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Direct electron transfer (DET), which requires no mediator to shuttle electrons from

enzyme active site to the electrode surface, minimizes complexity caused by themediator

and can further enable miniaturization for biocompatible and implantable devices.

However, because the redox cofactors are typically deeply embedded in the protein

matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer

to the electrode surface. In this review,methods to improve the DET rate for enhancement

of enzymatic fuel cell performances are summarized, with a focus on the more recent

works (past 10 years). Finally, progress on the application of DET-enabled EFC to some

biomedical and implantable devices are reported.
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INTRODUCTION

Since its first demonstration of concept by Yahiro et al. (1964), enzymatic fuel cell (EFC) has gained
much research interest as one of the environmentally friendly and renewable source of power
generation. Utilizing isolated enzymes from microorganisms as biocatalysts at either or both of
electrodes, EFC is particularly attractive as the substrate specificity of the biocatalysts essentially
removes the need for compartmentalization of each electrode, allowing for wider applications
via miniaturization. The biocatalyst at the anode catalyzes the oxidation reaction of a fuel, from
which electrons are released and then transferred to the electrode surface. The electrons then travel
through the circuit to the cathode, where they are consumed in the reduction reaction of an oxidant,
typically oxygen to produce water as byproduct. In an EFC, there are two possible electron transport
mechanisms from the redox center of the biocatalyst at the anode (i.e., bioanodic enzyme) to the
electrode surface: direct electron transfer (DET) and mediated electron transfer (MET). When an
electron generated from oxidation catalyzed by the redox center of a bioanodic enzyme travels
directly to the electrode surface and is collected as current, the enzyme is known to undergo DET;
when an additional component is utilized between the enzymatic catalyst and electrode surface to
act as a mediator to shuttle the electron, it is referred to as MET. Early works with EFC typically
involved electron mediators, such as hydroquinone, benzoquinone, and ferricyanide salt to obtain
current (Hunger et al., 1966; Davis and Yarbrough, 1967). Though first report of DETmay date back
to as early as 1972 (Betso et al., 1972), it was not until 1978 when works by Berezin et al. pioneered
the DETmechanism to collect current with a laccase (Lc) directly adsorbed onto graphite electrodes
(Berezin et al., 1978).

Despite over a half of a century worth of research, there is yet to be a consensus on whether
DET or MET surpasses one another in terms of EFC performance. On one hand, MET-enabled
EFC theoretically provides higher current and power density as the mediator would minimize the
number of electrons that fail to reach the electrode due to its small tunneling distance (∼10 Å);
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on the other hand, DET-enabled EFC offers simpler
configuration and can bypass potential toxicity or low stability
of some mediators (Mazurenko et al., 2017a; Mani et al., 2018).
Furthermore, not using a mediator means the redox enzymes
can operate at a potential close to their natural standard redox
potentials, leading to lower chances of interfering reactions as
well as higher open-circuit potential and thus higher power
density (Kawai et al., 2014).

When evaluating the performance of EFC, several properties
are commonly characterized or quantified: power density,
current density, the amount of decay in power density over time,
and open-circuit potential (OCP). The power and current density
and the OCP correlate to the overall power output by the EFC,
while the time-dependent decay of the power density can be
translated into the stability of the EFC. While DET seems like
a more favorable method of electron transfer to optimize the
EFC performance, the small electron tunneling distance greatly
limits the type of oxidoreductases that can be used for this
configuration. Typically, the redox center is deeply embedded
within a protein matrix, the size of which often exceeds 10
Å. In fact, only about a 100 of 1,700 known oxidoreductase
enzymes can facilitate DET (Shleev et al., 2016). In an effort
to not only increase this number but also enhance the fuel cell
performance utilizing DET, a number of components of EFC
could be improved: protein engineering to increase the efficiency
of the direct electron transfer; immobilization of the biocatalysts
on the electrode to decrease the tunneling distance and enhance
the stability; and use of functional nanomaterials as electrodes
to maximize enzyme loading while minimizing IR drop and
tunneling distance for efficient charge transfer.

Herein, methods to enhance the performance of DET-
enabled EFC that have recently been popular are summarized,
and the outlook on these EFCs, including their applications
are presented.

BIOCATALYST ENGINEERING

One of the major drawbacks of using native enzymes as
biocatalysts for EFCs is that some redox cofactors, molecules that
change their oxidation state during catalytic redox reaction of the
substrate, are deeply embedded inside the enzyme, and thus it is
difficult for the electrons generated from the oxidation reaction to
transfer successfully to the electrode surface (Hecht et al., 1993).
Formany enzymes, this means the electronsmust be able to travel
far beyond their 10-Å limit to reach the electrode, and most, if
not all, of the electrons are not collected as current without any
modification on the enzymes.

Enzyme Choice and Protein Engineering
Glucose oxidase (GOx), one of the most extensively studied
oxidoreductase enzyme for catalysis of glucose oxidation, is
well-known for its flavin adenine dinucleotide (FAD) cofactor
embedded within the protein matrix as far as 15–26 Å from the
surface (Luong et al., 2017). Due to the large depth in which the
FAD is located, some works have claimed that native GOx does
not undergo DET at all (Wilson, 2016; Bartlett and Al-lolage,
2018). In these works, the redox peaks at E0 = −0.46V (vs.

Ag/AgCl) famously known to represent the GOx activity by the
redox of FAD/FADH2 cofactor were argued to be inaccurate, as
their electroanalytical methods with various control experiments
suggested the redox peaks were due to the enzymatic activity of
the FAD cofactors that have denatured from GOx itself, rather
than the electroactivity.

Despite these claims, efforts toward DET-enabled GOx-based
EFC have continued. Furthermore, other enzyme catalysts for
both anode and cathode have been engineered and utilized
for enhancement of EFC performance. This section describes
various methods to modify or engineer enzymes for increasing
the stability of enzyme immobilization and decreasing enzyme-
to-electrode distance, thereby increasing the chance of DET for
higher power density.

One of the drawbacks of using native GOx as the anodic
biocatalyst is its sensitivity to oxygen. In addition to its primary
substrate, glucose, GOx also interacts with oxygen as a natural
electron acceptor and catalyzes its reduction to hydrogen
peroxide. This can not only result in a lower coulombic efficiency,
but also affect the cathode by depleting the available oxygen to be
reduced (Navaee and Salimi, 2018).

As one of the alternatives, FAD-dependent glucose
dehydrogenase (referred to as FAD-GDH) has been suggested
as a promising enzyme. GDH is available with three different
cofactors—pyrroloquinoline quinone (PQQ), nicotine adenine
dinucleotide (NAD), and FAD. Though GDH based on all
three cofactors have been utilized as anodic enzyme catalyst
for EFC applications (Saleh et al., 2011; Schubart et al., 2012;
Scherbahn et al., 2014), the low substrate selectivity and
poor thermal stability of PQQ-dependent GDH (Aiba et al.,
2015) and denaturing of NAD cofactor suggest there are
room for improvement for them to be stronger candidates
for glucose-oxidizing enzyme for EFCs. FAD-GDH, on the
other hand, have been steadily used as an oxygen-insensitive
alternative, immobilized in various EFC setups. Desriani
et al. demonstrated FAD-GDH-based enzymatic fuel cell by
casting FAD-GDH/carbon ink mixture on carbon cloth to
fabricate the bioanode (Desriani et al., 2010). Combined with
the cathode functionalized with bilirubin oxidase (BOD),
the EFC produced up to 9.3 µW/cm2 power density with
cellobiose as substrate. Muguruma et al. employed debundled
single-walled carbon nanotubes (SWNTs), which were small
enough in diameter (1.2 nm) to be plugged into the grooves
of FAD-GDH to minimize the distance between enzyme
cofactor and the electrode. Glucose concentration-dependent
current response was only observed when debundled SWNTs
were utilized as opposed to SWNT aggregates or multi-
walled carbon nanotubes (MWNTs), despite the oxygen
insensitivity of FAD-GDH (Figure 1) (Muguruma et al., 2017).
Lee et al. studied the electrochemical behavior of FAD-GDH
via chronoamperometry. Not only was DET achieved, but also
the distance between enzyme cofactor and electrode surface
was controlled by different self-assembly monolayers (SAM)
to show its significance in enhancing the current response
(Lee et al., 2018). Furthermore, the chemisorption between the
thiol residue of SAM and gold electrode, combined with the
covalent bond between the amino groups of the FAD-GDH and
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FIGURE 1 | Schematic of possible DET route between FAD-GDH and

debundled SWNT. (A) and (B) show possible location of debundled SWNT in

the indentation of FAD-GDH; (C) compares the locations of MWNT, graphene,

and debundled SWNT with respect to the FAD-GDH; (D) visualizes the

reduced distance for electrons to travel from the FAD cofactor to the

debundled SWNT (Muguruma et al., 2017).

succinimide groups of SAM, strengthened the stability of enzyme
immobilization on the electrode surface for more efficient DET.

Another method to overcome the weak DET rate by GOx
is genetic modification for ready functionalization with metallic
nanomaterials or more intricate structure with supporting
materials. Prévoteau et al. demonstrated that deglycosylated
glucose oxidase exhibited more negative surface charge than
native GOx, which allowed for stronger electrostatic interaction
with positively charged hydrogels used to immobilize the
enzymes (Prévoteau et al., 2010). Electrodes functionalized with
deglycosylated GOx showed higher current density to fixed
amount of glucose than native GOx, which was attributed
to the smaller enzyme-electrode distance and higher enzyme
loading due to stronger attraction toward the hydrogel and
thus the electrode surface. Other enzymes such as cellobiose
dehydrogenase (CDH) was also deglycosylated to show up
to 65% higher current response in the presence of substrate
than the glycosylated enzymes (Ortiz et al., 2012). One of the
advantages that contributed to this increase was the smaller
hydrodynamic radius of the deglycosylated CDH, which allowed
for higher amount of enzymes to be packed on the electrode
surface. Holland et al. made direct mutations at various
locations of GOx to add a cysteine side chain, which revealed
a thiol group at a distance from 14 to 29 Å from the FAD
cofactor. The thiol group attached to the GOx readily bound
to gold nanoparticles, which facilitated direct electron transfer

when functionalized onto electrode surface (Holland et al.,
2011). Electroanalytical methods on electrodes modified with
five mutated GOx showed only the enzyme with the thiol
group closest to the FAD exhibited electroactivity, reinforcing
the significance of minimizing enzyme-to-electrode distance
for efficient DET. Other enzymatic catalysts such as fructose
dehydrogenase (Hibino et al., 2017; Kaida et al., 2019), laccase
(Lalaoui et al., 2016a), and pyranose 2-oxidase (Spadiut et al.,
2009) have been modified for more stable immobilization as well
as enhanced enzymatic activity.

Orientation of Enzymes
Oxidoreductase enzymes are relatively large and measure few
nanometers in diameter; the redox center is typically embedded
within the protein matrix, at times tens of angstroms from
the surface of the enzyme, which is well over the maximum
electron tunneling distance of up to 20 Å (Moser et al., 1992).
Because of this, it is essential to achieve favorable orientation
of the enzyme when immobilizing on the electrode; that is, in
a way that the redox cofactor is closest to the electrode surface
(Lopez et al., 2018). The difficulties associated with obtaining
such orientation, parameters that affect the orientation, and the
electrode properties that are affected by the enzyme orientation
are reviewed in great detail by Hitaishi et al. (2018). Thus, in
this review, several recent works that demonstrated fine tuning
of enzyme orientation by protein and electrode engineering for
more efficient direct electron transfer are presented.

The general idea behind achieving good orientation for DET is
to promote electrostatic interaction or covalent binding between
the enzyme and the electrode surface so that the cofactor
is located at a compatible distance from the electrode for
electron transfer. For example, gold nanoparticles immobilized
on highly oriented graphite electrode were functionalized
with aminophenyl groups, which allowed for covalent binding
between the nanoparticles and laccase enzyme. Two-step
immobilization was proposed for this work: (i) the amino groups
on the gold nanoparticles reacted with the oxidized sugar residues
on the Lc, while (ii) amide bonds were formed between carboxylic
groups of the enzyme and amino groups on the graphite electrode
(Gutiérrez-Sánchez et al., 2012). Lalaoui et al. modified a specific
location of laccase (Lc) with a pyrene molecule near the T1
copper redox center of the enzyme, so that when the pyrene
group on the Lc bound to the CNT-bound gold nanoparticle, the
redox center was closest to the electrode surface to maximize the
current density output (Figure 2) (Lalaoui et al., 2016a).

Ma et al. engineered seven different mutants of cellobiose
dehydrogenase to vary the orientation at which the enzyme
was immobilized on the electrode surface. All enzymes but the
wild type one were covalently bound to either gold or glassy
carbon electrode, which was confirmed by surface plasmon
resonance and cyclic voltammetry. The orientation of the enzyme
immobilized on the electrode surface affected the mobility of
the cytochrome domain, which moves between closed and open
state to take the electron from the FAD cofactor to donate to
the electrode. In the presence and absence of a mediator, they
confirmed the enzyme cofactor-to-electrode distance controlled
by the enzyme orientation greatly affected the DET/MET ratio
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FIGURE 2 | Schematic representing direct bioelectrocatalysis of pyrene-modified laccase immobilized by β-cyclodextrin-modified gold nanoparticles bound to carbon

nanotube (Lalaoui et al., 2016b).

FIGURE 3 | Schematic of proposed route of DET for GOx physisorbed with

multi-walled carbon nanotubes (Liu et al., 2018) (https://pubs.acs.org/doi/full/

10.1021/acsomega.7b01633. Further permissions related to the material

should be directed to ACS).

(Ma et al., 2019). Though not employed in an enzymatic fuel
cell setup, they electrochemically demonstrated this effect with
increased current density in the presence of a substrate at a
fixed concentration when the enzyme was in a DET-favorable
orientation. Tasca et al. enhanced the direct electron transfer by
modifying single-walled carbon nanotubes with p-aminobenzoic
acid or p-phenylenediamine using aryl diazonium salts, and

cellobiose dehydrogenase (CDH) was immobilized onto these
surface-modified SWNTs as the bioanodic enzyme (Tasca et al.,
2011). The functional groups provided a positively or negatively
charged surface to increase the interaction between the enzyme
and the electrode as well as to facilitate specific orientation of the
enzyme. Tasca et al. further explained that at low pH (i.e., pH3.5),
which exhibits high surface concentration of negatively charged
amino acid residues, the protonated (i.e., positively charged) p-
phenylenediamine could create a less electrostatically repulsive
environment for CDH, thus enhancing the DET. This effort was
continued by the same group, and a similar bioanodic setup was
used to fabricate a third-generation biosensor to detect lactose
(Tasca et al., 2013).

BIOCATALYST IMMOBILIZATION
METHODS

Stability of enzymatic fuel cells can also be enhanced by securely
immobilizing the catalyst on the electrode surface (Bahar, 2019).
Without proper anchoring down or protection, biocatalysts
could easily denature and lose their activity or desorb from the
electrode surface. Several immobilization methods have been
developed based on covalent bonding, affinity of biocatalysts,
entrapment, crosslinking, andmore.With the ample potential for
miniaturization for applications in biomedical, biocompatible,
and even implantable devices, it is critical to maximize the
stability of the biocatalysts and thus of the device performance.

Physisorption
Physisorption, typically done by dropcasting of enzyme solution
onto the electrode surface followed by air-drying, is by far the
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simplest and cheapest method to fabricate enzyme electrodes.
However, because the enzymes are immobilized by weak van
der Waals forces or hydrophobic-hydrophilic interactions, they
can easily desorb or leach off the electrode surface (Strack
et al., 2013; Narváez Villarrubia et al., 2014). Because of this,
physisorption is often avoided, and rather, novel methods of
enzyme immobilization or development of composite electrode
materials are sought, and thus physisorption is only briefly
described in this review. However, there are still recent efforts to
improve the stability of physisorbed enzyme catalysts, including
composite materials to co-deposit with the enzyme solution. Das
et al. utilized composite electrode consisting of reduced graphene
oxide (rGO) and gold nanoparticles (AuNPs) to immobilize GOx,
which showed higher electron transfer rate than when rGO or
AuNPs were used individually. The improved performance of
laboratory scale fuel cell built from this bioanode was attributed
to the increase specific surface area and electronic conductivity
of rGO combined with better attachment between GOx and
AuNPs via sulfur-containing amino acids of the enzyme (Das
et al., 2014). Liu et al. studied the effect of MWNTs on the DET
and electroactivity of GOx by co-depositing carbon nanotubes of
various numbers of layers for various electroanalytical methods,
which suggested that the electrons generated from GOx was
shuttled from outer to inner wall of the MWNTs (Figure 3) (Liu
et al., 2018).

Entrapment and Conducting Polymers
Organic molecules with metallic or semiconducting electrical
properties called conducting polymers can be an effective agent
to entrap the enzyme catalysts and help transfer electrons to
the electrodes. In addition to these benefits, polypyrrole (Ppy)
helps prevent some undesired reactions, explaining its continued
use since its implementation in EFC setups in 1986 (Umaña
and Waller, 1986). Recently, more complex bioanode setups
with single- or multiwalled carbon nanotubes, nanocellulose,
graphene, or various Ppy nanostructures, immobilizing a wide
range of enzymes such as fructose dehydrogenase (Kizling et al.,
2015, 2016), glucose oxidase (Kim et al., 2009; Min et al., 2010;
Liu C. et al., 2011), and alcohol dehydrogenase (Gutiérrez-
Domínguez et al., 2013). Many works suggested the enhanced
power density was owed to the conductive polymer matrix
allowing for proper orientation of the enzymes, good mass
transport rates, and improved stability.

Polyethyleneimine (PEI) is also widely used to immobilize
enzymes while exhibiting water miscibility and high
biocompatibility as well as offering various surface chemistries
for stable binding to electrode surfaces or other nanomaterials
(Figure 4) (Christwardana et al., 2017; Sapountzi et al.,
2017; Tavahodi et al., 2017). PEI is typically used along
with carbon nanotubes (Christwardana et al., 2016, 2017)
or metallic nanoparticles (Zeng et al., 2015; Chung et al.,
2017a; Christwardana et al., 2018) to increase the stability of
enzyme immobilization.

Polyaniline (PANI), discovered over 150 years ago, only
started gaining research interest until 1980’s due to its
high electrical conductivity, and was first demonstrated for
its utility as enzymatic electrode in 1999 by immobilizing

lactate dehydrogenase on electrochemically prepared PANI film
(Gerard et al., 1999). Since then, PANI has been utilized as
composite materials or prepared as nanofibers (Kim et al.,
2011, 2014; Mishra et al., 2017), mainly due to its multifaceted
functionality and biocompatibility (Yan et al., 2010). PANI
can be directly electrochemically polymerized or functionalized
onto various carbonaceous nanomaterials including graphene,
graphene oxide, or carbon nanotubes for enhanced electrical
conductivity and enzymatic activity (Schubart et al., 2012;
Kashyap et al., 2015; Kumar et al., 2016; Kang et al., 2017).

DNA as Scaffolds or Electron Acceptors
DNA has been employed as an effective method to immobilize
single or multiple enzymes in a specific order for efficient
cascade reactions. The terminals of the DNA can be modified
for strong covalent bonds onto the electrode surface for stable
anchoring of the enzyme catalysts. Xia et al. demonstrated a fully
assembled methanol enzymatic fuel cell by immobilizing alcohol
dehydrogenase and aldehyde dehydrogenase using zing-finger
protein (Xia L. et al., 2017). The cascade reaction catalyzed by
the two enzyme catalysts successfully hydrolyzed methanol to
produce power density of 24.5 µW/cm2. DNA nanostructures
have also been used to couple synergistic enzymatic reactions into
a cascade system (Müller and Niemeyer, 2008; Conrado et al.,
2012; Fu et al., 2012), up to five enzymes for sequential hydrolysis
of cellulose (Figure 5) (Chen et al., 2017).

Other 3D structures utilizing DNA such as nano-chambers
(Linko et al., 2015) and nanocages (Zhao et al., 2016) were
fabricated for self-assembly of enzyme cascades by GOx and
horseradish peroxidase (HRP), which showed enhanced activity
compared to when the two enzymes were freely in solution.
Chakraborty et al. studied an oxygen-reducing cathode catalyzed
by bilirubin oxidase (BOD) (Chakraborty et al., 2015). They
used DNA as a template to fabricate gold nanoclusters (AuNC),
which enhanced the electron transfer, shown by 15mV lower
overpotential as well as 5.5 times higher current than when
typical plasmonic gold nanoparticle was used in the same
configuration. Furthermore, rolling circle amplification was
utilized to assemble multiple copies of the enzyme catalysts for
enhanced catalytic activity toward reactions that are otherwise
impossible to achieve with a single enzyme (Wilner et al., 2009;
Sun and Chen, 2016). Though some of these examples were not
readily applied to EFC setups, it is worth noting their potential
for future applications in EFC with enhanced catalytic activity
and stability.

NANOMATERIAL-BASED ELECTRODES

The high surface area-to-volume ratio and variability of physical
and chemical properties by precise control of morphologies
have made nanomaterials attractive and superior to their bulk
counterparts in numerous applications. Taking advantage of
such properties to increase not only the enzyme loading but
also protection around the enzyme catalysts can allow the
nanomaterial-based EFC electrodes to increase stability and
decrease the enzyme-to-electrode distance for more efficient
direct electron transfer (Mazurenko et al., 2018).
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FIGURE 4 | Schematic of (A) fabrication of various GOx-functionalized electrodes and their mechanism of immobilization; (B) comparison between native GOx and

GOx/PCA composite (Christwardana et al., 2017).

FIGURE 5 | Schematic of five-enzyme cascade system for hydrolysis of cellulose and glucose oxidation. Adapted from Chen et al. (2017).

Carbonaceous Materials
Carbon-based nanomaterials exhibit high electrical conductivity
and good mechanical properties, as well as various physical
and electrical properties depending on the control of their
morphologies. Various carbonaceous materials such as carbon
fibers or papers (Xu and Minteer, 2012; Kuo et al., 2013),

carbon black (Kamitaka et al., 2007; Gupta et al., 2011;
Haneda et al., 2012; Xia et al., 2016a), carbon nanoparticles
(Selloum et al., 2014), graphene (Chen et al., 2012; Campbell
et al., 2015; Song et al., 2015), graphite (Tasca et al., 2015;
Antiochia et al., 2019), and carbon nanotubes (Gao et al.,
2010; Ciaccafava et al., 2012; Agnès et al., 2013) have been
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employed as EFC electrode materials. For example, buckypaper
form of multiwalled carbon nanotubes (MWNTs) demonstrated
excellent potential as enzymatic electrode material by 68-fold
increase in current density from oxygen reduction reaction
catalyzed by laccase compared to as-prepared agglomerates of
MWNTs (Hussein et al., 2011). Hussein et al. attributed this
significant enhancement to reduced diffusional mass transfer
limitations and enhanced electrical conductivity when MWNTs
were dispersed into a buckypaper form, which also exhibited
highly mesoporous structures and good mechanical stability.
Filip et al. demonstrated a low-cost biofuel cell by integrating
carbon nanoparticle-nanotube composite-based bioanode and
biocathode containing fructose dehydrogenase and bilirubin
oxidase, respectively (Filip et al., 2013). In addition to combining
two different carbon nanostructures to achieve high surface
area as well as efficient interconnection for high electrical
conductivity, this work by Filip et al. further attributed the high
current density of the biocathode to the chitosan that acted
as a “glue” to hold Ketjen Black-CNT composite, facilitating
favorable orientation of the bilirubin oxidase for DET by
electrostatic interaction between the positively charged chitosan
and negatively charged enzyme as well as reducing charge
transfer resistance and overpotential for oxygen reduction.

First discovered by Ijima et al. in 1991 (Iijima, 1991),
carbon nanotubes (CNTs) now are one of the most widely used
nanomaterials for fabrication of enzyme electrodes, largely due to
high surface area-to-volume ratio and flexibility toward surface
chemistry manipulation to enhance enzyme immobilization
(Liu X. et al., 2011; Yan et al., 2011). For example, Zebda
et al. demonstrated mediatorless glucose/oxygen biofuel cell
based on GOx and Lc mechanically compressed with carbon
nanotubes into bioanode and biocathode, respectively (Zebda
et al., 2011). The high porosity and electrical conductivity of
the CNT matrix contributed to good diffusion and electrical
connection for the enzymes. Zebda et al. also suggested that the
mechanical compression facilitated nanoscale proximity between
the enzymes and the three-dimensional electrode surface,
which attributed to the DET without any loss in enzymatic
activity. In fact, power density of 1 mW/cm2 and open-circuit
voltage of 0.95V was largely retained for 1 month under
physiological conditions. Though carbon nanotubes are typically
physisorbed or compressed with enzyme catalyst of choice,
followed by coating of semi-permeable polymer like Nafion to
prevent desorption or leaching of the enzymes, more complex
setups have been reported to enhance the immobilization of
the enzyme as well as electron transfer by using electrode
materials of higher surface area and electrical conductivity.
Carbon-based electrode materials were chemically modified or
doped for increased enzyme loading and stability of enzyme
immobilization (Meredith et al., 2011; Karaśkiewicz et al., 2012;
Wei et al., 2012; Giroud and Minteer, 2013), decorated with
metallic nanomaterials for covalent bonding of enzymes and
enhanced electron transfer (Naruse et al., 2011; Lalaoui et al.,
2016a), or combined with various carbonaceous nanomaterials
to form composite electrodes (Wu et al., 2013; Campbell et al.,
2015; Escalona-Villalpando et al., 2018). For example, carbon
nanotubes functionalized with naphthalene, an aromatic group

toward which laccase exhibited affinity due to its hydrophobic
pocket, were efficient electrode materials in not only ensuring
electrical wiring between enzyme cofactor and the electrode
surface but also increasing the amount of enzymes in favorable
orientation for DET (Karaśkiewicz et al., 2012). Biofuel cell
assembled with this electrode exhibited power density of 131
µW/cm2, 80% of which were retained after 24 h. Iron- and
nitrogen-codoped carbon nanotubes were used by Ji et al. to
enhance the overall catalytic activity of GOx-based bioanode by
catalyzing oxidation reaction of hydrogen peroxide, a byproduct
of glucose oxidation commonly known to inhibit enzyme activity
(Ji et al., 2020). They also demonstrated their enzymatic fuel cell
based on this electrode with power density of 63 µW/cm2, and
∼80% of the bioanodic current density of 347.1 µA/cm2 was
retained after 4 weeks.

Porous Nanostructure
The ultra-large surface area-to-volume ratio with fine-tunable
pore size, density, and overall nanostructure dimensions, porous
nanostructures have shown to be excellent candidates for
EFC electrode materials. Though enzymeless, catalytic glucose
oxidation by Rong et al. described the high porosity of the
polymer matrix employed around the gold nanoparticle catalyst
provided size-selective protection against larger molecules (Rong
et al., 2014). Similar to this work, enzymatic electrodes are also
fabricated based on porous structures in order to protect the
enzyme catalysts, while allowing more contact area to enhance
the DET rate. The significance of mesoporous electrodes (i.e.,
containing pores of diameter between 2 and 50 nm) is supported
by (i) the curvature effect (Sugimoto et al., 2016, 2017), in which
the current density largely increases as pore diameter approaches
that of a single enzyme; as well as (ii) the electrostatic interaction
between the enzyme and the electrode, where the surface charge
of the electrodes can promote the preferred orientation of the
enzymes so that the distance between the enzyme active site
and the electrode is minimized (Sugimoto et al., 2015; Lalaoui
et al., 2016b; Xia et al., 2016b; Xia H. et al., 2017). With these
in mind, meso- and microporous electrodes were fabricated
based on glassy carbon electrodes modified with Ketjen Black
and gold nanoparticles to improve the direct electron transfer
kinetics of several redox enzymes such as bilirubin oxidase,
hydrogenase, and formate dehydrogenase (Figure 6) (Sakai et al.,
2018). Based on the electrochemical behavior of these electrodes
characterized by cyclic voltammetry, combined with electrostatic
charge distribution visualized by PyMOL, it was suggested that
electrodes with controlled morphology such as mesoporous
structure was a predominant factor in facilitating DET of
the three enzymes. The mechanism of DET based on porous
electrodes and the optimum porous nanomaterial for DET were
mathematically modeled and experimentally validated by Do
et al. (2014) and Mazurenko et al. (2017b) respectively.

Various porous materials were utilized as electrodes to be
functionalized with enzyme catalysts. Wang et al. deposited
single-walled carbon nanotube on gold-coated porous silicon
substrates, onto which GOx and Lc were electrochemically
immobilized to fabricate bioanode and biocathode, respectively.
Enzymatic fuel cell built with these electrodes produced peak
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FIGURE 6 | Schematics showing (A) curvature effect (B) edge effect (C) electrostatic effect that are taken into account for meso- and microporous structures (Sakai

et al., 2018).

power density of 1.38µW/cm2 for up to 24 h (Wang et al., 2009a).
Though the power density output was not as high compared to
similar works, it was important to note that both membrane- and
mediator-free enzymatic fuel cell was demonstrated with glucose
at a near-physiological concentration for potential in biomedical
application. Improved peak power density and stability of up to
12 µW/cm2 and 48 h, respectively, were later demonstrated by
the same setup and group later that year (Wang et al., 2009b). A
work by du Toit and Di Lorenzo demonstrated the feasibility of
highly porous gold electrodes for use in biofuel cell with GOx and
laccase as anodic and cathodic catalysts, respectively, producing
peak power density of 6 µW/cm2 (Du Toit and Di Lorenzo,
2014), a comparable value to other miniature EFCs (Beneyton
et al., 2013; Falk et al., 2013). Their effort continued to develop
a flow-through glucose/oxygen fuel cell based on highly porous
gold electrodes for continuous power generation for up to 24 h
(du Toit and Di Lorenzo, 2015). Salaj-Kosla et al. also utilized
nanoporous gold electrodes to immobilize bilirubin oxidase by
physisorption to produce catalytic current density of 0.8 mA/cm2

(Salaj-kosla et al., 2012). More recently, bioelectrocatalysis by
bilirubin oxidase was further improved by immobilizing it onto
porous gold (Takahashi et al., 2019a) and mesoporous carbon
electrodes (Takahashi et al., 2019b), which was attributed to
the appropriate pore size distribution as well as promotion of
favorable orientation of the enzyme for direct electron transfer.

Gold Nanoparticles
Due to their unique physical and electrical properties, gold
nanoparticles (AuNPs) are among popular materials with
which to functionalize EFC electrodes. In addition, the various
facile synthesis protocols and size control techniques make
AuNPs more attractive in enhancing the enzyme electrode

performance. AuNPs themselves can be modified with functional
groups such as thiols to covalently attach to electrode surface,
improving the stability when the enzymes are adsorbed onto
the AuNP functionalized electrodes, in which the AuNPs act
as electronic bridges between the enzyme active site and the
electrode surface. Monsalve et al. used a thiolated AuNPs
of various sizes to covalently bind to a hydrogenase for
bioanode fabrication, during which the smallest AuNPs were
found to exhibit the highest surface area, leading to a 170-
fold increase in current density from DET-based hydrogen
oxidation compared to using unmodified bulk gold electrode
(Monsalve et al., 2015). Combined with BOD-modified cathode,
the as-fabricated EFC produced power density of up to 0.25
mW/cm2. Ratautas et al. fabricated a bioanode with AuNP
modified with 4-aminothiophenol (4-ATP), which contained
oxidized derivatives that allowed for stable immobilization of
glucose dehydrogenase, and confirmed its mediator-free glucose
oxidation electrochemically (Ratautas et al., 2016). Biocathodes
based on AuNPs as electronic bridges for laccase were also
fabricated by Kang et al.; laccase was immobilized onto
naphthalenethiol-modified AuNPs, which promoted the electron
transfer to the polyethyleneimine-carbon nanotube electrode
(Kang S. et al., 2018). The high-surface area electrode also
increased the enzyme loading, producing 13 µW/cm2 power
density when put together into EFC. AuNPs were employed in
both anode and cathode for sugar/oxygen EFC with cellobiose
dehydrogenase and bilirubin oxidase as anodic and cathodic
catalyst, respectively; the EFC showed improved performance
than previously fabricated EFCs (i.e., power density of 15
µW/cm2 in buffer and 3 µW/cm2 in human blood), which
was attributed to the use of 3D AuNP-modified electrodes
(Wang et al., 2012). AuNPs are also used with other electrically
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conductive materials such as conducting polymers and carbon
nanotubes to further enhance the electrical properties for more
stable DET (Krikstolaityte et al., 2014; Tavahodi et al., 2017).

Recently, gold nanoparticle-carbon nanotube hybrid fibers
were utilized as electrode materials for high-performance
glucose/O2 enzymatic fuel cell (Kwon et al., 2019). GOx, the
bioanodic enzyme of choice, and the gold nanoparticles were
alternately assembled layer by layer to combine covalent and
electrostatic bonding, leading to enhanced electron transfer and
stability. This highly electrically conductive material allowed
for fast electron transfer between the active site of GOx
and the electrode surface, exhibited by the small redox peak
separation of ∼0.11V. Furthermore, the assembled enzymatic
fuel cell outputted power density and open-circuit voltage of
1.2 mW/cm2 and 0.98V, respectively. In the presence of a low
concentration of glucose to mimic the physiological conditions
(i.e., 10 mmol/L glucose), the EFC still exhibited 0.6 mW/cm2

of power density and 0.72V of open-circuit voltage, showing
great promise in the biomedical applications. The same layer-
by-layer assembly method was employed to fabricate GOx-
coated metallic cotton fiber as the bioanode, exhibiting excellent
electrical communication between the enzyme and the electrode
for enhanced electron transfer (Kwon et al., 2018). Combined
with the high conductivity of the cotton fibers (>2.1× 104 S/cm),
the GOx/AuNP/metallic cotton fiber-based electrode showed
an impressive power density of 3.7 mW/cm2 when assembled
into EFC.

RECENT PERFORMANCES OF
DET-ENABLED ANODES, CATHODES, AND
EFCs

Combining methods discussed in the previous sections,
recent studies have demonstrated enhanced performances
of electrodes and enzymatic fuel cells operating in direct
electron transfer. Studies worth highlighting are summarized
in Table 1.

Bioanode with one of the highest performances was
demonstrated by Gineityte et al.; GDH was immobilized onto
cysteamine-modified gold nanoparticles, which was tethered to
polyaniline (Gineityte et al., 2019). The unique combination
of conductive polymer directly electropolymerized on the
electrode surface and positively charged monolayer of gold
nanoparticles attributed to the enhanced electron transfer
between the bioanodic enzyme and the electrode. This study
further demonstrated the bioanode performance in human blood
samples, in which the average current density was ∼65% of
that in blood-mimicking buffer solution. One of the highest
power densities in an enzymatic fuel cell was reported by Chung
et al., who utilized a two-step crosslinking method to first form
a TPA/GOx composite and then immobilize onto PEI/CNT
electrode (Chung et al., 2017b). The large power density of
1,620 µW/cm2 was attributed to the enhanced electron transfer
due to electron delocalization by π conjugation as well as the
enhanced stability of the enzyme. Because the GOx denaturation
was reduced by the strong chemical bonds immobilizing the

bioanodic enzyme on the electrode surface, the assembled
EFC retained ∼75% of its power density for 4 weeks, which
highlighted the increased stability.

Some other methods that are interesting to note include
extending the EFC lifetime by functionalizing magnetic
nanoparticles with bioanodic enzymes to replenish the bioanode
with a fresh batch of biocatalysts (Herkendell et al., 2019).
Though power density of only 160 µW/cm2 was reported for
this EFC, the idea of removing and reloading the biocatalysts by
a magnetically assisted methodology was unique, which showed
the EFC lifetime was extended from∼20 to 70 h.

RECENT PROGRESS IN BIOMEDICAL
APPLICATION OF DET-ENABLED EFC

Implantable devices powered by EFCs are increasingly attracting
research attention since high substrate specificity of enzyme
catalysts removes the need for compartments or membranes,
allowing for miniaturization. Furthermore, use of biocompatible
nanomaterials for electrodes has shown great potential in
implantable EFC devices. Though mediated electron transfer-
based EFCs have shown potential for implantable device
applications earlier and consistently grown (Mano et al., 2003,
2004; Miyake et al., 2011; Sales et al., 2013), DET-enabled EFCs
closely followed the trend. Starting from those fueled by clams
(Szczupak et al., 2012) and lobsters (MacVittie et al., 2013),
DET-driven EFCs were surgically implanted on an exposed
rat tissue (Castorena-Gonzalez et al., 2013) and finally in
the abdominal cavity of a rat to truly show the potential of
biocompatible, implantable EFC to power devices, which was
demonstrated by the powering of light-emitting diode (LED)
and a digital thermometer (Zebda et al., 2013). To accomplish
this, Zebda et al. wrapped the enzyme electrodes in silicone
bags, followed by a dialysis bag filled with sterile solution and
then an autoclaved commercial sleeve to avoid inflammation or
toxicity issue with the rat tissue. Halámková et al. demonstrated
a glucose/oxygen fuel cell based on PQQ-GDH noncovalently
bound to carbon nanotubes and Lc as bioanodic and biocathodic
catalyst, respectively, and generated maximum power density
of 30 µW/cm2 and continuously operated as glucose was
regenerated by the snail’s feedings and relaxing (Figure 7)
(Halámková et al., 2012).

The effort toward implantable EFC-powered devices for
humans have also been consistent. Bollella et al. demonstrated a
proof of concept with a FAD-based CDH and Lc as bioanodic and
biocathodic enzyme catalyst, respectively, immobilized on a gold
nanoparticle-functionalized graphene screen-printed electrode;
the EFC with both enzyme catalysts co-immobilized on the same
electrode showed power output of 1.10µW/cm2 and open-circuit
voltage of 0.41V in real human saliva samples, hinting at a
potential non-invasive autonomous biodevices (Bollella et al.,
2018). DET-enabled EFCs also exhibited stable operation in
other human liquids such as serum, saliva, and urine, ranging
in power density of 12–18 µW/cm2 (Göbel et al., 2016).
Operation of mediatorless EFC utilizing various enzymes such
as PQQ-GDH and cellobiose dehydrogenase in real or synthetic
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TABLE 1 | Performances of electrodes and enzymatic fuel cells operating on direct electron transfer.

Bioanodic enzyme/

material

Biocathodic enzyme/

material

Fuel/oxidant Electrode/cell

current density

[µA/cm2]

Power density

[µW/cm2]

OCP [V] Lifetime [h] % current or

power density

retained during

lifetime

References

CDH/SWNT/GC - Lactose/- 500 - - 50 85 Tasca et al., 2011

CDH/graphite - Lactose/- 4.79 - - - - Ortiz et al., 2012

CDH/SWNT/GC - Lactose/- 500 - - 288 50 Tasca et al., 2013

- Lc/CNT/Ta -/O2 840 - - 168 75 Singh et al., 2020

GOx/hydroquinone/SWNT/Au Lc/SWNT/Au Glucose/O2 - 240 0.52 - - Bojórquez-Vázquez et al.,

2018

Py2Ox/CAT/GC Py2Ox/HRP/CNT-CMF-CC H2/glucose - 530 1.15 10 50 Ruff et al., 2018

GDH/PANI/AuNP/Au - Glucose/- 1,000 - - 24 79 Gineityte et al., 2019

GOx/NQ/MWNT HRP/MWNT Glucose/H2O2 - 700 0.6 - - Abreu et al., 2018

GOx/TPA/PEI/CNT Pt/C Glucose/O2 78.6 1,620 - 672 75.8 Chung et al., 2017b

GOx/PANI/GC Lc/PANI/GC Glucose/O2 - 1,120 0.78 336 82.9 Kang Z. et al., 2018

FAD-GDH/Th-AuNP/CNT/GC BOD/GR/CNT/GC Glucose/O2 925 269 0.71 - - Navaee and Salimi, 2018

GOx/Naph-SH/AgNP/PEI/CNT Pt/C Glucose/O2 - 1,460 - 840 83 Christwardana et al., 2018

GOx/graphene - Glucose/O2 - 164 0.44 168 60 Babadi et al., 2019

GOx/PVP-RPPy/NiF Lc/PVP-RPPy/NiF Glucose/O2 - 350 1.16 336 82 Kang et al., 2019

Zn BOD/MWNT/rGO/PG -/O2 650 775 1.68 - - Torrinha et al., 2020

- MoBOD/MWNT -/O2 4,000 - - 24 73 Gentil et al., 2018

GDH/GO/GC Lc/AuNP/Au Glucose/O2 1,100 400 0.86 576 93 Maleki et al., 2019

CDH, cellobiose dehydrogenase; SWNT, single-walled carbon nanotube; GC, glassy carbon; GOx, glucose oxidase; Py2Ox, pyranose oxidase; CAT, catalase; GDH, glucose dehydrogenase; PANI, polyaniline; NP, nanoparticles; NQ,

naphthoquinone; MWNT, multi-walled carbon nanotube; TPA, terephthalaldehyde; PEI, polyethyleneimine; CNT, carbon nanotube; FAD-GDH, flavin adenine dinucleotide-dependent GDH; Th, thionine; Naph-SH, naphthalene-thiol;

PVP-RPPy, polyvinylpyrrolidone-rectangular polypyrrole; GO, graphene oxide; Lc, laccase; HRP, horseradish peroxidase; CMF, carbon microfibers; CC, carbon cloth; BOD, bilirubin oxidase; rGO, reduced raphene oxide; PG, pencil

graphite; MoBOD, BOD from Magnaporthe orizae.
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FIGURE 7 | Schematic of enzymatic fuel cell using live snail. Figures are from work by Halámková et al. (2012).

human tear was observed, giving possibility of EFCs powering
“smart” contact lenses (Falk et al., 2012; Reid et al., 2015).
Other electrochemical devices for transdermal biosensing were
reviewed by Tasca et al. (2019); minimally invasive diagnostic
devices have gained some momentum, leading to microneedle-
based biosensors penetrating the skin at the dermis (i.e., 1–
2,000µm) level to detect analytes in human body such as glucose,
lactate, potassium ions, and glutamate.

Pankratov et al. utilized transparent, flexible substrate upon
which CDH and BOx were immobilized was used to produce
maximum of 0.6 µW/cm2 and maintain ∼80% of the initial
power density after 12 h of operation (Pankratov et al., 2015).
The use of the transparent substrate and the minimal impact on
the transparency upon enzyme immobilization, combined with
relatively stable operation of the EFC, suggests its potential as
a power source for smart contact lenses. The low power output
of the implantable DET-enabled EFC in human physiological
fluids [compared to ∼40 µW/cm2 achieved by Milton et al. via
mediated glucose oxidation in human serum at 21 ◦C (Milton
et al., 2015)] was primarily attributed to the extremely low
glucose concentration, but given that some cases of MET-
based EFC was able to show higher power outputs, there are
certainly more optimization and improvements needed before
implementing DET-based EFCs to power implantable devices.

CONCLUSIONS AND OUTLOOK

In addition to being a method of green energy production,
enzymatic fuel cells offer many advantages such as potential for

miniaturization and flexibility of fuels. With proper engineering
of various components of the EFC, scientific community
has come a long way in enhancing the EFC performance
including power density and open circuit potential in a push
toward real-life applications, especially in the biomedical field.
Both biocatalysts and electrodes were engineered to promote
higher catalytic activity, more efficient electron transfer, and
faster current collection to maximize power generation. Some
engineering methods have been employed to prolong the
activity of the biocatalysts and therefore the stability of the
EFC performance.

Even though many potential applications have been explored,
some of which were very promising, EFCs still suffer greatly
from lack of long-term stability and low power density with
fuel concentrations as low as physiological conditions. However,
the ongoing debate on whether or not MET is better than
DET or vice versa may be the bottleneck that takes away the
focus from realization of EFCs in real-life applications. More
research based on fundamentals of enzymatic and electroactivity
of the biocatalysts may be necessary to undeniably support or
refute the direct electron transfer of some popular enzymes like
glucose oxidase.
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