2 in the quartz reactor was automatically
collected and analyzed using a gas chromatograph (GC7600, Tian
Mei) every 1 h.

RESULTS AND DISCUSSION

XRD and FTIR Spectra
Figure 2 shows the XRD data. The peak of bCN at 13.4◦ is
attributed to the (100) plane (Inagaki et al., 2019; Qi et al., 2019),
and the peak at 27.3◦ is attributed to the (002) plane (Liu L. et al.,
2018; Lee et al., 2019). pCN has the same characteristic peaks as
bCN, but the intensity of these peaks decreases to some extent,
probably due to the delamination of bCN following the treatment
of bCN by HCl solution (Liang et al., 2015; Prabavathi and
Muthuraj, 2019). mTHPC shows some weak peaks in the range
of 12 to 26◦ (Yuan et al., 2015a). The peaks of mTHPC are not
observed in mTHPC/bCN. However, the peaks of mTHPC can be
observed in mTHPC/pCN, indicating the uptake of mTHPC on
pCN. In any case, bCN, pCN, mTHPC/bCN, and mTHPC/pCN
all show typical g-C3N4 patterns.

Figure 3 shows the FTIR spectra of samples. The characteristic
peaks of bCN at 800 cm−1 is ascribed to the tri-s-triazine ring
units (Zhang et al., 2010; Wang et al., 2019); the broadband peaks
at 1,200 to 1,700 nm−1 are attributed to the C–N heterocycles
(Liu Q. et al., 2016), and the peaks at 3,000 to 3,500 nm−1 are

FIGURE 2 | XRD patterns of samples.

FIGURE 3 | FTIR spectra of samples.

attributed to the hydroxyl groups (O–H) and free amino groups
(N–H) (Hang et al., 2017; He et al., 2020). pCN has the same
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characteristic peaks as bCN, but the intensities of these peaks
increase to some extent. mTHPC shows peaks at 700 to 1,700
nm−1, corresponding to (N–H), (C–H), (C=C), and (C=N) (Da
Silva et al., 2018). The peaks at 3,250 to 3,600 nm−1 of mTHPC
are attributed to the N–H bonds (Yuan et al., 2015b). Although
the peaks of mTHPC are not clearly observed in mTHPC/bCN
and mTHPC/pCN, all the characteristic peaks of g-C3N4 in
mTHPC/pCN are the strongest. This may be because mTHPC
is loaded on the surface of pCN, which enhances the infrared
absorption. A similar trend (enhanced IR absorption) is also seen
in the Ce6/pCN (Liu et al., 2020a) and Pp/pGCN (Liu et al.,
2020b) systems.

XPS Spectra
Figure 4 shows the XPS spectra of samples. In the survey XPS
spectra of bCN and mTHPC/pCN (Figure 4A), the peaks of C
1s, N 1s, and O 1s can be obviously observed (Naseri et al.,
2017; Zada et al., 2019). Figure 4B shows the high-resolution
XPS spectra of C 1s. The two peaks at 284.5 and 287.9 eV are
assigned to (C–C) and (N–C=N), respectively (Jiang et al., 2017;
Liu X. C. et al., 2020). Figure 4C shows the high-resolution N
1s XPS spectra. The three peaks at 398.5, 399.6, and 400.6 eV

are assigned to (C–N=C), (N–(C)3), and (C–N–H), respectively
(Sun and Liang, 2017; Sun et al., 2020). Figure 4D shows the
high-resolution O 1s XPS spectra. The three peaks at 531.1, 532.2,
and 533.2 eV are due to O–C=O, C=O, and O–H, respectively
(Teng et al., 2017; Zhang et al., 2017). Compared with bCN,
the O 1s peaks (especially at 532.2 eV) of mTHPC/pCN are
significantly enhanced, probably due to the oxygen-containing
group in mTHPC.

N2 Adsorption–Desorption and TEM
Analysis
Supplementary Figure 3 shows the N2 adsorption–desorption
data. The N2 adsorption and desorption isotherms of samples
(Supplementary Figure 3A) can be classified as type IV
isotherms, signifying the presence of mesopores (2–50 nm) (Qin
and Zeng, 2017). The hysteresis loops of samples belong to H3
type, indicating the existence of slit-type mesopores formed by
the irregular accumulation of g-C3N4 nanosheets (Ding et al.,
2017). Compared with bCN, the adsorption volume of pCN
appears significantly enhanced and this trend may be due to the
nanosheet structure caused by the delamination treatment of

FIGURE 4 | The survey XPS spectra (A), the high-resolution XPS spectra of C 1s (B), N 1s (C), and O 1s (D) for bCN and mTHPC/pCN.
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bCN in HCl solution. mTHPC/pCN well maintains the enhanced
adsorption volume.

Supplementary Figure 3B shows that the four samples have
the wide pore size distribution (2–70 nm), further indicating the
presence of mesopores (Qiu et al., 2017). It is worth noting that
the pore size distribution curve of pCN has a clear peak at 2 to
5 nm, indicating that the porous structure may be caused by HCl
solution, and mTHPC/pCN well maintains the porous structure.

Supplementary Table 1 shows the SSA and pore volume of
samples. The SSA and pore volume of bCN are 12.5 m2

· g−1 and
0.063 cm3

· g−1, respectively. pCN has the largest SSA and pore
volume of 40.3 m2

· g−1 and 0.163 cm3
· g−1, probably due to the

delamination treatment of bCN by HCl solution. mTHPC/pCN
well maintains a larger SSA and pore volume of 30.8 m2

· g−1

and 0.126 cm3
· g−1, respectively.

Supplementary Figure 4 shows the TEM images of samples.
bCN has the irregularly thick bulk structure (Yu et al., 2017).
However, pCN shows the typical two-dimensional nanoflakes
and porous structure, consistent with the pore size distribution
curve (Mamba and Mishra, 2016). mTHPC/pCN well maintains
the ultrathin holey nanosheet structure of pCN.

UV-VIS-NIR Absorption Spectra
Figure 5A shows the UV-VIS-NIR absorption spectra of
photocatalysts. bCN and pCN only show obvious absorption
capacity in the UV light and VIS light regions (Liu S. Z. et al.,
2016) and have almost no absorption capacity in the NIR light
region (λ > 780 nm). mTHPC has obvious absorption capacity
of the UV light and VIS light and also has obvious absorption
capacity in the NIR light range (λ > 780 nm). mTHPC/bCN and

FIGURE 5 | The UV-VIS-NIR absorption spectra of photocatalysts (A) and the calculated energy band gaps (Eg) of mTHPC and pCN (B).
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mTHPC/pCN not only maintain the absorption performance of
bCN and pCN in the UV light and VIS light range, but also
retain the absorption capacity of mTHPC in the NIR light range
(λ > 780 nm) to some extent. Furthermore, the light absorption
capacity of mTHPC/pCN is significantly better than that of
mTHPC/bCN.

The calculated energy band gaps (Eg) of mTHPC and
pCN by the absorption spectra and the equation of αhν =

A(hν – Eg)
n/2 (Li et al., 2018, 2019) are 1.45 and 2.45 eV in

Figure 5B, respectively. The α, h, ν, A, Eg, and n stand for the
absorption coefficient, the Planck’s constant, the light frequency,
the proportionality constant, the energy band gap, and n = 1 for
a direct band gap transition, respectively (Adhikari et al., 2017).

Photocatalytic Hydrogen Evolution
Photocatalytic hydrogen generation was performed under a 300-
W xenon (Xe) lamp as the light source. Figure 6A shows the
photocatalytic hydrogen production performance of samples
under VIS-NIR light irradiation. A filter was used to get VIS-
NIR light source (λ > 420 nm), 3 wt.% Pt was used as the
co-catalyst, and TEOA was used as the sacrificial reagent. bCN
and mTHPC show low hydrogen production performance; the
average hydrogen evolution rates (HERs) are 120.6 and 87.4
µmol · h−1

· g−1, respectively.
The average HER of pCN and mTHPC/bCN are 266.0 and

605.8 µmol · h−1
· g−1, respectively. mTHPC/pCN shows the

highest average HER of 1,041.4µmol · h−1
· g−1, somewhat lower

than the average HER obtained by Ce6/pCN (1,275.6 µmol · h−1

· g−1) (Liu et al., 2020a) and Pp/pGCN (1,153.8 µmol · h−1
·

g−1) (Liu et al., 2020b). Furthermore, mTHPC/pCN has good
cycle stability under VIS-NIR irradiation in Figure 6B. The XRD
patterns of the fresh mTHPC/pCN and the used mTHPC/pCN
are shown in Supplementary Figure 5. Compared with the fresh
mTHPC/pCN, the peak intensities of the used mTHPC/pCN
decrease to some extent, and the used mTHPC/pCN well
maintains the crystal structure of the fresh mTHPC/pCN.

Figure 7A shows the photocatalytic hydrogen production
activity of samples under NIR light irradiation. A filter was
used to get NIR light source (λ > 780 nm), Pt was used as the
cocatalyst, and TEOAwas used as the sacrificial reagent. bCN and
pCN show trace amounts of hydrogen production, while mTHPC
shows the low average HER of 25.1 µmol·h−1

· g−1.
The average HER of mTHPC/bCN is 59.3 µmol · h−1

· g−1.
mTHPC/pCN shows the highest average HER of 78.8 µmol ·
h−1

· g−1, lower than the rate obtained by Ce6/pCN (312.6
µmol · h−1

· g−1) (Liu et al., 2020a) and Pp/pGCN (307.8
µmol · h−1

· g−1) (Liu et al., 2020b). This may be because
the UV-VIS-NIR absorption capacity of mTHPC is lower than
that of Ce6 and Pp (Supplementary Figure 6). In addition,
mTHPC/pCN has good cycle stability under NIR irradiation in
Figure 7B.

EIS, Photocurrent Response Curves, ESR,
and Phosphorescence Spectra
Figure 8 shows the EIS comparison of bCN and mTHPC/pCN.
The arc size in the high-frequency region of the Nyquist diagram

FIGURE 6 | Photocatalytic hydrogen evolution activity from water of the five

photocatalysts (A) and the cycle stability test of mTHPC/pCN (B) under

VIS-NIR (λ > 420 nm) irradiation.

is consistent with the electron transfer restriction mechanism,
and the arc diameter is equal to the resistance of the electron
transfer (She et al., 2016; Li S. J. et al., 2020). Obviously,
the arc radius of mTHPC/pCN is significantly smaller than
bCN, indicating that mTHPC/pCN can significantly retard
the recombination of photogenerated electrons and holes and
accelerate electron transfer (Li et al., 2017).

Figure 9 shows the transient photocurrent response curves
comparison of bCN and mTHPC/pCN under VIS-NIR (λ >

420 nm) irradiation. When turning on the light source, the
photocurrents of the two samples rise immediately (Shen et al.,
2020a). Conversely, when turning off the light source, the
photocurrents drop quickly (Luo et al., 2018; Li et al., 2021).
The pattern can be repeated, indicating that photogenerated
electrons can be transferred to the contact interface through the
sample under light irradiation (Tian et al., 2017; Shen et al.,
2020b). Further observation found that the photocurrent value
of mTHPC/pCN is higher than bCN, indicating that the charge
separation efficiency of mTHPC/pCN has significantly enhanced
(An et al., 2017).
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FIGURE 7 | Photocatalytic hydrogen evolution activity from water of the five

photocatalysts (A) and the cycle stability test of mTHPC/pCN (B) under NIR

light (λ > 780 nm) irradiation.

FIGURE 8 | EIS of bCN and mTHPC/pCN.

FIGURE 9 | Photocurrent response curves of bCN and mTHPC/pCN.

FIGURE 10 | ESR of the bCN and mTHPC/pCN.

Figure 10 exhibits the ESR characterization of bCN and
mTHPC/pCN under NIR light (λ > 780 nm) at room
temperature. bCN and mTHPC/pCN both exhibit one single
Lorentz line (g = 2.0034) from 3,200 to 3,800G magnetic field
(Liu G. et al., 2019; Jia et al., 2020). However, compared with
bCN, the ESR intensity of mTHPC/pCN is much stronger,
indicating that the concentration of unpaired electrons is
much higher.

The phosphorescence spectra of mTHPC and mTHPC/pCN
were tested at an excitation wavelength of 808 nm at room
temperature in Figure 11. Obviously, the emission wavelength of
mTHPC is in the range of VIS light (400–600 nm), indicating that
the mTHPC has obvious up-conversion behavior (Wang et al.,
2018). Compared with mTHPC, the emission peak intensity of
mTHPC/pCN is significantly decreased, indicating the energy
transfer from mTHPC to pCN.
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Photocatalytic Mechanism
The energy band gaps (Eg) of mTHPC and pCN are 1.45
and 2.45 eV in Figure 5B, respectively. The XPS valence
band (VB) top position of mTHPC and pCN are 0.62
and 1.29V in Supplementary Figure 7, respectively. Thus,
contrasting to the standard hydrogen electrode potential, the

FIGURE 11 | The phosphorescence spectra of mTHPC and mTHPC/pCN.

conduction bands (CBs) of mTHPC and pCN are −0.83 and
−1.16V, respectively.

A possible mechanism for mTHPC/pCN is proposed in
Figure 12. When mTHPC/pCN is irradiated under VIS light,
pCN is excited to generate electrons (e−) on CB and holes
(h+) on VB. Because the CB edge potential of pCN (−1.16V)
is more negative than that of mTHPC (−0.83V), the e−

on pCN could transfer to the CB of mTHPC. Pt was used
as the cocatalyst (Figure 13 and Supplementary Figure 8)
obtained from the Pt precursor (H2PtCl6 · 6H2O) by the
in situ photoreduction (Sui et al., 2013; Pan et al., 2017).
Pt nanoparticles may slightly enhance absorption intensity
in NIR region (Supplementary Figure 9) due to the light
scattering phenomenon of Pt (Shiraishi et al., 2014; Chen
et al., 2020). Pt can quickly transfer e− which can reduce
H+ to H2 (Xing et al., 2014; Zhou et al., 2019). Indeed, the
photocatalytic hydrogen evolution performance is significantly
enhanced (Supplementary Figure 10). In addition, because the
VB of pCN (1.29V) is more positive than that of mTHPC
(0.62V), the h+ on pCN could transfer to the VB of mTHPC. As
the sacrificial agent, TEOA can quickly transfer h+ and be used
as TEOA to TEOA+ (Xing et al., 2014; Zhou et al., 2019).

When mTHPC/pCN is irradiated under NIR light, mTHPC
has an up-conversion behavior (Figure 11); i.e., the irradiation
of mTHPC under NIR light can generate VIS light for
pCN to work. Actually, the ESR characterization showed
the concentration of unpaired electrons is much higher

FIGURE 12 | The photocatalytic mechanism of mTHPC/pCN.
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FIGURE 13 | The TEM image of mTHPC/pCN collected after conducting photocatalytic reaction for one time.

in mTHPC/pCN than bCN under NIR light irradiation
(Figure 10). In addition, although under NIR light irradiation
only, mTHPC/pCN still works because of its NIR absorption
capacity (Figure 5A) and the up-conversion behavior of
mTHPC (Figure 11).

CONCLUSIONS

mTHPC/pCN prepared by positively charged pCN was
modified by negatively charged mTHPC for the first time.
mTHPC/pCN can allow for efficient charge separation and
transfer and retard the recombination of photogenerated
electrons and holes. In addition, mTHPC/pCN has a wide
range of VIS light and NIR light absorption capabilities
and thus the enhanced photocatalytic hydrogen evolution
performance and good stability. The current results show
that using a photosensitizer can enhance the light absorption
intensity of the VIS light–driven g-C3N4 system and expand
the absorption and utilization of the solar spectrum range.
This work provides some new insights and directions for the

realization of photocatalytic hydrogen evolution under VIS/NIR
light region.
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