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High-Level Rovibrational
Calculations on Ketenimine
Martin Tschöpe †, Benjamin Schröder †, Sebastian Erfort † and Guntram Rauhut*

Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart, Germany

From an astrochemical point of view ketenimine (CH2CNH) is a complex organic molecule

(COM) and therefore likely to be a building block for biologically relevant molecules. Since

it has been detected in the star-forming region Sagittarius B2(N), it is of high relevance

in this field. Although experimental data are available for certain bands, for some energy

ranges such as above 1200 cm−1 reliable data virtually do not exist. In addition, high-level

ab initio calculations are neither reported for ketenimine nor for one of its deuterated

isotopologues. In this paper, we provide for the first time data from accurate quantum

chemical calculations and a thorough analysis of the full rovibrational spectrum. Based on

high-level potential energy surfaces obtained from explicitly correlated coupled-cluster

calculations including up to 4-mode coupling terms, the (ro)vibrational spectrum of

ketenimine has been studied in detail by variational calculations relying on rovibrational

configuration interaction (RVCI) theory. Strong Fermi resonances were found for all

isotopologues. Rovibrational infrared intensities have been obtained from dipole moment

surfaces determined from the distinguishable cluster approximation. A comparison of the

spectra of the CH2CNH molecule with experimental data validates our results, but also

reveals new insight about the system, which shows very strong Coriolis coupling effects.

Keywords: ketenimine, ab initio calculations, Fermi resonances, rotational spectrum, VSCF/VCI theory,

rovibrational calculations

1. INTRODUCTION

More than 200 molecules have been detected in the interstellar medium (ISM) or circumstellar
shells (Müller et al., 2001, 2005; Endres et al., 2016; McGuire, 2018) presenting a chemical variety
from rather stable to highly reactive species such as radicals, carbenes, and molecular ions. In a
similar way, the size measured by the number of atoms varies substantially from simple diatomics
(e.g., CO, CN, and OH; Weinreb et al., 1963; Jefferts et al., 1970; Wilson et al., 1970), to carbon-
chain molecular species like cyanopolyynes (HCnN; Ohishi and Kaifu, 1998) and simple organic
molecules like methanol (CH3OH; Ball et al., 1970), up to still larger compounds like polycyclic
aromatic hydrocarbons (PAHs; Allamandola et al., 1989) and fullerenes (C60; Cami et al., 2010).
Within the context of astrochemistry molecules with 6 or more atoms are usually referred to
as complex molecules and when carbon is present also as complex organic molecules (COMs;
Herbst and van Dishoeck, 2009). Such compounds are thought to be important building blocks for
biologically relevant molecules (Woon, 2002; Theule et al., 2011; Ohishi, 2019) and accordingly,
much attention has been paid to the study of formation pathways for COMs (Herbst and van
Dishoeck, 2009; Öberg, 2016, and references therein).
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Examples of such COMs are the class of imines (R-C=NH).
They have been shown to be important intermediates for the
hydrogenation of CN moieties (Theule et al., 2011; Krim et al.,
2019). Recently, formation of imines has been reported for
radiative-processing of ices. Vasconcelos et al. investigated the
products from ion irradiation of N2-CH4 ice mixtures by in-
situ Fourier transform infrared spectroscopy (FTIR) and, among
others, methyleneimine was identified (Vasconcelos et al., 2020).
In a similar fashion, Carvalho and Pilling (2020) detected
ketenimine by FTIR spectroscopy upon irradiation of acetonitrile
ice with X-rays (6–2000 eV). Ketenimine (H2C=C=NH) is one
of only 4 imines which have been conclusively identified to
be present in the ISM (Godfrey et al., 1973; Kawaguchi et al.,
1992; Lovas et al., 2006; Zaleski et al., 2013). Using the 100 m
Green Bank Telescope Lovas and coworkers observed three
rotational transitions of ketenimine toward the star-forming
region Sagittarius B2(N) (Lovas et al., 2006). It is known that
temperatures in Sagittarius B2(N) vary between 40K in the
envelope and 300K in the hot dense core (Martín-Pintado et al.,
1996). Therefore, it could be possible that not only the rotational
spectrum of ketenimine can be detected with radio telescopes,
but also the rovibrational spectrum due to IR spectroscopy. Since
Sagittarius B2(N) is a star forming region, the question arises
whether ketenimine can be found in protoplanetary disks or even
exoplanet atmospheres. Considering the recent successes in this
field (Charbonneau et al., 2002;Mandell et al., 2013; Gandhi et al.,
2020) as well as the upcoming space telescopes JamesWebb Space
Telescope (JWST) and Atmospheric Remote-sensing Infrared
Exoplanet Large-survey (ARIEL) with high sensitivity in this
spectral range this is a feasible aim.

Given its importance as the simplest member of a larger
class of chemically interesting molecules (Alajarin et al., 2012),
ketenimine has been subject to a number of experimental
spectroscopic investigations which revealed a complex
rovibrational spectrum. The first spectroscopic investigation of
ketenimine was reported by Jacox and Milligan (1963). Infrared
transitions of the transient species were tentatively assigned
following the reaction of NH with acetylene in argon matrix. The
assignment was later confirmed and extended by Jacox (1979)
in an argon matrix-isolation study of the photoisomerization
of acetonitrile.

A gas phase rotational spectrum of ketenimine was obtained
by Rodler and coworkers using microwave spectroscopy (Rodler
et al., 1984). Ground-state rotational parameters of A0 =
201443.69, B0 = 9663.138, and C0 = 9470.127MHz
were determined from a fit to Watson’s S-reduced rotational
Hamiltonian (Watson, 1977) in the Ir representation. The latter
parameters show that ketenimine is a near-prolate asymmetric
top (asymmetry parameter κ = −0.998). Measurements of
Stark-splittings (Rodler et al., 1984) yielded the ground state
dipole moments aµ0 = 0.431(1)D and cµ0 = 1.371(6)D.
Rodler et al. later carried out a high-resolution analysis in the
4–7GHz region for the main as well as the ND isotopologue
revealing small splittings in the former case, due to the imino
inversion (Rodler et al., 1986). The latest study of the vibrational
ground state rotational spectrum of ketenimine was performed
by Degli Esposti at submillimeter wavelength (Degli Esposti

et al., 2014). In total, 297 line frequencies were analyzed yielding
spectroscopic parameters that allow for the accurate prediction
of rotational transitions up to 1 THz.

The rovibrational spectrum of ketenimine has been studied by
both, in low-resolution (August, 1986) as well as high-resolution
(Ito et al., 1990; Ito and Nakanaga, 2010; Bane et al., 2011a,b,c).
A gas phase spectrum of the ν̃3 = 2044 cm−1 CCN-stretching
vibration has been obtained by Ito et al. (1990) using FTIR
spectroscopy. Analysis of the spectrum revealed a complicated
structure due to several Coriolis-type interactions, which could
only be analyzed approximately due to missing information on
the perturbing states. Almost 20 years later Ito and Nakanaga
reported the observation of the CNH bending rovibrational
spectrum around ν̃6 = 1000 cm−1 using FTIR spectroscopy.
Again, strong Coriolis perturbations precluded a detailed analysis
of the ν6 state and only effective spectroscopic parameters for
individual Ka sub-bands were obtained. The latter values allowed
the ν10 (CH2 rocking) and ν11 (torsion) vibrations to be identified
as likely perturbers, based on their large contribution to the
vibration-rotation interaction constant αA

6 .
In a series of articles Bane and coworkers presented a

thorough experimental analysis of the low lying fundamental
bands of ketenimine (Bane et al., 2011a,b,c). The observed
bands encompass the out-of-plane and in-plane CCN bending
vibrations around ν̃12 = 409 and ν̃8 = 466 cm−1 (Bane
et al., 2011c), respectively, the CH2 wagging mode (ν̃7 =
693 cm−1; Bane et al., 2011b) and the CH2 rocking mode
(ν̃10 = 983 cm−1) as well as the strong CNH bending mode
ν6 (Bane et al., 2011a). Following the assignment of more than
6,000 rovibrational transitions and fitting of the spectrum, an
intricate system of Coriolis-coupled states was revealed whereby
all 5 observed states are coupled via Coriolis-coupling either
directly (e.g., a-axis Coriolis coupled ν12 & ν8) or indirectly.
The analysis required the inclusion of unobserved “dark states”
2ν8, ν8 + ν12, and 2ν12 which are also expected to be strongly
Coriolis-coupled amongst themselves. While the global fit to
Watson’s S-reduced Hamiltonian (Ir) reproduced the observed
rovibrational transition frequencies, Bane et al. noted that the
torsion fundamental ν11 around 880 cm−1 probably also adds to
the complex rovibrational coupling but considered inclusion of
this interaction intractable.

Theoretical work on the rotational and rovibrational
spectroscopy of ketenimine is rather scarce and either based
on limited ab initio methods (Kaneti and Nguyen, 1982; Brown
et al., 1985) or has been done only in support of dedicated
experimental investigations (Ito et al., 1990; Ito and Nakanaga,
2010; Bane et al., 2011c). In the latter case, the work of Bane
and coworkers (Bane et al., 2011c) provided the previously
most accurate predictions of the fundamental frequencies with
a root-mean-squared deviation of 11 cm−1. The results were
obtained from B3LYP/cc-pVTZ harmonic frequencies which
were uniformly scaled by a factor of 0.965. Given its possible
importance in astrochemical reaction networks and the strong
rovibrational couplings a more in-depth look at the rotational
and rovibrational spectroscopy of ketenimine appears desirable.

Recently, some of us reported on the implementation of a
new program for variational rovibrational calculations within the
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MOLPRO package of ab initio programs (Erfort et al., 2020a).
The approach combines the well establishedMOLPRO capabilities
(Werner et al., 2020) of obtaining multidimensional potential
energy and dipole moment surfaces, comprehensive symmetry
information and the accurate determination of vibrational
wave functions with efficient calculation of partition functions,
rovibrational transition frequencies, and transition dipole matrix
elements in an almost black-box manner. Within this study
here, we report about high-level ab initio calculations based on
anharmonic potential energy surfaces obtained from explicitly
correlated coupled-cluster theory, which allows for a detailed
analysis of the (ro)vibrational spectra of the title compound.
Compared to previous work the rovibrational calculations have
been extended by pure rotational spectra, which is a newly
implemented feature in MOLPRO.

2. COMPUTATIONAL DETAILS

Geometries, harmonic frequencies and normal coordinates of
ketenimine (X1A′) and its Cs symmetric isotopologues were
computed at the level of frozen-core explicitly correlated
coupled-cluster theory, CCSD(T)-F12b, in combination with a
basis set of triple-ζ quality, i.e., cc-pVTZ-F12 (Adler et al.,
2007). Hartree-Fock energies were corrected by addition of the
complementary auxiliary basis set singles correction (CABS)
(Knizia and Werner, 2008).

n-mode expansions of the potential energy surface (PES) and
the dipole moment surface (DMS) being truncated after 4th
order were used in all calculations (Ziegler and Rauhut, 2018). A
multi-level scheme has been employed throughout (Pflüger et al.,
2005; Yagi et al., 2007), in which the 1D and 2D terms of the
PES were computed at the CCSD(T)-F12b/cc-pVTZ-F12 level,
while the explicitly correlated distinguishable clusters approach,
DCSD-F12b, in combination with a smaller cc-pVDZ-F12 basis
was used for the 3D and 4D terms. The 1D and 2D terms of
the DMS were computed at the conventional DCSD/cc-pVTZ-
F12 level and the 3D and 4D terms at the DCSD/cc-pVDZ-F12
level (Kats and Manby, 2013; Kats et al., 2015). In total about
170,000 ab initio points were used for representing the surfaces.
Efficient Kronecker product fitting was employed to transform
this grid representation into an analytical one consisting of 10
local B-splines per dimension (Ziegler and Rauhut, 2016).

Vibrational self-consistent field theory (VSCF) has been
used to determine one-mode wavefunctions (modals) based
on the Watson Hamiltonian (Watson, 1968). Vibrational
angular momentum terms (VAM) were not included within
the variational determination of the modals, but were added
a posteriori to the state energies (Neff et al., 2011). A
mode-dependent basis of 20 distributed Gaussians has been
used throughout for representing the modals. Subsequent
state-specific configuration-selective vibrational configuration
interaction calculations (VCI) were used for calculating accurate
state energies (Neff and Rauhut, 2009). The correlation space
contained single to 6-tuple excitations up to the 8th root
per mode and a maximum sum of quantum numbers of 15.
This resulted in about 4·106 Hartree products (configurations)

per irreducible representation. These calculations included
VAM terms based on a constant µ-tensor. Eigenvalues were
determined with our residuum based eigenvalue solver (RACE)
(Petrenko and Rauhut, 2017).

Within the calculation of the rovibrational spectra we also use
the Watson-operator (Watson, 1968)

HWatson =
1

2

∑

αβ

Jαµαβ Jβ −
1

2

∑

αβ

(Jαµαβπβ + παµαβ Jβ )+HVib,

(1)

where Jα denotes the total angular momentum operator, πα the
vibrational angular momentum operator and µαβ refers to an
element of the inverse effective moment of inertia tensor. The
summations over α and β run over the three molecule fixed
Cartesian space coordinates. The first term in Equation (1) gives
the kinetic energy of rotational motion and the second term
couples rotation and vibration and is referred to as Coriolis term.
All other terms of theWatson Hamiltonian are purely vibrational
operators and are thus summarized in the term denoted HVib.
Within rovibrational configuration interaction (RVCI) theory the
rovibrational wave functions are expanded in terms of products
of VCI wave functions and rotational basis functions (Erfort
et al., 2020a,b). The latter can be either primitive symmetric
top eigenfunctions or Wang combinations of symmetric top
functions (Wang, 1929; Špirko et al., 1985).

In the following, we will distinguish between rotational
configuration interaction (RCI) and rovibrational configuration
interaction (RVCI). RCI is an approximation, in which no
rovibrational interaction between different vibrational states is
considered. This corresponds to neglecting the second term, see
Equation (1), as well as all terms off-diagonal in the vibrational
quantum numbers, arising from the 1D and higher order
expansion of the µ-tensor (centrifugal distortion). Since every
RCI-matrix is thus constructed for a single VCI wave function,
the vibrational state identity can be trivially assigned for every
rovibrational state. In contrast, within RVCI all rovibrational
interactions are considered. As a consequence the only “good”
quantum number is the angular momentum quantum number
J and the parity of the rovibrational state. In this sense, RVCI
yields the physically meaningful results. However, we found
that a comparison of RVCI with the RCI results is helpful to
understand and visualize both the effects of Coriolis interaction
and intensity borrowing mechanisms in general. Again, it shall
be noted that for comparison with experiments only RVCI results
should be used.

The rovibrational intensities are calculated according to

I =
2π2

3

NA

ǫ0h2c2
e−E

′′/kBT(1− e−(E
′−E′′)/kBT)

Q(T)
(E′ − E′′)R2. (2)

In Equation (2), the first two prefactors contain only constants.
The next factor corresponds to the thermal distribution function,
with the temperature T, Boltzmann constant kB, the energy of the
lower state E′′ and the upper state E′ as well as the temperature
dependent partition function Q(T). For the latter, we use the
separability approximation Q = QvibQrot for several reasons.
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First, we are investigating a relatively low temperature regime
up to 300K, where the partition function converges quickly
with increasing excitation, such that errors in energies for high-
lying states have little influence. Second, we have shown in our
previous work (Erfort et al., 2020a), that for H2CO and H2CS the
differences between experimental Q(T) values and theoretically
approximatedQvibQrot values for the partition function are lower
than 2% up to 300K. In addition to that, the partition function
is the same global factor for every transition and since we are
primarily interested in relative intensities rather than in absolute
intensities, it is therefore not crucial for us. The last two factors
in Equation (2) correspond to the frequency of the transition
(E′− E′′) and the squared transition moment R2. The calculation
of the latter within RVCI has been outlined previously (Erfort
et al., 2020a). For ketenimine all nuclear spin statistical weights
show the values of 24.

Further approximations are used to limit the calculation times.
First of all, we are not considering hot bands. Due to relatively
low temperatures and absence of fundamentals with particularly
low energies, these bands have fairly low intensities and are
mainly hidden behind significantly more intense transitions
arising from the vibrational ground state. This is supported by
a comparison to the results of Bane and coworkers (Bane et al.,
2011c). Moreover, the inverse effective moment of inertia tensor
µ is expanded to the 0th order for the RVCI calculation. Within
these computations all fundamental bands, seven combination
bands (ν3 + ν5, ν3 + ν6, ν5 + ν6, ν6 + ν10, ν7 + ν8, ν7 + ν12,
and ν8 + ν12) and seven overtones (2ν6, 2ν7, 2ν8, 2ν10, 2ν12,
3ν8, and 3ν12) were simultaneously considered, giving in total
Nvib = 27 vibrational states (including the ground state). As
a convergence check we performed a calculation with angular
momentum quantum number of J ≤ 70 and one with J ≤ 100.
The VCI calculations were performed in parallel using 9 cores,
with a total computational time of 100 h. The required memory
for the subsequent serial RVCI treatment is less than 40GB. As an
example, the RVCI matrix for J = 70, with Nvib = 27 vibrational
states is of size (2J + 1)Nvib = 3, 807. Although, this is relatively
small in comparison to other rovibrational software, the results
are nevertheless very accurate. A possible reason for this lies in
the very accurate and compact vibrational basis, in the form of
VCI wavefunctions. Computational timings on a single CPU core
were about 83min for RVCI energies and about 14 h for RVCI
intensities for J ≤ 70. For the same upper bound of J there
were 3.81× 107 transitions considered and about 1.41× 106 of
them where found to be significant. For T = 300K the partition
function is converged to Q(T) = 2.05× 105 at J = 71.

3. RESULTS AND DISCUSSION

3.1. Geometrical Parameters, Rotational
Constants, and Dipole Moments
Geometrical parameters of the main ketenimine isotopologue
as well as two deuterated variants have been calculated and are
provided in Table 1. The parameters obtained from the Born-
Oppenheimer equilibrium geometry are denoted re. The only
experimental geometrical parameter available for comparison is a

mixed experimental-theoretical valence angle α(C2NH3) (Rodler
et al., 1986). From a semi-rigid bender analysis of the 91,8-
100,10 ground state rotational transition, Rodler and coworkers
determined a value of 115.4 ± 0.6◦ for α(C2NH3) which is in
excellent agreement with our optimized value of 114.76◦. To
account for vibrational effects ra and rg parameters have been
calculated. While the former correspond to parameters obtained
from atomic positions averaged over the VCI ground state
wavefunction, the latter are instantaneous inter-nuclear distances
calculated from an expectation value of the bond lengths
expanded in terms of the normal coordinates. As is typically
observed (Czakó et al., 2009; Dinu et al., 2020), both sets of
vibrationally averaged bond lengths differ substantially from each
other with the largest absolute difference of 0.0169Å observed
for r(NH3) in the main isotopologue. The CNH angle α(C2NH3)
shows a slightly larger vibrational effect compared to other
angles, in line with the inversion character of this coordinate.
The barrier to planarity (C2v) was computed to be 5249 cm−1

at the CCSD(T)-F12b/cc-pVTZ-F12 level and is thus too high
for tunneling effects in the fundamental modes to be of any
importance. The semi-rigid bender analysis (Rodler et al., 1986)
yielded a barrier height of 4700±200 cm−1 which compares well
with the present theoretical result. The imaginary frequency
characterizing the transition state amounts to i908 cm−1. Note
that there is no stationary point on the potential energy surface
for a planar structure of neutral ketenimine.

Calculated and experimental (Rodler et al., 1984, 1986)
rotational parameters for ketenimine isotopologues are
compared in Table 2. There, rotational parameters A, B,
and C obtained from the equilibrium geometry are denoted
by method re. Following the work of Czakó et al. (2009),
vibrationally averaged rotational parameters are approximated
from the expectation value of the µ-tensor (Watson, 1968) over
VCI wavefunctions. An n-mode expansion of the µ -tensor up
to 3D terms has been employed in these calculations. Since this
approach does not account for Coriolis coupling contributions
to the rotational parameters, these are added via a correction
based on Vibrational second-order perturbation theory (VPT2)
(Rauhut, 2015; Dinu et al., 2020). The final equation for the
rotational parameters Bα

v (α = a, b, c) within a vibrational state v
is thus given by

Bα
v ≈
〈µαα〉v

2
+

∑

k

2(Bα
e )

2

ωk

∑

l

(

ζα
kl

)2 3ω
2
k
+ ω2

l

ω2
k
− ω2

l

(

vk +
1

2

)

. (3)

In Equation (3), 〈µαα〉v is the expectation value of a diagonal
µ-tensor element evaluated over the VCI wavefunction for
state v. In the second term of Equation (3), constituting the
VPT2 Coriolis correction, Bα

e is the equilibrium rotational
constant with respect to rotation about an axis α, ωk are
harmonic vibrational frequencies and ζα

kl
are Coriolis constants

that describe the coupling of vibrations k and l via rotation
about the α-axis. Results obtained from Equation (3) for
the vibrational ground state are denoted either 〈µαα〉0 or
〈µαα〉0+VPT2 in Table 2, depending on whether the Coriolis
correction is included or not. Notice that in the evaluation of
〈µαα〉v the µ-tensor has been expanded up to 3D terms.
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TABLE 1 | Computed geometrical parameters of ketenimine and its deuterated isotopologues.

H2C=C=NH D2C=C=ND H2C=C=ND

Coord. re ra rg ra rg ra rg

r(C1H1) 1.0791 1.0829 1.0991 1.0823 1.0938 1.0818 1.0992

r(C1C2) 1.3135 1.3175 1.3205 1.3172 1.3203 1.3173 1.3204

r(C2N) 1.2284 1.2302 1.2335 1.2302 1.2336 1.2303 1.2335

r(NH3) 1.0174 1.0202 1.0371 1.0196 1.0318 1.0211 1.0316

α(C2NH3) 114.76 115.07 114.95 115.02

α(C1C2N) 174.05 174.10 174.08 174.10

α(H1C1C2) 119.88 119.73 119.78 119.75

TABLE 2 | Computed and experimental rotational constants in GHz.

Isotopologue Method A B C

H2C=C=NH re 201.08792 (−0.18%) 9.65878 (−0.05%) 9.47482 (+0.05%)

〈µαα〉0 201.79883 (+0.18%) 9.62993 (−0.34%) 9.43904 (−0.33%)

〈µαα〉0+VPT2 200.31173 (−0.56%) 9.62412 (−0.40%) 9.43309 (−0.39%)

Exp.a 201.44527 9.66315 9.47015

D2C=C=ND re 103.66119 8.05874 7.78830

〈µαα〉0 104.74983 8.03709 7.75996

〈µαα〉0+VPT2 103.35526 8.03232 7.75515

H2C=C=ND re 162.40310 (−0.51%) 9.03436 (+0.02%) 8.96746 (+0.06%)

〈µαα〉0 163.27301 (+0.02%) 9.00356 (−0.33%) 8.93460 (−0.31%)

〈µαα〉0+VPT2 162.21271 (−0.63%) 8.99879 (−0.38%) 8.92979 (−0.36%)

Exp.a 163.24242 9.03295 8.96219

aValues determined from fits to Watson’s S-reduced Hamiltonian (Rodler et al., 1984, 1986).

Where available, percentage deviations of calculated results with respect to experimental data is given in parentheses.

Inspection of Table 2 shows rather large deviations of the
Coriolis-corrected vibrationally averaged rotational parameters
of−0.56,−0.40, and−0.39%with respect to experimental results
(Rodler et al., 1984, 1986) for A0, B0, and C0, respectively.
In contrast, the calculated equilibrium rotational parameters
are in much better agreement with the experimental ground
state rotational parameters, which is mainly due to error
compensation. To confirm this, a geometry optimization at the
all-electron CCSD(T)-F12b level of theory in conjunction with a
cc-pCVTZ-F12 basis set (Hill et al., 2010) was carried out. This
yields equilibrium rotational parameters (in GHz) for the main
ketenimine isotopologue of 202.06657, 9.70127, and 9.51561
for Ae, Be, and Ce, respectively. Adding the corrections due
to vibrational averaging and Coriolis-coupling results in A0 =
201.290 38GHz (−0.08%), B0 = 9.666 61GHz (+0.04%), and
C0 = 9.464 40GHz (+0.04%), where deviations with respect to
the experimental results of Rodler et al. (1984, 1986) are given
in parentheses. The agreement of these corrected results with
the experimental ones is excellent, but it is well-known that
core correlation effects should not be considered without the
inclusion of high-level coupled-cluster terms, e.g., CCSDT(Q),
at the same time, because they often partly compensate each
other (Ruden et al., 2004; Meier et al., 2011; Puzzarini et al.,
2020). Moreover, rovibrational intensities as considered below

depend on several quantities and the impact of these additional
corrections might be different for the individual quantities.
Consequently, there is no unique answer, if the partial inclusion
of these corrections will lead to better results. In any case, the
inclusion of these high-level corrections is beyond the focus
of this study and we neither did account for core correlation
effects nor high-order coupled-cluster terms in the calculations
presented below.

Experimental high-resolution spectroscopic investigations
have revealed strong a-axis Coriolis coupling among the low
lying vibrational states of ketenimine, especially for the pair of
fundamentals ν8 and ν12 (Bane et al., 2011a,b,c). This can also be
shown by comparing rotation-vibration coupling constants α

β
i .

From the rotational constants presented by Bane et al. (2011a) αβ
i

can be approximated by α
β
i = B

β
0 −B

β
i . This yields 6185.3,−34.0,

and −13.4MHz for αA
12, α

B
12, and αC

12, respectively, and −2845.0,
−8.1, and −22.1MHz for αA

8 , αB
8 , and αC

8 , respectively. These
values should be compared to our theoretical VPT2 results of
444.5, −34.2, and −14.7MHz for αA

12, α
B
12, and αC

12, respectively,
and 2497.5,−9.3 and−22.7MHz for αA

8 , α
B
8 and αC

8 , respectively.
Following Papoušek and Aliev (1982), the latter values have been
corrected for the a-axis Coriolis resonance between ν12 and ν8 in
order to be comparable with the results of Bane and coworkers.
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TABLE 3 | Calculated dipole moments Eµ (in D) of ketenimine and its deuterated

isotopologues.

Eµe Eµ0

Isotopologue a
µe

c
µe | Eµe|

a
µ0

c
µ0 | Eµ0|

H2C=C=NH
a 0.5008 1.4056 1.4912 0.4587 1.3766 1.4510

H2C=C=ND 0.4643 1.4170 1.4912 0.4314 1.4028 1.4676

D2C=C=ND 0.4669 1.4162 1.4912 0.4394 1.3940 1.4616

aExperimental results (Rodler et al., 1984): aµ0 = 0.434(1), cµ0 = 1.371(6), and | Eµ0| =

1.438(6) D.

To this end, the corresponding (i, j) = (12, 8) or (8, 12) term in
the Coriolis contribution to α

β
i (cf. second term in Equation 3) is

replaced according to

(ζ β
ij )

2
3ω2

i + ω2
j

ω2
i − ω2

j

→−(ζ β
ij )

2 B
β
e (ωi − ωj)2

ωiωj(ωi + ωj)
.

We have also investigated whether symmetry allowed off-
diagonal contributions αAC

k
are important for ketenimine,

following the work of Aliev and Watson (1985), but found their
contribution to effective α̃

β
12 and α̃

β
8 after diagonalization of the

respective Bαβ
i matrices negligible.

While the B and C components are in excellent agreement
between experiment and theory, the A components show large
differences. Moreover, the differences between experiment and
theory for ν12 and ν8 are almost identical but of opposite
sign (−5740.8MHz for ν12 and 5342.5MHz for ν8). For
comparison, not accounting for Coriolis resonance yields
unphysical VPT2 values of −59021.2 and 61996.7 MHz for αA

8
and αA

12, respectively. Such effects are unambiguous indications
of strong Coriolis coupling. The preceding discussion clearly
shows that a simple treatment of the rotational problem and the
rovibrational couplings in ketenimine, based on e.g., Equation (3)
or VPT2, has to proceed with caution. A variational treatment
employing the exact rovibrational Hamiltonian automatically
includes all interactions necessary for a correct description of the
internal dynamics.

Calculated dipole moments of ketenimine and its
isotopologues are listed in Table 3. Our DMS yields equilibrium
dipole moments for the main ketenimine isotopologue of
aµe = 0.5008D and cµe = 1.4056D, where superscripts a
and c refer to the principal axis components of the dipole
vector Eµe. Symmetric H/D substitution results in a rotation
of the a- and c- axis around the b axis. As a consequence, the
components aµe and cµe of the dipole vector differ among
the ketenimine isotopologues but the total dipole moment
of | Eµe| = 1.4912D is unchanged. The situation is different
for the ground state dipole moments Eµ0 due to variations of
vibrational averaging effects. Overall, vibrational averaging
results in a lowering of both a- and c-axis components. The
non-deuterated isotopologue shows slightly larger effects due
to vibrational averaging, especially for the c-axis component.
Rodler et al. (1984) determined the dipole vector components of

the main isotopologue and from Stark shifts of the 202 ← 101
and 211 ← 110 rotational transitions. While the resulting
cµ0 = 1.371(6)D is in excellent agreement with our calculated
value of 1.3766D, a somewhat larger difference is observed
between the experimental aµ0 = 0.431(1)D and calculated
0.4587D. This difference is in part due to a geometric effect.
Using the optimized ae-CCSD(T)-F12b/CVTZ-F12 geometry,
equilibrium dipole moments of aµe = 0.4854D (−0.0154D) and
cµe = 1.4029D (−0.0027D) were obtained from DCSD/VTZ-
F12 calculations, where values in parentheses correspond to the
difference with respect to the values quoted in Table 3. Adding
the vibrational averaging correction yields an approximate
aµ0 ≈ 0.4433 D, closer to the experimental result. Again, the
influence of high-order coupled-cluster terms would be required
to further reduce the remaining error.

3.2. Vibrational Spectrum
The purely vibrational transitions of ketenimine and its
isotopologues are listed in Table 4. Clearly, for the deuterated
species the majority of experimental assignments is missing
and a comparison of the different experimental results for
H2CCNH shows that these results bear an uncertainty of
several wavenumbers.

Concerning the assignments for the non-deuterated
ketenimine, a huge difference of more than 80 cm−1 between
the computed and experimental values of Bane et al. (2011c)
can be seen for mode ν4. An analysis showed that this mode
shows a strong Fermi resonance with the overtone of ν7 and our
calculated value of 1350.9 cm−1 for 2ν7 agrees nicely with the
experimental value of 1355 cm−1. As our calculations clearly
assign the transition at 1435.9 cm−1 to the fundamental mode,
we believe that the experimental value of 1355 cm−1 belongs
to the 2ν7 overtone, which is the lower state of this Fermi pair.
The reason for this misassignment might be that the infrared
intensity of the overtone is much stronger than that for the
fundamental. A closer look at this particular resonance reveals
a peculiar feature. While the band intensity at the VSCF level
amounts to 3.42 km/mol for ν4 and 4.47 km/mol for 2ν7, almost
all intensity is transferred to the overtone within the VCI
calculations. This can be understood by comparison to a VPT2
based analysis that accounts for the Fermi resonance (Vázquez
and Stanton, 2007). Then, the intensities of the Fermi dyad in
question are predominantly determined by the mixed a-axis
transition dipole moments 〈aµ〉ν . The latter are obtained from
the eigenvector components C ν

ω of the Fermi resonance matrix

and the (deperturbed; dp) transition dipole moments 〈aµ〉dpω
evaluated over harmonic basis functions |ω〉 according to:

〈aµ〉ν4 = C ν4
ω4
· 〈aµ〉

dp
ω4 + C ν4

2ω7
· 〈aµ〉

dp
2ω7

= 0.78 · 0.033 D+ 0.62 · −0.044 D ≈ 0.002 D

and

〈aµ〉2ν7 = C 2ν7
ω4
· 〈aµ〉

dp
ω4 + C

2ν7
2ω7
· 〈aµ〉

dp
2ω7

= −0.62 · 0.033 D+ 0.78 · −0.044 D ≈ −0.055 D,
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TABLE 4 | Comparison of calculated VCI fundamental frequencies of H2C=C=NH and its deuterated isotopologues with experimental data.

H2C=C=NH D2C=C=ND H2C=C=ND

# Sym. Harm. VCI Int. Exp.a Exp.b Exp.c Exp.d Harm. VCI Int. Exp.d Harm. VCI Int.a Exp.d

ν1 A′ 3492.7 3315.4 10.9 3321.8 2563.0 2464.4 17.1 3177.1 3046.7 29.7

ν2 3177.0 3048.0 2.6 2325.3 2250.1 40.7 2246 2562.9 2467.4 20.1

ν3 2084.4 2041.8 281.9 2037 2043.6 2040 2044.1 1997.7 150.2 1998 2067.2 2027.7 287.0 2028

ν4 1440.3 1435.9 0.1 1355 1231.5 1207.2 0.7 1440.2 1424.7 3.4

ν5 1140.1 1122.5 16.9 1127 1124 944.4 921.7 23.3 921 1136.0 1120.4 11.7 1120

ν6 1045.1 1006.7 200.2 1000.2 1004 1000.2 1000 824.5 804.1 77.0 800 829.9 807.7 74.1 817

ν7 705.5 691.1 77.2 692.9 690 555.3 549.6 39.8 705.2 679.5 53.4 693

ν8 463.3 464.3 19.8 466.5 417.6 415.5 27.0 427.9 426.5 24.0

ν9 A” 3276.2 3132.5 0.2 2441.0 2359.3 0.0 3276.4 3131.4 0.2

ν10 1000.3 980.7 0.6 983.1 842.2 831.0 0.0 1000.4 979.2 0.1

ν11 904.6 876.0 29.6 872 872 666.2 653.7 27.9 648 752.2 731.4 19.1

ν12 405.8 405.7 0.4 409.0 351.4 349.4 0.2 400.8 399.4 0.2

Frequencies are given in cm−1 and infrared intensities in km/mol.
aExperimental gas phase values taken from Bane et al. (2011c,c,a).
bExperimental values taken from the compilation in Bane et al. (2011c).
cExperimental values taken from Ito et al. (1990) and Ito and Nakanaga (2010).
dExperimental Ar matrix values taken from Jacox and Milligan (1963) and Jacox (1979).

where the corresponding values have been inserted. As can
be seen from above equations, the efficient intensity stealing
results from a compensation of the signs of the eigenvectors
and the deperturbed transition dipole moments. The analysis
and composition of all observed resonances of the fundamental
modes of all isotopologues based on VCI calculations is
summarized in Table 5. For all other fundamental modes of the
non-deuterated molecule the agreement of the VCI calculations
with the experimental results is excellent and the maximum
deviation is no larger than 6.2 cm−1, which is within the
error bar of potential energy surfaces obtained from explicitly
correlated coupled-cluster theory (Rauhut et al., 2009). In order
to reduce this remaining error even further one would need
to incorporate a number of corrections within the electronic
structure calculations as for example high-order coupled-cluster
terms, core-correlation effects, relativistic contributions, etc.
(Ruden et al., 2004; Meier et al., 2011).

The results for the fully deuterated isotopologue, i.e.,
D2CCND are of the same quality as for H2CCNH and thus
the VCI results most likely provide reliable predictions for all
fundamentals. Most remarkably for this isotopologue are the very
strong intensities for ν3 and its resonance partners (cf. Table 5).
The results for H2CCND look more inconsistent than for the
other two isotopologues. While modes ν3 and ν5 are in excellent
agreement with the experimental results, the VCI results for
ν6 and ν7 deviate by 9.3 and 13.5 cm−1 from the experimental
reference data, respectively. According to our VCI calculation,
ν6 shows a weak Fermi resonance with the overtone of ν12
(due to its weak character it has not been listed in Table 5). As
such coupling pairs are sensitive with respect to environmental
effects as arising from the argon matrix, the deviation of
9.3 cm−1 may be explained this way. However, we consider
this rather unlikely, but suspect difficulties in pinpointing the
transition energies in the experiment, because Jacox reports

that overlapping parent molecule absorptions and unassigned
contributions of other products such as the partially deuterated
methyl cyanides complicate the assignment of other absorptions to
the partially deuterated ketenimines (Jacox, 1979). Note that for
all isotopologues, ν4 shows strong Fermi resonances, but with
different partners and in all cases the intensity of the overtone
is stronger than for the fundamental.

3.3. Rotational Spectrum
In Figure 1, our computed RVCI rotational spectrum of
ketenimine (Figure 1A) is compared with a simulated
experimental spectrum (Figure 1B) for a temperature of
T = 50 K. The latter spectrum has been calculated with
the SPCAT program (Pickett, 1991) using the spectroscopic
parameters of Degli Esposti et al. (2014) determined from the
submillimeter wave spectrum, while intensities are based on the
experimentally determined dipole moments in the vibrational
ground state (Rodler et al., 1984). Intensities are given relative
to the strongest line at T = 50 K, which corresponds to the
52,3 → 63,3 transition in both cases. Excellent agreement between
the RVCI and the experimental spectrum is observed. Only very
subtle frequency differences appear upon close inspection, which
occur mainly due to the difference of about 0.3GHz in the
employed A rotational constants (compare Table 2). The overall
shape of the spectrum, which is dominated by cR10 branch
progressions and the sharp cQ branches, is nicely reproduced by
the RVCI spectrum.

We have studied the temperature dependence of the ground
state rotational spectrum in the range 20 to 300K and results are
depicted in Figure 2. With increasing temperature the intensity
of the rotational transitions decrease by about a factor of 2
and the rather sharp cQ10 branches below 600 GHz broaden
significantly. While for T = 20K the cR10 transitions originating
in Ka = 1 states are the strongest up to 2 THz, with each
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TABLE 5 | Resonances of the fundamental modes of ketenimine and its isotopologues.

Molecule Mode Freq. Int. Composition

H2CCNH ν4 1435.9 0.1 41 (55.8%) 72 (35.2%)

1350.9 8.4 72 (53.3%) 41 (36.1%)

ν11 876.0 29.6 111 (59.6%) 81121 (36.7%)

880.5 18.6 81121 (57.1%) 111 (39.0%)

D2CCND ν4 1207.2 0.7 41 (69.9%) 61121 (21.4%)

1220.6 1.9 61121 (60.3%) 41 (25.6%)

ν3 1997.7 150.2 31 (49.1%) 4161 (24.8%)

2019.2 40.1 4161 (52.3%) 6281 (16.7%) 31 (13.3%)

2001.0 136.6 6281 (41.2%) 31 (42.0%)

ν1 2464.4 17.1 11 (65.0%) 61102 (27.5%)

2467.0 12.0 61102 (55.2%) 11 (37.2%)

H2CCND ν5 1120.4 11.7 51 (50.9%) 7181 (27.8%) 111121 (16.8%)

1108.1 8.1 7181 (64.4%) 51 (28.9%)

1133.6 4.8 111121 (77.1%) 51 (15.8%)

ν4 1424.7 3.4 41 (52.7%) 72 (28.5%)

1345.3 12.9 72 (57.8%) 41 (31.6%)

Frequencies are given in cm−1 and infrared intensities in km/mol.
1,2The superscripts denote the excitation levels of the individual modes.

FIGURE 1 | Rotational spectrum of ketenimine in its ground vibrational state for T = 50 K. Comparison of the theoretical RVCI results (A) obtained from Molpro and

(B) based on experimental results as determined by Degli Esposti et al. (2014) (see text for details).

increase in temperature the maximum shifts by one unit in
Ka. Furthermore, the effect of asymmetry splitting in Ka = 1
states are clearly visible. All these observations originate in the
Boltzmann distribution function resulting in a higher partition
function and a shift in the thermal distribution toward higher
Ka and J. The former is responsible for the emergence of higher
energy branches and the latter for the shifts in the maximum
for individual J-progressions, highlighting the importance of an
accurate determination of the partition function.

3.4. Rovibrational Spectrum
It is known that the rovibrational spectrum of ketenimine shows
many strongly coupled rovibrational bands in the energy regime
between 300 and 1200 cm−1 (Bane et al., 2011a,b,c). For this
reason, we want to give a broad overview over this area with
Figure 3. The figure shows the 5 fundamental bands ν5, ν6,
ν7, ν8, ν11, as well as the overtone 2ν8 and the combination
band ν12 + ν8. The comparison between RVCI and RCI spectra
allows for a better understanding of the coupling and resonance
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FIGURE 2 | Ground state rotational RVCI spectrum of ketenimine for different temperatures, (A) 20 K, (B) 50 K, (C) 100 K, (D) 200 K, (E) 300 K. Temperatures are

considered only in the occupation numbers and not in line broadening. For the sake of clarity, the intensity axis of adjacent sub-figures are downscaled by a factor of

two for increasing temperatures.

effects. Two examples for these couplings can be seen around 400
and 900 cm−1. Therefore these areas are displayed in separate
Figures 4 and 5 and will be discussed below. For the following
figures, we did not use any line broadening, since no direct
comparison with experimental results is depicted.

A good example for the strong Coriolis-coupling in this
system can be seen in Figure 4 between ν8 and ν12. The bottom
subplot (Figure 4B) shows the results of the RCI calculation,
where Coriolis-coupling is not considered. ν12 has about two

orders of magnitude less intensity then ν8, in line with the
band intensities obtained from VCI (cf. Table 4). The in-plane
CCN bending vibration ν8 clearly shows an A-type spectrum,
whereas the out-of-plane CCN bend ν12 shows the expected
B-type intensity pattern. Inclusion of Coriolis-coupling in the
upper subplot (Figure 4A) results in ν12 gaining about one order
of magnitude in intensity by intensity borrowing in the RVCI
calculation. The missing intensity in the stronger band is hard
to see, since the relative difference is smaller. Furthermore, ν12
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FIGURE 3 | Overview of the low frequency range of the rovibrational spectrum of ketenimine. Comparison between RVCI (A) and RCI (B) results. Visible contributions

are provided by the fundamental bands ν8 (at 464.4 cm−1, CCN in-plane bend, in light green), ν7 (at 691.2 cm−1, CH2 wagging, in purple), ν11 (at 876.2 cm−1,

torsion, in light blue), ν6 (at 1007.1 cm−1, CNH bend, in orange), ν5 (at 1122.5 cm−1, CCN stretch, in dark blue) as well as the combination band ν8 + ν12 (at

880.7 cm−1 in dark green), and the overtone 2ν8 (at 927.3 cm−1 in yellow).

FIGURE 4 | The two lowest fundamental bands ν12 (at 405.7 cm−1, CCN out-of-plane bend, VCI intensity 0.4 km/mol, in purple) and ν8 (at 464.4 cm−1, CCN

in-plane bend, VCI intensity 19.8 km/mol, in light green) as well as small contributions of ν7 (at 691.2 cm−1, CH2 wagging, in orange). Comparison between RVCI (A)

and RCI (B).
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FIGURE 5 | Rovibrational spectrum of ketenimine of the fundamental bands ν7 (at 691.2 cm−1, in purple), ν11 (at 876.2 cm−1, in light blue), ν10 (at 980.7 cm−1, in red,

barely visible) and ν6 (at 1007.1 cm−1 in orange) and the combination band ν8 + ν12 (at 880.7 cm−1 in dark green), and the overtone 2ν8 (at 927.3 cm−1 in yellow).

Comparison between RVCI (A) and RCI (B) results.

can neither be assigned to an A-type nor a B-type band structure,
due to the lifting of the typical selection rules via Coriolis-
coupling. For the ν8 fundamental, the overall shape of an A-
type transition is retained. Both bands show a rather asymmetric
structure, with a supposed band center of the ν12 mode shifted
by about 20 cm−1 to lower energies and visible transitions well
below 350 cm−1. This is in contrast to ν8, where both branches
gain intensity toward higher energies, with an overlapping region
at about 470 cm−1. The high energy tails of the R-branch (around
530 cm−1) could also be influenced by the ν7 mode (orange in
Figure 4). However, we expect that effect to be small, since the
VCI energies of the two modes ν7 and ν8 are separated by more
than 200 cm−1.

A comparison with the experimental and simulated spectra of
Bane and coworkers (Figures 2A and B in Bane et al., 2011c)
shows in general good agreement for ν12 (Figure 4 as well as
in Supplementary Figure 1). This holds for both the number
of progressions and their distribution over the spectral range
from 330 to 410 cm−1. However, there seems to be a sudden
drop in intensity at 410 cm−1 that can not be found in our
calculated results. The slight shift of our RVCI-spectrum by about
4 cm−1 compared to experiment can be explained by our error
in the VCI energy of 3.3 cm−1 (cf. Table 4). Comparing the
spectra of Bane et al. for ν8 (Figures 2C and D in Bane et al.,
2011c) with ours (compare also in Supplementary Figure 2)
shows somewhat larger deviations. While the A-type P and R
branch structure is still recognizable in Figure 4, the spectra of
Bane et al. show a broader distribution of the Ka sub-bands
leading to the A-type band shape being partially obscured. It

should be mentioned that there are isolated peaks protruding
both bands (see Bane et al., 2011c). Tests have shown (see
Supplementary Figures 1–4) that such prominent peaks as well
as the above discussed differences in the intensity patterns
originate from line broadening. Since we do not use any
broadening, those protruding peaks cannot be expected in our
spectrum, but of course must appear in the experimental spectra.

In contrast to the previously considered modes, the CH2

wagging mode ν7 does not change its macroscopic shape due
to Coriolis coupling. As can be seen in Figure 5, the general
form of ν7 corresponds to a C-type transition of a near-prolate
asymmetric top molecule. The main difference due to RVCI
(in the top panel) is the splitting of the central Q-branches. In
comparison with the work of Bane et al. (Figure 2B in Bane
et al., 2011b), there are two small deviations besides the overall
good agreement (compare also in Supplementary Figure 3).
First, there is a small shift for the two high peaks in the
middle of the mode. Second, the experiment seems to show
a sudden drop in intensity between the middle (650 and
730 cm−1) and the outer parts of the progression (above 730
and 650 cm−1). As mentioned before, the distributed peaks
shown in the paper of Bane et al. (2011b), are caused by a
Gauss broadening of the experimental results and are therefore
not to be expected in our spectra. The possible coupling of
ν7 with higher energy modes (above 750 cm−1 in Figure 5)
is not shown in the simulated spectrum of Bane et al.
(2011b).

Another example of extensive rovibrational coupling occurs
between 780 and 970 cm−1 (see Figure 5). The reason for
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FIGURE 6 | Rovibrational spectrum of ketenimine in the region of the strongest fundamental band ν3 (at 2041.8 cm−1, CCN stretch, in green). Additionally, the

overtones 2ν10 (at 1955.0 cm−1, in purple), and 2ν6 (at 1975.1 cm−1, in orange), as well as the combination band ν5 + ν6 (at 2130.8 cm−1, in red) provide visible

contributions in this spectral range. Comparison between RVCI (A) and RCI (B) results.

this is the close proximity of three vibrational bands: one
fundamental band (ν11 at 876.2 cm−1, torsion, A′′ symmetry),
one combination band (ν8 + ν12 at 880.7 cm−1, A′′ symmetry)
and one overtone (2ν8 at 927.3 cm−1, A′ symmetry) within
50 cm−1. Additionally, there is a further “dark state” involved,
corresponding to the overtone of the out-of-plane CCN bending
mode (2ν8 at 809.6 cm−1, A′ symmetry). While the overtones
2ν12 and 2ν8 are strongly coupled to the combination band
ν8 + ν12 via a-axis Coriolis-coupling (ζ a

8,12 = −0.802), similar to
the correspondingly coupled fundamentals, the ν11 fundamental
has been shown to be in Fermi resonance with the combination
band (cf. Table 5). The resulting rovibrational coupling leads
to an almost complete loss of discernible band structure when
comparing the RCI (bottom panel) and the RVCI spectrum
(top panel). As a consequence, experimental assignment and
interpretation of this spectral region will be highly difficult
without reliable estimates of spectroscopic parameters obtained
from theory.

Figure 6 reveals only very weak Coriolis coupling between ν3
and 2ν6, respectively 2ν10. One reason for this is that the largest
non-vanishing ζ constants for ζα

3,6 and ζα
3,10 correspond to b and

c direction, respectively. Hence the rotational constants along
the b and c direction have to be considered. Since they are a
factor of 20 smaller then the A rotational constant, the coupling
is significantly weaker. In addition to that, Coriolis coupling
between a fundamental band and the overtone of another band
requires at least the first order in the µ-tensor expansion.
Therefore, it is possible that in experiments a somewhat stronger

coupling occurs, even though it is unlikely due to the small
rotational constants. The only experimental results for this
mode have been presented by Ito et al. (1990). While a direct
comparison of spectra is ambiguous, due to relatively low
resolution and a contamination of the experimental probe, Ito et
al. do note signs of Coriolis perturbations in the fitted effective
spectroscopic parameters of the ν3 band.

Figure 7 shows the XH stretching fundamental region
between 3000 and 3500 cm−1. The corresponding fundamental
bands are the symmetric (ν2) and antisymmetric (ν9) CH2 stretch
vibrations and the NH stretching mode (ν1), in energetically
ascending order. Additionally, the ν3 + ν5 and the ν3 + ν6
combination bands provide a significant contribution to the
spectrum. All bands show the expected shapes of A-type (ν2,
ν3 + ν5, and ν3 + ν6), B-type (ν1), and C-type (ν9) transitions.
So far there were no experimental results published for any of
these bands. The comparison between RCI (bottom) and RVCI
results (top) gives no indications for substantial Coriolis coupling
among the fundamental bands. This is supported by taking the
corresponding Coriolis coupling constants into account, where
the largest (absolute) value is found for ζ c

2,9 ≈ 0.05. Due to the
restriction to a constant µ-tensor, no direct Coriolis coupling
between fundamentals νi and combination bands νj + νk is
included in the RVCI-matrix. While a strong interaction between
ν2 and ν3 + ν5 is unlikely because of very small ζ -constants
(|ζ b

2j| ≈ 0.003), such a coupling might be relevant for the ν9

fundamental due to the close by ν3 + ν6 combination band
and the substantial intensity difference. However, experimental
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FIGURE 7 | Rovibrational spectrum of ketenimine in the region of XH stretching fundamentals. Three fundamental bands ν2 (at 3048.0 cm−1, symmetric CH2 stretch,

in orange), ν9 (at 3132.5 cm−1, anti-symmetric CH2 stretch, in purple, barely visible) and ν1 (at 3315.4 cm−1, NH stretch, in light green) are shown, as well as the

combination bands ν3 + ν5 (at 3042.0 cm−1, in blue) and ν3 + ν6 (at 3151.1 cm−1 in red). Comparison between RVCI (A) and RCI (B) results.

observation of ν9 will be complicated by the fact that ν9
rovibrational transitions will most likely be hidden in between
the stronger ν3 + ν6 band. Overall the rovibrational transitions
in this spectral region have rather low intensity compared to
other spectral regions. The VCI band intensity of the strongest
vibrational transition ν1 (10.9 km/mol) is already a factor of
about 20 lower than the two strongest fundamental bands (cf.
Table 4).

3.5. Summary and Conclusions
The vibrational, rotational and rovibrational spectra of
ketenimine have been studied by high-level ab initio methods
for the first time. Based on a new series of almost black-box
algorithms being implemented in the MOLPRO package of
quantum chemical programs, it was possible to simulate and
analyze the complex rovibrational features of this near-prolate
asymmetric top molecule. Note, that the input information for
these calculations comprises just the molecular structure and the
call of the requested modules, which act in a highly optimized—
with respect to memory requirements and CPU time—and
automated manner. Agreement with available experimental data,
i.e., ground state rotational constants, vibrational band origins,
dipole moments or the rotational spectrum as a whole, was
found to be excellent or at least very good. Beside the reliable
reproduction of experimental reference data, many predictions
could be provided, which we consider a trustworthy guidance
for new experimental studies or astrochemical observations.
The occurrence of several Fermi resonances even for fairly low
lying transitions requested accurate potential energy and dipole

surfaces, which has been accomplished by explicitly correlated
coupled-cluster theory and the rather new distinguishable
clusters approximation. A proper description of these resonances
was found to be important for the subsequent rovibrational
calculations. For example, the strong Fermi resonance of mode
ν11 with the combination band ν8 + ν12 has significant impact
on the spectrum, but was not discussed in the experimental work
(Bane et al., 2011a). This example demonstrates the benefits, that
can arise from combined experimental and theoretical studies to
provide reliable reference data for astrophysical studies. Covering
a wide spectral range and identifying signature areas within
the spectrum are challenging goals in the future. Currently,
work is in progress to include coupling terms originating from
higher-order µ-tensor terms and hot bands.
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