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In recent years, topological semimetals/metals, including nodal point, nodal line, and

nodal surface semimetals/metals, have been studied extensively because of their

potential applications in spintronics and quantum computers. In this study, we predict a

family of materials, Zr3X (X = Al, Ga, In), hosting the nodal loop and nodal surface states

in the absence of spin–orbit coupling. Remarkably, the energy variation of the nodal loop

and nodal surface states in Zr3X are very small, and these topological signatures lie very

close to the Fermi level. When the effect of spin–orbit coupling is considered, the nodal

loop and nodal surface states exhibit small energy gaps (<25 and 35 meV, respectively)

that are suitable observables that reflect the spin-orbit coupling response of these

topological signatures and can be detected in experiments. Moreover, these compounds

are dynamically stable, and they consequently form potential material platforms to study

nodal loop and nodal surface semimetals.

Keywords: nodal loop states, nodal surface states, first-principles, electronic structures, spin-orbit-coupling

INTRODUCTION

The exploration of non-trivial topologies in crystalline solids has attracted significant attention
from chemists, physicists, and material scientists (Kong and Cui, 2011; Cava et al., 2013; Banik
et al., 2018; Zhang et al., 2018a; Tang et al., 2019). The main features of these topological solids are
enclosed in their electronic-band structures. Initially, research was conducted in the context of the
insulating state (Zhang et al., 2011; Li et al., 2012; Peng et al., 2012; Rasche et al., 2013; Wang et al.,
2013; Kambe et al., 2014; Chang et al., 2015; Walsh et al., 2017; Barton et al., 2019; Zeugner et al.,
2019), and the concept of band topology has now been extended to the metallic and semi-metallic
states (Bradlyn et al., 2017; Bernevig et al., 2018; Schoop et al., 2018; Zhou et al., 2018; Gao et al.,
2019; Hu et al., 2019; Klemenz et al., 2020; Wang et al., 2020b,c; Zhao Z. et al., 2020) as well.

The dimensionality of band-crossings is a criterion used to classify topological
semimetals/metals. The most famous topological semimetals/metals with zero-dimensional
band-crossings, i.e., zero-dimensional nodal points, are Dirac semimetals/metals (Chen et al.,
2015, 2020; Bradlyn et al., 2017; Zhong et al., 2017; Jing and Heine, 2018; Liu et al., 2018b; Zhang
et al., 2018b; Khoury et al., 2019; Wang et al., 2020f; Xu et al., 2020) and Weyl semimetals/metals
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(Peng et al., 2016; Lin et al., 2017; Fu et al., 2018; Zhang et al.,
2018c; Zhou et al., 2019; Gupta et al., 2020; Jia et al., 2020; Liu
et al., 2020; Meng L. et al., 2020; Zhao B. et al., 2020). We selected
Weyl semimetals/metals as examples here because there exists
a band-crossing of the valance band and conduction band at
an isolated nodal point in the momentum space of these solids.
Particularly, around this isolated nodal point, the quasiparticle
acts similarly to the behavior of Weyl fermions, which are
particles of considerable interest in high-energy physics. We
summarize some recent studies on Weyl materials as follows: (i)
Zhao and Ma (2020) stated that hexagonal MnO ferromagnet is
a magnetic Weyl semimetal with spin-gapless state; (ii) Meng
W. et al. (2020b) predicted that HfCuP compound is a newly
designedWeyl semimetal with different types ofWeyl nodes; and
(iii) Jia et al. (2020) reported that the VI3 monolayer hosts aWeyl
fermion and 100% spin-polarization. Furthermore, under the
protection from certain crystalline symmetries, two Weyl points
of opposite chirality can be stable at the same point, forming a
Dirac point.

In the case of three-dimensional materials, besides the
zero-dimensional nodal point metals/semimetals, in principle,
there should exist one-dimensional and two-dimensional band-
crossing metals/semimetals as well. For three-dimensional
materials with one-dimensional band-crossings, some members,
named as nodal line/loop semimetal/metals, have garnered
considerable attention owing to their rich properties. Based on
the shape of the nodal lines, they may host various forms,
such as nodal link (Yan et al., 2017), nodal chains (Bzdušek
et al., 2016), nodal boxes (Sheng et al., 2017), nodal ring (Wang
et al., 2020d), nodal knot (Bi et al., 2017), and nodal net
(Feng et al., 2018; Wang et al., 2018). So far, numerous types of

FIGURE 1 | (A,B) Structures of Zr3Al as viewed from different sides; (C) Brillouin zone and the considered high-symmetry points; (D) calculated phonon dispersion of

Zr3Al; (E) calculated band structure of Zr3Al; here, the obvious band-crossings can be found in region A and B.

nodal-line semimetals/metals have been predicted (He et al.,
2019, 2020; Jin et al., 2019a,b, 2020a,c; Zhang et al., 2019; Meng
W. et al., 2020a; Wang et al., 2020a,e; Zhou et al., 2020), and it is
assumed that the node-line states have interesting characteristics
in terms of their electronic, transport, and magnetic properties.

Zhong et al. (2016) had first observed topological
semimetals/metals with two-dimensional band-crossings,
i.e., nodal surface states. However, investigations into nodal
surface semimetals/metals are very rare (Wu et al., 2018), and
the energy variation of the nodal surface state is great.

If one material hosts two or more types of band-crossings, it
can be considered a good platform to investigate the relationship
among different topological signatures. Very recently, tetragonal
PtO was proposed by Li et al. (2020b) as an effective material
to study the one-dimensional nodal line and zero-dimensional
nodal point states. Furthermore, Li and Xia (2020) predicted that
cubic HfN is a topological material that co-exhibits nodal line and
nodal loop states.

Motivated by the above-mentioned information and based
on the first principles, we report a new family of topological
materials, Zr3X (X = Al, Ga, In) with one-dimensional nodal
loop and two-dimensional nodal surface states. The progress in

TABLE 1 | Optimized lattice constants for Zr3X compounds.

Compounds a (Å) b (Å) c (Å)

Zr3Al 6.202 6.202 5.371

Zr3Ga 6.166 6.166 5.052

Zr3 In 6.325 6.325 5.221
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the field of nodal line/surface states, including the conceptual
development, the character and classification of these nodal
structures, and the material realization, can be found in Wang
et al. (2019).Moreover, the dynamical stable as well as the effect of
spin-orbit coupling on the electronic structures of these materials
are discussed in detail.

MATERIALS

In this study, we have focused on the hexagonal type Zr3X (X
= Al, Ga, In). As an example, the primitive cell structure of
hexagonal P63/mmc type Zr3Al from different sides are shown in
Figures 1A,B. From the figures, it is evident that Zr3X has eight
atoms, namely, two X atoms and six Zr atoms. The structures of
Zr3X have been totally relaxed with the help of first principles.
The equilibrium lattice parameters of Zr3X (X= Al, Ga, In) have
been computed via minimizing the crystal total energy calculated
for different values of lattice constant by means of Murnaghan’s
equation of state (EOS) (Murnaghan, 1944). The achieved lattice
constants for these compounds are shown in Table 1.

Based on the Brillouin zone and considered high-symmetry
points Γ -M-K-Γ -A-L-H-A (as shown in Figure 1C), dynamic
stability was examined for these three compounds according
to the calculated phonon dispersions, and the results are given
in Figures 1D, 2A,B, respectively. These Zr3X compounds are

obviously dynamically stable due to the absence of the imaginary
frequency (Han et al., 2019;Wu et al., 2019; Li et al., 2020a). These
materials are therefore proposed to be experimental platforms to
study topological semimetals/metals.

COMPUTATIONAL METHODS

In this study, calculations have been carried out using the Vienna
ab initio simulation package (VASP) (Kresse and Furthmüller,
1996) based on the first-principles density functional theory
(DFT), and the generalized gradient approximation (GGA)
(Perdew et al., 1996) of Perdew–Burke–Ernzerhof (PBE) (Perdew
et al., 1998) functional is adopted for the exchange-correlation
potential. During the calculations, the cutoff energy is set as
600 eV, and the Brillouin zone is sampled by the Monkhorst–
Pack k-mesh with a size of 6 × 6 × 6. Furthermore, we set the
energy/force convergence criteria as 10−6 eV/10−3 eV.

RESULTS AND DISCUSSION

Observing the calculated band structure of Zr3Al in Figure 1E,
we find that Zr3Al is a metal in which the bands and the
Fermi level overlap. In addition to the metallic property, we
find that there are several band-crossings near the Fermi level.
These band-crossings are mainly located in two regions, named

FIGURE 2 | (A,B) Phonon dispersions of Zr3Ga and Zr3 In, respectively; (C,D) calculated band structures of Zr3Ga and Zr3 In, respectively; here, band-crossings

around the Fermi level are highlighted by green rectangles.
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FIGURE 3 | (A) Considered paths Γ -Q (Q = M, a1, a2, a3, a4, a5, K) in the kz = 0 plane; (B) calculated band structures along Γ -a1, Γ -a2, Γ -a3, Γ -a4, Γ -a5 paths;

(C) Γ -centered three-dimensional band dispersion in region A of the kz = 0 plane; (D) shape of Γ -nodal line in region A of the kz = 0 plane (the nodal line is shown as

white lines and marked by arrows).

as region A and region B, which have been highlighted by
green backgrounds. Similar properties are observed in Zr3Ga and
Zr3In, as shown in Figures 2C,D, respectively.

In Figures 1E, 2C,D, one may notice that the band structures
for these Zr3X compounds are approximately the same; hence,
in the following discussion, Zr3Al was selected as an example
with which to study the band topology of Zr3X compounds.
As an example, the band structural of Zr3Al via GGA+U (U
= 4 eV for Zr-d orbitals) is given in Supplementary Figure 1.
One can find that the band topology of Zr3Al is still kept under
GGA+Umethod.

In Figure 1E, we find that the band-crossings in region A
and region B are quite close to the Fermi level. Specifically,
the band-crossings in region A are along M-Γ -K paths, and
the band-crossings in region B are along A-L-H-A paths. These
band-crossings in both the regions may thus dominate the main
features of Zr3Al.

As shown in Supplementary Figure 1, in regionA, we observe
two obvious band-crossings; one is along M-Γ , and the other
one is along Γ -K. Zr3Al is a system with inversion P and time-
reversal T symmetries; thus, the two band-crossings along M-Γ -
K paths cannot be isolated points (Xu et al., 2017; Fu et al., 2019)
on the plane kz = 0. To determine that the two band-crossings
in region A belong to a nodal loop on the plane kz = 0, we

selected Γ -a1, Γ -a2, Γ -a3, Γ -a4, and Γ -a5 paths (see Figure 3A)
to further calculate the band structures of Zr3Al (a1, a2, a3, a4,
and a5 are equally spaced between M and K). The calculated
band structures are shown in Figure 3B, and we find that band-
crossings (marked as yellow circles) appear along Γ -a1, Γ -a2, Γ -
a3,Γ -a4, andΓ -a5 paths, implying that a nodal loop should occur
on the plane kz = 0. The Γ -centered three-dimensional band
dispersion in region A of the kz = 0 plane and the shape of Γ -
nodal line in region A are shown in Figures 3C,D, respectively.
As shown in Figures 3B,C, these band-crossings in region A
host very little energy variation. That is, Zr3X materials can be
seen as exceedingly flat in energy, which may exhibit special
properties that have exceptional applications. For example, very
recently,Wang et al. (2020e) proposed that a nearly flat nodal line
around the Fermi level will induce an exceptional thermoelectric
power factor in the Nb3GeTe6 monolayer. Moreover, as shown in
Figure 3B, we find that all the band crossing points on the plane
kz = 0 are type I (Liu et al., 2018a; see Supplementary Figure 2);
this nodal line is thus type I.

In region B, one can see that there are degenerate bands
along the A-L-H-A direction. This indicates that the bands in
the plane kz = π are doubly degenerate, reflecting a nodal
surface state that appeared in the plane kz = π. To further
confirm that the two bands are degenerated in kz = π plane,
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FIGURE 4 | (A–C) A-centered three-dimensional band dispersion in region B of the planes kz = 0.90 π, kz = 0.99 π, and kz = π, respectively; (D) schematic diagram

indicating the nodal surface state in the kz = π plane.

we show the A-centered three-dimensional band dispersion in
region B of the planes kz = 0.90 π, kz = 0.99 π, and kz =

π in Figures 4A–C, respectively. In Figure 4C, the two bands
are obviously totally degenerate, leading to a new topological
signature, i.e., nodal surface state, in the kz = π plane (as shown
in Figure 4D). Furthermore, as shown in Figure 4C, the energy
variation of the nodal surface state is very small (range from
−0.15 to 0.05 eV). Similar to the situation of the nearly flat nodal
line state in the kz = 0 plane, the small energy variation of the
nodal surface state in the kz = π plane may benefit the future
experimental investigations.

Finally, we discuss the electronic-band structure in the
presence of spin–orbit coupling. The corresponding calculations
results are shown in Figure 5. We find that Zr3Al is an
excellent topological material whose band structure shows
marked signatures (energy gaps) induced by the spin–orbit
coupling effect (Fang et al., 2015). The spin–orbit coupling effect
induces energy gaps of 23.05 and 20.08 meV (see Figure 5A)
in region A. Furthermore, the band-crossings in region B have
open energy gaps of 19.56 meV resulting from the spin–orbit
coupling effect (see Figure 5B). The band structures of Zr3Ga and
Zr3In with the effect of spin–orbit coupling are also exhibited

in Figures 5C,D, respectively. The open energy gaps observed
in these topological signatures, exhibited by Zr3X metal (X =

Al, Ga, In), are very small compared to the other well-known
topological semimetals/metals (Fang et al., 2016). A detailed
collection of SOC gaps of typical nodal line materials can be
found in the Supplementary Information of (Jin et al., 2020b).

SUMMARY

In summary, the topological band structures of Zr3X (X
= Al, Ga, In) have been studied via DFT calculations in
this study. Neglecting spin-orbit coupling, there is a nodal
loop in the kz = 0 plane and nodal surface state in the kz
= π plane. The rich topological signatures are quite near
to the Fermi level, which can be detected experimentally.
Remarkably, the loop is nearly flat and the nodal surface
features small energy variation. These above-mentioned
topological signatures are not sensitive to the effect of
spin–orbit coupling. Further, these compounds are proved
to be dynamically stable based on the calculated phonon
dispersions and host simple and clear band structures. It
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FIGURE 5 | (A,B) Band structures of Zr3Al in the presence of spin–orbit coupling in region A and B, respectively; (C,D) band structures of Zr3Ga and Zr3 In in the

presence of spin–orbit coupling effect.

is expected that these non-trivial band-crossings can be
experimentally observed via angle-resolved photoemission
spectroscopy (ARPES).
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