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In this paper, thiourea was successfully grafted onto the surface of acid preprocessed

graphite felts [sulfuric acid-treated graphite felt (SA-GFs)] by thiol-carboxylic acid

esterification. The thiourea-grafted graphite felts (TG-GFs) were investigated as the

positive electrode for vanadium redox flow battery (VRFB). X-ray photoelectron

spectroscopy results suggested that thiourea was grafted into the surface of graphite

felts. The cyclic voltammetry showed that the peak potential separation decreased by

0.2 V, and peak currents were greatly enhanced on TG-GF electrode compared with

SA-GF electrode, implying improved electro-catalytic activity and reversibility of TG-GF

electrode toward VO2+/VO+

2 redox reaction. The initial capacity of TG-GF-based cell

reached 55.6mA h at 100mA cm−2, 22.6mA h larger than that of SA-GF-based cell.

The voltage and energy efficiency for TG-GF-based cell increased by 4.9% and 4.4%

compared with those of SA-GF-based cell at 100mA cm−2, respectively.

Keywords: vanadium redox flow battery, graphite felts, thiourea, grafted, energy storage

INTRODUCTION

Vanadium redox flow battery (VRFB) as energy storage system has causedmore andmore attention
because VRFB displays some advanced characteristics, such as long cycle life, high energy efficiency
(EE), and excellent electrochemical reversibility (Bhushan et al., 2019; Li et al., 2019; Xiang and
Daoud, 2019; He et al., 2020; Lv et al., 2020). The electrodes play a central role where redox reactions
occur (Ding et al., 2018; Ye et al., 2018). Although the commercial graphite felts can be used as
electrode materials for VRFB, the electrochemical activity is not enough for practical application
(He et al., 2015).

The introduction of functional groups is one of the effective surface functional treatments
to improve the electrochemical properties of the graphite felts. Among the functional groups,
oxygen-containing groups, such as -COOH, -OH, and C=O, have been widely studied by various
methods including heat treatment (Zhang et al., 2020), acid treatment (Sun and Skyllas-Kazacos,
2010), electrochemical oxidation (Xiao-Gang et al., 2007), and microwave treatment (Wu et al.,
2014). In addition, the nitrogen-containing groups also have been reported to be active toward
vanadium redox reactions. Tao et al. (2012) reported a hydrothermal ammoniated treatment for
graphite felt used as the positive electrode for VRFB. The introduction of the polar nitrogenous
groups can facilitate the charge transfer rate between electrode and vanadium ions. He et al. (2013)
added two organic additives in positive electrolyte, which provided -NH2 group on the surface
of the graphite felt and could be employed as active sites for vanadium ion reactions. Recently, Lee
et al. (2015) reported that the supercapacitor performance based on thiourea (NH2CSNH2)-grafted
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graphene could be greatly improved due to introducing the
amine and sulfur functional groups into graphene. In addition,
the electrocatalytic properties of multi-walled carbon nanotubes
toward the VO2+/VO+

2 redox couple were also improved by
surface functional treatments using thiourea as nitrogen and
sulfur sources (Li et al., 2017).

FIGURE 1 | Mechanism of thiourea-grafted graphite felt (TG-GF) (including SEM photos) (A). X-ray photoelectron spectroscopy (XPS) C1s spectra of sulfuric

acid-treated graphite felt (SA-GF) (B) and TG-GF (C). S2p spectra of graphite felt (GF) (D) and TG-GF (E). Survey spectrum of SA-GF and TG-GF (F). Raman spectra

of SA-GF and TG-GF (G).

In this work, we report a novel, simple, and mild method for
in situ functionalizing graphite felt electrode by grafting thiourea
for VRFB. The -NH2 and C-S functional groups were successfully
introduced onto the surface of graphite felts. The VRFB using the
thiourea-grafted graphite felt as positive electrode showed larger
discharge capacity (DC) and EE.
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EXPERIMENT

Preparation of the Electrode
Polyacrylonitrile (PAN)-based graphite felts (GFs) (thickness:
6mm; Beijing Jinglong Carbon Technology Co., Ltd.) were
pretreated with 98% sulfuric acid at room temperature for 24 h. In
order to obtain thiourea-grafted graphite felts, the sulfuric acid-
treated graphite felts (SA-GFs) were placed in a beaker containing
30ml of 150mg ml−1 thiourea solution, and then the beaker was
kept in a water bath at 80◦C for 10 h (Lee et al., 2015).

Characterization
Morphology of samples was characterized by scanning
electron microscopy (SEM, S-4800, Hitachi, Japan). X-ray
photoelectron spectroscopy (XPS) was carried out (K-Alpha
1063, Thermo Fisher Scientific, UK) for characterization
of the surface chemistry of samples. Raman spectra were
recorded on a laser Raman spectrometer (Thermo Electron
DXR, USA).

Electrochemical Measurements
The electrochemical measurements [cyclic voltammogram (CV)
and electrochemical impedance spectroscopy (EIS)] of the
prepared electrode (area: 1 cm−2) were carried out on
IM6e Zennium electrochemical workstation (Zahner Scientific
Instruments, Germany) using Pt electrode and saturated calomel
electrode (SCE) as the counter and reference electrodes,
respectively. The electrolyte consisted of 0.1M VOSO4 and 3M
H2SO4. The scan rate of CV test was 1mV s−1. The frequency
range of EIS was 10−2-106 Hz.

The charge–discharge performance for TG-GF electrode was
assessed in a static cell using CT2001A (LAND, Wuhan) battery
test system. The cells were assembled using TG-GF and SA-
GF (3 × 3 cm2) as positive electrode, SA-GF as corresponding
negative electrode, and perfluorinated ion-exchange membrane
as separator in 1.2M V(III)/V(IV)+ 3M H2SO4 electrolyte.

RESULTS AND DISCUSSION

As shown in Figure 1A, thione (C=S) in thiourea exists a
resonance structure thiol (C-S-H). The amine groups connected
with the C-S-H can react with carboxylic acid (COOH) on
the graphite felts via thiol-carboxylic acid esterification (Lee
et al., 2015). SEM images for SA-GF and TG-GF (Figure 1A)
show no obvious change of morphology. Figures 1B,C show
the C1s high-resolution XPS spectra of SA-GF and TG-GF.
Two samples contain C=C (284.4 eV), C-C (285.4 eV), C-S/C-O
(286.5 eV), and COOH (288.6 eV) functional groups (Liu et al.,
2015; Kabtamu et al., 2017). The peak at 286.5 eV represents
carbon in SA-GF bound to one oxygen or sulfur (e.g., C-O, C-S)
(Gattrell et al., 2006). XPS spectra for S2p shown in Figures 1D,E

indicate that TG-GF sample exhibits S2p3/2 and S2p1/2 signals
at 163.9 and 165.1 eV, respectively, as well as a trace peak at
168.2 eV (Baker et al., 2004; Huang et al., 2014). As shown in
Table 1, compared with SA-GF, TG-GF has more C-S groups
but lower COOH functional groups, which is attributed to the
reaction between the carboxyl groups on SA-GF surface and the

grafting of the amine and sulfur functional groups on thiourea,
accompanied by the introduction of C-S and -NH2 groups on the
surface of SA-GF. The O atomic percentage of TG-GF decreases
to 12.8% from 24.1% after grafting thiourea group onto SA-GF.
Meanwhile, S atomic percentage of TG-GF increases to 1.8%
from 1.1%, andN atomic percentage increases to 8.1% from 5.9%.
The trace peak at 168.2 eV is ascribed to sulfone species (Huang
et al., 2014; Lee et al., 2015). XPS full spectra of SA-GF and TG-GF
(Figure 1F) show a very clear S2p signal appearance for TG-GF,
while for SA-GF, without S2p signal. Figure 1G shows Raman
spectra of both samples. SA-GF and TG-GF samples give similar
Raman scattering patterns with peaks at 1,380 (D band) and 1,600
cm−1 (G band). The intensity ratio of D to G band (ID/IG) that
represents the extent of defects in carbon materials is different.
The increase of ID/IG value from 1.00 for SA-GF to 1.06 for TG-
GF means the decrease in the ordered graphite crystal structure
after SA-GF grafting thiourea (Lee et al., 2015).

CV curves of all electrodes (Figure 2A) appear two peaks,
which correspond to oxidation and reduction reactions of
VO2+/VO+

2 couple. Compared with SA-GF, the redox peak
potential separation of TG-GF dramatically decreases from 0.686
to 0.483V. The peak currents are in the order of TG-GF
> SA-GF > GF, showing that sulfuric acid pretreatment can
slightly improve the performance of GF. However, thiourea
grafting can greatly enhance the electrochemical activity and
reversibility toward the VO2+/VO+

2 redox reaction. The little
peak appearing at 1.3–1.5V for TG-GF is ascribed to the slight
oxygen evolution reaction.

Figure 2B shows Nyquist plots of three electrodes. A
semicircle and a straight line are observed at high and low
frequencies, respectively. Rs is attributed to the resistance of
electrolyte and electrode. Rct represents Faradaic interfacial
charge-transfer resistance. The constant-phase element (CPE) is
attributed to the double-layer capacitance, and W is Warburg
impedance (Li et al., 2017). According to fitting results, the
Rs values for GF, SA-GF, and TG-GF were almost equivalent.
Rct of GF (25.8�) is higher than that of other electrodes,
suggesting poorer electrochemical activity of GF. The decrease
of Rct value from 15.50� for SA-GF to 10.25� for TG-GF
indicates that grafting thiourea onto SA-GF can reduce the
electrochemical polarization.

Figure 3A shows the charge–discharge curves of the cells at
30mA cm−2. Compared with SA-GF-based cell, TG-GF-based
cell delivers longer charge–discharge time, lower charge voltage,
and higher discharge voltage, which leads to the improvement of
the DC and EE. Figure 3B presents the DC dependence on cycle
number at 30mA cm−2. TG-GF-based cell shows higher DC than
that of SA-GF-based cell. For example, in the first cycle, DC of
TG-GF-based cell is 81.2mA h, 18.7mA h larger than that of SA-
GF-based cell. Meanwhile, the 87.4% DC retention and 87.3%
average EE for TG-GF-based cell are 6.0 and 2.5% larger than
those of SA-GF-based cell, respectively (Figure 3C).

Figure 3D presents the DC of both cells at different
current densities. The DCs of TG-GF-based cell are improved
significantly at different current densities. For example, DC of
TG-GF-based cell is 55.6mA h at 100mA cm−2, which is much
larger than that of SA-GF-based cell (22.6mA h). Figures 3E,F
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TABLE 1 | Elemental composition and chemical composition of functional groups based on C1s and S2p XPS spectra.

Samples Elemental

composition (%)

C1s peak

deconvolution (%)

S2p peak

deconvolution (%)

C N O S C=C C-C C-O/C-S COOH S2p3/2 S2p1/2

SA-GF 68.92 5.89 24.11 1.08 55.55 23.49 11.52 9.43 – –

TG-GF 77.22 8.1 12.83 1.85 54.33 23.56 15.75 6.35 52.68 30.59

SA-GF, sulfuric acid-treated graphite felt; TG-GF, thiourea-grafted graphite felt; XPS, X-ray photoelectron spectroscopy.

FIGURE 2 | Cyclic voltammogram (CV) (A) and Nyquist plot (B) curves of graphite felt (GF), sulfuric acid-treated graphite felt (SA-GF), and thiourea-grafted graphite

felt (TG-GF) in 0.1M VOSO4 + 3M H2SO4 electrolyte.

FIGURE 3 | Electrochemical performances of vanadium redox flow battery (VRFB) cells with sulfuric acid-treated graphite felt (SA-GF) and thiourea-grafted graphite

felt (TG-GF): (A) charge–discharge curves, (B) discharge capacity, and (C) energy efficiency (EE) of VRFB at the current density of 30mA cm−2; (D) discharge

capacity, (E) coulombic efficiency (CE), voltage efficiency (VE), and (F) EE of VRFB at the different current densities.

show the coulombic efficiency (CE), voltage efficiency (VE), and
EE of the cells at different current densities. The CE values for
two cells are almost the same, while the VE and EE of TG-GF-
based cell are much higher than those of SA-GF-based cell at all

current densities, especially at high current density. For example,
the VE and EE of TG-GF-based cell are 75.5 and 74.1% at 100mA
cm−2, which are 4.9 and 4.4% higher than those of SA-GF-based
cell, respectively.
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CONCLUSIONS

In order to improve the performance of the electrode, thiourea
was grafted onto the surface of SA-GF by thiol-carboxylic acid
esterification. Both electrochemical activity and reversibility of
the modified electrode toward VO2+/VO+

2 redox reaction are
improved. Compared with SA-GF-based cell, the cell using TG-
GF electrode displays higher DC and VE due to a lower charge
transfer resistance, particularly at a high current density.
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