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Temperature reflects the balance between production and dissipate of heat. Flexible
temperature sensors are primary sensors used for temperature monitoring. To obtain
real-time and accurate information of temperature, different flexible temperature sensors
are developed according to the principle of flexible resistance temperature detector (FRTC),
flexible thermocouple, flexible thermistor and flexible thermochromic, showing great potential
in energy conversion and storage. In order to obtain high integration and multifunction,
various flexible temperature sensors are studied and optimized, including active-matrix
flexible temperature sensor, self-powered flexible temperature sensor, self-healing flexible
temperature sensor and self-cleaning flexible temperature sensor. This review focuses on the
structure, material, fabrication and performance of flexible temperature sensors. Also, some
typical applications of flexible temperature sensors are discussed and summarized.
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INTRODUCTION

To the best of our knowledge, sensor is the key of various induction equipments, and a critical issue
with great potential. In the past decade, a great progress of sensors in many fields is achieved. Sensors
with induction feature are playing increasing important roles in various fields, such as medical
monitoring, industrial production, wearable equipment, internet of things (IoT), etc (Cheng et al.,
2020; Kai et al., 2020; Kun et al., 2020; Shao et al., 2020). One important kind of sensors in induction
equipment is the flexible temperature sensor. Flexible sensor is a kind of sensor made of flexible
material, which has high flexibility, high ductility, even free bending or folding (Abdelmoughni et al.,
2020). It can be arranged arbitrarily, and can detect complex units easily. New types of flexible
temperature equipments, textiles, aerospace, environmental medical care, electronics, electricians,
sports sensors are widely applied in electronic skin and monitor, etc (Zamri et al., 2015; Jea Sang
et al., 2020; Jian et al., 2020; Su et al., 2020; Ye et al., 2020).

A complicated interplay of various regions of flexible temperature sensors is required for
flexibility of the most basic feature. In addition, the robots with flexible temperature sensors
have increased control over their action. In this review, we summarized the structure, material,
fabrication and performance of flexible temperature sensors. We also elaborated the most widely
accepted theory concerning the flexible temperature sensors and the evidence supporting this theory.
Finally, we reviewed the applications of flexible temperature sensors in various fields, especially in
power system, industrial production and medical device.

TRADITIONAL FLEXIBLE TEMPERATURE SENSORS

Structure, material, fabrication and performance are important factors of flexible temperature
sensors. Development of flexible temperature sensors with digitalization and intelligence is still a
great challenge. Previous studies found that the structure, material and fabrication process have great
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influences on the performance of sensors (J Mittemeijer, 2011;
Nosbi et al., 2010; Chen et al., 2017a). It is noted that this trend is
consistent with the design of flexible temperature sensors.
Various flexible temperature sensors are developed according
to the principles, such as flexible resistance temperature detector
(FRTC), flexible thermocouple, flexible thermistor, flexible
thermochromic (Ying et al., 2011; Zhang et al., 2017). This
section will introduce several typical flexible temperature sensors.

Flexible Resistance Temperature Detector
FRTC is the most common flexible temperature sensor. In
particular, FRTC converts the applied temperature into
electrical signal, which has been widely explored. Monitoring
health conditions of the human’s body via detecting the subtle
temperature variation related with human’s activities is possible,
such as the body’s temperature. High sensitivity, high flexibility,
and excellent reliability are required for FRTC in practical
applications (Chen et al., 2017a; Zhang et al., 2017). To
achieve high-performance FRTC, considerable efforts have
been made in optimization of the materials and device
configurations. First, various active materials such as graphene,
carbon black (CB), carbon fiber, carbon nanotube (CNT) and
multi-walled CNT (MWCNT) (Liu et al., 2012; Guo et al., 2014;
Tian et al., 2015; Wang et al., 2017; Wu et al., 2019) have been
introduced into FRTC as the conductive fillers due to their high
conductivity, low cost, and high stability (Kun et al., 2020;
Abdelmoughni et al., 2020; Jea Sang et al., 2020; Su et al.,
2020; Jian et al., 2020; Ye et al., 2020; Zamri et al., 2015; J
Mittemeijer, 2011; Nosbi et al., 2010; Chen et al., 2017a;
Zhang et al., 2017a; Ying et al., 2011; Wang et al., 2017).
Second, for obtaining highly flexible and stretchable devices,
polymers including polydimethylsiloxane (PDMS) (Shih et al.,
2010; Sibinski et al., 2010; Zhao et al., 2018a), silicon rubber, poly
(vinylidene fluoride) (PVDF), polymethyl methacrylate (PMMA)
and poly (3,4-ethylenedioxythiophene-poly (styrenesulfonate)
(PEDOT: PSS) (Nakata and Arie, 2017; Huang et al., 2018;
Shen et al., 2018; Chen et al., 2018; Bang et al., 2019) have
been widely investigated in FRTC (Shih et al., 2010; Sibinski et al.,
2010; Liu et al., 2012; Guo et al., 2014; Tian et al., 2015; Nakata
and Arie, 2017; Wang et al., 2017; Zhao et al., 2018a; Huang et al.,
2018; Shen et al., 2018; Chen et al., 2018; Bang et al., 2019; Wu
et al., 2019). It is demonstrated that preparation of the polymer
merits and the sensing layer of conductive materials is a highly
promising way for fabrication of high-performance FRTC. Nano/
micro porous structures are applied to obtain sensors with
increased sensitivity and improved response speed (Nakata
and Arie, 2017; Shen et al., 2018).

The temperature coefficient of resistance (TCR) of most
metals is between 0.01 and 0.1°C−1, and similarly, other
conductive materials, e.g., the CNTs incorporated with
PEDOT: PSS (Nakata and Arie, 2017; Shen et al., 2018), also
exhibited a comparable sensitivity. Applying the percolation
effect is a possible strategy for obtaining enhanced sensitivity
of temperature sensor (Shen et al., 2018), significantly decreasing
resistance of the FRTC by several orders through filling a
conductive material into an insulating polymer matrix, e.g.,
PDMS and silicon rubber (Sibinski et al., 2010). Although

percolation-type FRTC typically offers an ultrahigh ΔR/R
value, as described in Table 1, this resistance change
typically occurs at a narrow range of temperature, limiting
their applications in wide-range temperature sensing.
Different from the narrow operating temperature, the FRTC
focuses on a broader sensing range of 20–100°C. Piezoelectric
polymer matrix (such as PVDF) and conductive polymer
matrix (such as PEDOT: PSS) can also be applied in
temperature sensing.

Insulating Polymer Matrix
For research work about flexible temperature sensors, it is found
that the conductive composites are often applied as the sensing
materials of FRTC. In the past several years, some conductive
composites containing dispersed conducting carbon
nanomaterials in an insulating polymer matrix are investigated
for resistance temperature detectors. The conducting carbon
nanomaterials include carbon fiber, graphene, porous carbon,
silver nanoparticle (NP) and CNT, etc., and the polymer matrices
include silicon rubber and PDMS. Resistance temperature
detectors are fabricated by bonding the interdigital electrodes
and conductive composites with conductive silver glue (Liang
et al., 2015). The electrical resistivity of these composites is
critically dependent on the volume fraction of conducting
filler, well explained by percolation theory. With the increase
of temperature, the conductive network chains of conductive
composites are destroyed. Additionally, the volume expansion of
polymer matrix leads to the decrease of the volume fraction of
conducting carbon nanomaterials indirectly, resulting in the
increase of bulk electrical resistivity of conductive composites.
It shows a characteristic of positive temperature-resistance
coefficient (PTC). A new conductive composite is proposed
and enables production through screen printing. The new
conductive composite is based on conductive material-polymer
paste, consisting of PMMA employed as the binder. The PMMA
was dissolved in organic solvents at elevated temperature, until a
homogenous consistence was achieved. Then MWCNTs were
added and mixed with a three-roller mill. The agglomerate sizes
of below 10 μm are obtained via rolling. High temperature
coefficients are utilized to characterize these temperature
sensors, reaching 0.0013°C−1 in 30–42°C. It shows a
characteristic of negative temperature-resistance coefficient
(NTC) (Wu et al., 2019).

Huang and co-workers Huang et al. (2012) proposed a FRTC
array by sticking the sensing materials of the conductive
composites formed by the silicone rubber and carbon fiber
into the interdigital electrodes with conductive silver glue.
Figure 1 shows a schematic of this flexible temperature sensor
with electrode-substrate-sensing material sandwiched structure.
The study results showed that the relationship of resistance of the
flexible temperature sensor and distance between sensor and
temperature source is linear, and the repeatability of the
experimental results is good. Moreover, the resistance of the
flexible temperature sensor varies linearly with the ambient
temperature between 25 and 70°C. The researchers also
discussed the effects of conductive composites with different
carbon fiber contents on flexible temperature sensor.
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Tsao group (Shih et al., 2010) presented a new method for
fabricating passive-matrix FRTC array. They dispersed a
graphite-PDMS composite on interdigitated copper electrodes
patterned on flexible polyimide films. The flexible temperature
sensor array with electrode-substrate-sensing material

sandwiched structure shown in Figure 2 has 64 sensing cells
in an area of 16 cm2. Their investigation presented that graphite
powder provided the composite high temperature sensitivity. In
composites with different graphite volume fractions, they
observed that the composite with 15% graphite powder is
suitable for on/off devices while the one with 20% graphite
powder provides sufficient dynamic range for continuously
sensing the change of temperature.

PVDF Matrix
Recently some conductive composites containing dispersed
conducting carbon nanomaterials in a piezoelectric polymer
matrix have been studied for resistance temperature detectors.
The conducting carbon nanomaterials are carbon fiber, graphene,
graphene oxide, porous carbon, silver NP and CNT, etc., and the
polymer matrices are PVDF (Huang et al., 2018; Bang et al.,
2019). Resistance temperature detectors are fabricated by coating
the conductive composites on interdigital electrodes using
spinning and printing. Another approach is based on nano
conductive material-polymer paste, consisting of polyethylene
modified polystyrene and rubber as a binder material. These
components were dissolved in organic solvents at elevated
temperature, until a homogenous consistence is obtained.

TABLE 1 | Comparison of flexible resistance temperature detectors.

Device Material TCR
(°C−1)

Temperature change
(°C)

PTC or NTC References

5 × 5 Silicon rubber-carbon fiber 0.1823 25–70 PTC Zhao et al. (2018a)
1 × 1 Silicon rubber-CB, CNTs 0.00572 20–80 PTC Wang et al. (2017)
1 × 1 Silicon rubber-CB 10–4 0–50 PTC Liu et al. (2012)
3 × 3 Silicon rubber-carbon fiber 0.0394 20–80 PTC Guo et al. (2014)
12 × 12 Silicon rubber-CB, graphene 0.0327 25–90 PTC Tian et al. (2015)
1 × 1 PDMS-the flake graphite, CNT 0.028 35–85 PTC Wu et al. (2019)
1 × 1 PDMS-porous carbon 0.11 23–50 PTC Zhao et al. (2018a)
4 × 4 PDMS-graphite 0.0055 30–110 PTC Shih et al. (2010)
1 × 1 PMMA-MWCNTs 0.0013 30–42 NTC Sibinski et al. (2010)
10 × 10 PVDF-MWCNTs, PEN 0.081 25–100 NTC Chen et al. (2018)
1 × 1 PVDF-graphite, PEO 0.1 25–42 PTC & NTC Huang et al. (2018)
1 × 1 PEDOT: PSS-CNT 0.0078 20–60 NTC Bang et al. (2019)
1 × 1 PEDOT: PESS-CNT 31 10–50 NTC Nakata et al. (2017)

FIGURE 1 | Flexible temperature sensor array (Huang et al., 2012).

FIGURE 2 | Flexible temperature sensor array (Shih et al., 2010).
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Afterward, nano conductive material as the filler was added and
mixed in a three-roller mill. Rolling is performed until agglomerate
sizes of below 10 μmare obtained. Several series offlexible temperature
sensors are produced and tested. They have a characteristic of NTC.
The functionality of polymer composites is improved through CNTs
by enhancing their strength and thermal and electrical conductivities.
The composites with CNTs can revolutionize structural materials’
design and production in construction elements. Potential applications
in electronic circuits fabricated by printing techniques are smart
clothing and flexible electronics including functional elements (e.g.,
printed transistors) or biochemical sensors. In previously conducted
experiments related to CNT layers, a high resistance dependence on
temperature is indicated, which allowed for experimenting in the
textronic thermal sensory field.

Huang group (Huang et al., 2018) presented a FRTC
consisting of graphite-filled polyethylene oxide (PEO) and
PVDF sensing layer, silicon rubber substrate and PDMS
covering layer, exhibiting a high accuracy of 0.1°C and perfect
repeatability nearly 2,000 times in the sensing temperature range
of 25–42°C. The FRTC was fabricated by the following procedure:
first, fabricating sensing layer by dissolving the PEO in the
deionized (DI) water using a magnetic stirrer for 1 h, then
adding graphite powder to PEO/DI water solution followed by
sonication for 1 h and magnetic stirring for 1 h. After that, PVDF
and N,N-Dimethylformamide (DMF) were introduced and
mixed for 3 h under heat treatment. The PEO/PVDF/graphite
solution was dropped on the polyimide (PI) flexible substrate and
coated uniformly using spin-coating. After drying the solution,
the sensing layer on silicon rubber was removed and the silicon
rubber was covered with PDMS. As electrodes, copper wires were
bonded to the ends of FRTC using silver paste.

PEDOT: PSS Matrix
Recently some conductive composites containing dispersed
conducting carbon nanomaterials in a conductive polymer matrix
are studied for FRTCs. The conducting carbon nanomaterials are
carbon fiber, graphene, graphene oxide, porous carbon, silver NP
and CNTs, etc., and the typical polymer matrix is PEDOT: PSS
(Kanao et al., 2015; Shen et al., 2018). Kanao group (Kanao et al.,
2015) demonstrated a FRTC based on CNT ink and PEDOT: PSS
solution. For the FRTC, the mixed ink consisting of CNT ink and
PEDOT: PSS solution was printed on polyester (PET) substrate
through the mixed ink over the polyester shadow mask after string
and drying at 70°C for 60 min in air ambient. The maximum
sensitivity of FRTC of ∼0.78%°C−1 at a weight percent ratio (3:1)
of mixture is achieved. It showed a NTC characteristic.

Thermistor
The resistance changes could be measured by flexible thermistors
with high repeatability and accuracy, and can be easily integrated
on one platform. Flexible thermistors are belonged to flexible
temperature sensors based on metal film, semiconductor film
and alloy film. The flexible thermistors on flexible substrates are
fabricated by microelectromechanical system (MEMS) technology,
flexible technology, printing technology and coating technology.
Metal solder blocks are thought to act as the electrodes of the
sensors for connecting conductive and transmission signals.

Flexible thermistors with thermal resistance films are fabricated
on flexible PI, PET, or PDMS substrate, in which the thermal
resistance films include platinum film, copper film, gold film, silver
film, reduced graphene oxide (rGO) film, graphene film, graphene
oxide film, silver nanowire (Ag NW) film, vanadiumdioxide (VO2)
film, CNT film, pentacene/silver NPs film, and silver nanocrystal
film, etc (Xiao et al., 2005b; Jeong et al., 2010; Yokota et al., 2015a;
Kanao et al., 2015; Guo et al., 2015; Kim et al., 2016; Zhao et al.,
2018b; Trung et al., 2018; Chu et al., 2018; Zhu et al., 2018; Bang
et al., 2019; Cui et al., 2019; Li et al., 2019). The PI, PET, PDMS and
polyethylene naphthalate (PEN) substrates offer an excellent
thermal insulation. The resistance of thermal resistance film
changes with the temperature increasing. As Table 2 described,
there is a comparison between different flexible thermistors.

(He et al., 2018) presented a copper flexible thermistor and a
platinum film flexible temperature sensor based on serpentine
structure (Figure 3). The experimental results demonstrated
that the sensitivity of the copper film flexible temperature sensor
is about 0.0027°C−1 while the sensitivity of the one with
serpentine is about 0.00136°C−1. The study indicated that the
sensitivity of the platinum film flexible temperature sensor is
about 0.00273°C−1 while the sensitivity of the one with
serpentine is about 0.00235°C−1. Ting group (Ting, 2015)
investigated two Ag film flexible thermistors based on
different structures, as shown in Figure 3. The obtained
results indicated that the sensitivity is about 0.002°C−1, and
the largest hysteresis is smaller than 1%. In addition, the
response time is several 10 seconds (Ting, 2015).

Thermocouple
Flexible thermocouples are belonged to flexible temperature
sensors based on alloy film. The flexible thermocouples on
flexible substrates are fabricated based on MEMS technology,
printing technology or coating technology. Metal solder blocks
are thought to act as the electrodes of the sensors for connecting
conductive and transmission signals functions. Flexible
thermocouples with thermocouple alloy films are fabricated on
flexible PI or PDMS substrate, where the thermocouple alloy films
are nickel-aluminum-silicon-manganese alloy film, nickel-
aluminum alloy film, p-Sb2Te3 film, n-Bi3Te3 film, Bi-Te film
and Sb-Te film, etc (Pan et al., 2018; Huynh and Haick, 2018; Su
and Shen, 2019). The electrodes of thermocouple temperature
sensors are usually prepared from metal films. When the alloy
films of two different components are combined into a circuit and
the temperature of the two junction points is different, a
thermoelectric potential will be generated in the circuit (Trung
et al., 2018). By measuring temperature-dependent voltage at the
junction of two distinct alloy films, the flexible thermocouple can
sense the temperature (Bell, 2008; Martin et al., 2010; Su and
Shen, 2019).

X. Pan and co-workers (Pan et al., 2018) presented a flexible
thermocouple to monitor the in-situ temperature of ion battery.
In this flexible thermocouple, the PI is served as flexible substrate,
the nickel-aluminum-silicon-manganese alloy film and nickel-
aluminum alloy film are served as sensing materials, and the
copper film is utilized as electrode. The experimental results
showed that in different charge-discharge cycles of batteries,
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the measurement results of this film thermocouple temperature
sensor are consistent with those of ARC instrument.

Huynh group (Huynh et al., 2018) reported a flexible
temperature thermocouple consisting of p-Sb2Te3 and
n-Bi3Te3 for health monitoring. As the most widely used
thermoelectric materials, p-Sb2Te3 and n-Bi3Te3 have high
thermoelectric efficiency at room temperature. Based on proof-
of-concept prototype, flexible thermocouples of p-Sb2Te3 and
n-Bi2Te3 arrays are sputtered on polyimide substrate.

Thermochromic
Thermochromic materials have extensive potential applications in
temperature sensors and have received increasing attention.
Thermochromic materials are important functional and smart
materials. When heated or cooled, the thermochromic materials
will possess a thermal memory function, then the color of those will
emerge pronounced changes. Comparing the color of
thermochromic materials with that of standard color, it is easy
and quick to know the surface temperature of measured objects (Li
et al., 2019; Zhang et al., 2017; Geng et al., 2018; He et al., 2019).

He’s group (He et al., 2019) performed experimental
investigations on developing a dressing and wearable flexible
temperature sensor by dispersing thermochromic materials into
the polyvinyl alcohol and water-soluble polyurethane composites.
The prepared thermochromic materials are TC-M/NPCMs by
chemical integration of trimesoyl chloride (TMC) and
nanoencapsulated phase change materials (NPCMs), exhibiting

excellent temperature indicator performance. The temperature
on different positions of body surface is obtained by attaching
the flexible temperature sensor to different positions of body surface
and comparing its color with that of standard color (He et al., 2019).

Polymer
Flexible temperature sensors have been investigated with several
sensing materials such as polymer, graphene and CNT, etc.
Polymers are employed to fabricate mechanically flexible
temperature sensors, in which the polymers are acrylate
copolymers, polyvinyl alcohol, etc (Das and Prusty, 2012;
Honda et al., 2014; Borghetti et al., 2016; Yokota et al., 2015b).
In particular, polymers can be easily synthesized by electrochemical
polymerization, e.g., the potentiodynamic method. Cost
effectiveness and uniform morphology are the distinctive
advantages of electrochemical polymerization. The performance
of polymers can be regulated through chemical treatment and
doping. The polymers with positive temperature coefficient are
utilized for fabricating mechanically flexible temperature sensors
that have orders-of-magnitude changes in resistivity over only a
few degrees. The need for per-pixel amplification circuitry can be
eliminated by extraordinarily large changes in resistivity, as the
sensor’s output signal can be directly multiplexed and fed to
external recording instrument, ultimately decreasing the
manufacturing cost and complexity of device.

Kim group (Kim et al., 2019) demonstrated a new type of
flexible temperature sensor consisting of polyvinyl alcohol (PVA)

TABLE 2 | Comparison of different flexible thermistors.

Material TCR (°C−1) Temperature (°C) PTC or NTC References

Ag NWs 0.00294 25–60 PTC Cui et al. (2019)
Ag nanocrystal 0.5 30–50 PTC Bang et al. (2019)
rGO 0.0195 30–80 NTC Zhao et al. (2018b)
rGO fiber 0.8 30–45 NTC Trung et al. (2018)
Ag NWs 0.00286 30–80 NTC Li et al. (2019)
Pt 0.0023 25–200 PTC Xiao et al. (2015)
Au 1.4 25–92 PTC Chu et al. (2018)
GNPs 0.0371 20–80 PTC Le et al. (2017)
MWCNTs 0.034 20–80 PTC Le et al. (2017)
Cu 0.00273 20–90 PTC He et al. (2018)
Ag 0.002 −20–175 PTC He et al. (2018)

FIGURE 3 | Structure diagram of thermistor. (A) Spiral structure and (B) serpentine structure.
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function layer, aluminum oxide (Al2O3) encapsulating layer,
flexible PEN substrate and sliver patterning electrodes. The
fabricated flexible temperature sensor is based on conductive
and uniform interdigital sliver patterning electrodes deposited on
a flexible PEN substrate by printing technology with reverse
offset. The PVA function layer is employed as temperature
sensing material deposited by electrohydronamic atomization.
The Al2O3 film is used as encapsulating layer deposited by spatial
atmospheric atomic layer deposition (SAALD). The heating
treatment on flexible temperature sensors was performed at
20–90°C in an inert environment with the help of
dehumidifier inside the sealed chamber. Because of the PVA
with negative temperature coefficient, its resistance decreases
with the increase of temperature. They also discussed the
different performances of the flexible temperature sensor
encapsulated and non-encapsulated with Al2O3 film.

NEW TYPE OF FLEXIBLE TEMPERATURE
SENSOR

Flexible temperature sensors with multi-function and high
integration have received more and more attentions.
According to different functions, flexible temperature sensors
can be divided into active-matrix flexible temperature sensor,
self-powered flexible temperature sensor, self-healing flexible
temperature sensor and self-cleaning flexible temperature
sensor. Compared with ordinary flexible temperature sensors,
functional flexible temperature sensors introduce new materials,
new structures and new technologies, which enable the functional
flexible temperature sensors not only to detect temperature, but
also have other functions, such as self-power supply, self-healing,
self-cleaning, etc (Mallory et al., 2013a; Mallory et al., 2013b).

Flexible temperature sensors play a critical role in early
diagnosis via continuous monitoring of complicated
conditions in health and disease. The stretchable, active-
matrix, self-powered, self-healing and self-cleaning sensing
systems are thus revolutionizing the sensors. The linkage of
these technologies and advanced materials is particularly
specified (Rogers et al., 2010; Yamamoto et al., 2017). Some
weak and strong points in the development of flexible
temperature sensor are clearly summarized and highlighted.
Some aspects about further improvement of flexible
temperature sensor are also discussed.

Highly Accurate Flexible Temperature
Sensors
The goal of accurate measurement of temperature is to reduce the
detection error, which can more accurately detect the current
temperature state of the object, and these errors can be found and
solved in time, such as in healthcare. Therefore, highly accurate
flexible temperature sensors are gathering numerous attentions in
chronobiology study, medical application, predicting disease,
monitoring postoperative recovery, etc (Kim, 1979; Busto
et al., 1987; Michenfelder, 1991; Schwab, 1997; Mack, 2002;
Marshall, 2006; Childs, 2008; Mrozek, 2012; Sheng et al., 2013;

Wu et al., 2017; Oh et al., 2018). The main method of preparing
highly accurate flexible temperature sensors is using sensing
materials with high sensitivity to temperature. Commonly
used high sensitivity sensing materials are high-crystallinity
silicon or functional composites. In addition, the sensitivity of
the flexible temperature sensor can be improved by introducing
microstructures into the device to achieve high precision
measurement. However, the fabrication process of this
accurate flexible temperature sensor consisting of special
materials or special structures is relatively complicated.

Wu group (Wu et al., 2017) demonstrated a highly accurate
flexible temperature sensor with polysilicon thermistors on flexible
PI to monitor brain’s temperature with high spatial resolution. The
highly accurate flexible temperature sensor has a response time of
1.5 s and a sensitivity of −0.0031°C−1. The thermal hysteresis of this
highly accurate temperature sensor in physiological temperature
range of 30–45°C was less than 0.1°C. Using the passivation layer of
silicon nitride, this highly accurate flexible temperature sensor
exhibited drift of less than 0.3°C in water for 3 d. The performance
of this highly accurate flexible temperature sensor showed a low
noise level of 0.025 ± 0.03°C, and the expected transient increases
in cortical temperature associated with cortical spreading
depolarization. Highly accurate flexible temperature sensor
developed in this research is desired to monitor brain’s
temperature with high resolution and sensitivity.

Oh group (Oh et al., 2018) reported a highly accurate flexible
temperature sensor with a bioinspired octopus-mimicking
adhesive. The highly accurate flexible temperature sensor
consists of a composite of CNTs, poly (N-isopropylacrylamide)
(pNIPAM)-temperature sensitive hydrogel and poly (3,4-
ethylenedioxythiophene) polystyrene sulfonate. The highly
accurate flexible temperature sensor exhibited an ultrahigh
thermal sensitivity of 2.6%°C−1 at 25–40°C, therefore a change
of 0.5°C in skin’s temperature can be detected accurately.
Simultaneously, the PDMS adhesive layer of octopus-mimicking
rim structure coated with pNIPAMwas fabricated via formation of
a single mold through applying undercut phenomenon in
photolithography. Without any skin irritation for a long time,
the fabricated sensor showed reproducible and stable detection of
skin’s temperature at repeated attachment/detachment cycles onto
skin. This study demonstrated the application of highly accurate
flexible temperature sensor in wearable devices for health-care and
medical monitoring with a great potential.

Stretchable Flexible Temperature Sensor
To ensure that no performance deterioration occurs due to body
movements, the stretchable flexible temperature sensors are
required, when stretchable flexible temperature sensors are
applied to noncoplanar surfaces including robot’s body and
human’s skin (Lee et al., 2014; Park et al., 2015; Tee, 2015;
Chortos et al., 2016; Gao et al., 2016; Soekadar et al., 2016;
Wehner et al., 2016; Gupta and Loh, 2017). The fabrication of
a stretchable flexible temperature sensor with a high mechanical
stability under strain is found to be a critical challenge since the
change of sensitivity in stretchable flexible temperature sensor
occured during stretching. For fabrication of stretchable flexible
temperature sensor, stretchable electrical interconnections are
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challenges. Successful serpentine interconnections of a polymer-
encapsulated thin metal film are investigated. To relieve strain
which is externally applied onto the whole electronic device, the
interconnections are effective tools. Lately, it is reported that the
liquid metal interconnections embedded in a deformable polymer
substrate can be widely utilized as highly conductive and
stretchable electrical interconnections by facile fabrication.

Hong group (Hong et al., 2016) reported the fabrication of a
stretchable flexible temperature sensor array with liquid metal
interconnections embedded in a deformable polymer substrate. In
this study, fabricating a stretchable flexible temperature sensor with a
stable performance at a strain up to 30% was available since the
stretchable flexible temperature sensor’s sensitivity shows high
stability during stretching. As shown in Figure 4A, the
stretchable flexible temperature sensor consists of SWCNT TFT
on PET film (layer 1), gate line (layer 2), source line (layer 3),
temperature sensor on PET film and Ag NW sticker (layer4). As
shown in Figures 4B,C,D,E, the corresponding mapping of the
temperature distribution under stretched palm condition is
consistent with the one of the temperature distribution under flat
palm condition.

Active-Matrix Flexible Temperature Sensor
According to storage devices including transistors or diodes, FRTCs
can be classified as passive-matrix FRTCs and active-matrix FRTCs.
Passive-matrix FRTCs have simple structure, usually electrode-
substrate-sensing material sandwiched structure consisting of a
sensing layer, an electrode and a substrate. Active-matrix FRTCs
have complex structure which includes organic transistor, gate,
thermistor, encapsulation, line and substrate. Active-matrix
FRTCs are equipped with transistors or diodes for each unit
(Kaltenbrunner et al., 2013). When the switch is turned on, the

driving voltage of the specification can be transmitted to the unit.
When the switch is turned off, the irrelevant signal can be cut off, so
the crosstalk phenomenon can be greatly reduced. Among them,
passive-matrix FRTCs are the most used devices in the construction
of flexible temperature sensors based on conductive and also the
most popular devices for practical applications, because of its simple
structure, convenience to implement, and relatively low cost. As
opposed to passive-matrix FRTCs, the active-matrix FRTCs allow
individual and random access to each unit with high addressing
speed and simultaneously maintaining a high density of device
(Tsuyoshi et al., 2009; Sekitani, 2008; Zhang et al., 2015a; Ren
et al., 2016).

Ren group (Ren et al., 2016) demonstrated an active-matrix
FRTC array with organic field-effect transistor structure (Figures
5A,B). By utilizing a PEN substrate pentacene/silver NPs thermistor,
and alumina dielectric, the sensor can be conformally attached to
various objects and operated at blow 4 V, and a leakage current of
about tens of pA is maintained. When changing the operating
temperature from 20 to 100°C, this flexible temperature sensor
array maintains more than 20 times the output-current change.
As shown in Figures 5C–E, when the flexible temperature sensor is
attached to a volunteer’s forehead, distribution of the measured
temperature of the forehead could be obtained.

Self-Powered Flexible Temperature Sensor
Self-powered materials enable the equipment to extend the
service period through harvesting energy from body’s
temperature and movement (Chen et al., 2017b; Cheng et al.,
2018; Jayaweera et al., 2018; Liu et al., 2018). It is difficult to
provide portable and durable power supply for flexible
temperature sensors. At present, many advanced technologies,
such as supercapacitors, solar cells, wireless antennas and

FIGURE 4 | (A) The flat palm attached the encapsulated flexible temperature sensor array with a heart-shaped aluminum container, and the cold water (15 °C) is
filled in the container. (B)Distribution of measured temperature of the flat palm by flexible temperature sensor array. (C) The unstretched palm attached the encapsulated
flexible temperature sensor array with a heart-shaped aluminum container, and the cold water (15 °C) is filled in the container. (D)Distribution of measured temperature of
the stretched palm by flexible temperature sensor array. (E) The stretched palm attached the encapsulated flexible temperature sensor array with a heart-shaped
aluminum container, and the cold water (15 °C) is filled in the container. (Hong et al., 2016).
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mechanical energy harvesters, are found to be able to generate
electricity and to transmit or store energy in elastic systems (Yang
et al., 2013; Song et al., 2014; Chen et al., 2017c; Gong and Cheng,
2017). How to apply these technologies to flexible temperature
sensors and realize energy self-supply is a huge challenge.
Transparency of electronic skin tactile sensors can be achieved
by using high transparency PDMS and other materials, which can
ensure the absorption of energy by mechanical equipment driven
by solar energy. Therefore, transparency design is also important.
Flexible temperature sensors will also face new challenges, such as
biocompatibility, biodegradability, neural interface control, high
integration, miniaturization etc., which will become the research
hotspots in future (Yang et al., 2009; Hochbaum and Yang, 2010;
Chu and Majumdar, 2012; Pugliese et al., 2013; Hernandez et al.,
2014; Nour et al., 2014; Yingkui et al., 2015; Ghosh et al., 2017;
Maity et al., 2017; Nour et al., 2017; Yu et al., 2017; Gui et al.,
2018; Karmakar et al., 2019). Flexible temperature sensor
manufactured in large quantities is expected to enter all fields
of human’s production and life, and truly serve human beings,
which is the future direction of development.

Karmakar group (Karmakar et al., 2019) presented a new type
of self-powered flexible temperature sensor consisting of self-
charging and triboelectric driven flexible power cell.
Commercially available materials are employed in the

fabrication of this self-charging triboelectric power cell, such
as non-conductive glue, bulk MoS2, normal sheet of paper and
graphite powder (Figure 6A). The self-charging triboelectric
power cell showed excellent output performance with open
circuit voltage of ∼3.82 V at a periodic pressure of 1 kPa. The
open circuit voltage (Voc) of the self-powered flexible temperature
sensor is highly sensitive and has a liner response to temperature.
As demonstrated in Figure 6B, the value of average open circuit
voltage (Voc) increases with the increase of temperature during
heating and cooling. It is observed from Figure 6C that the dV/dT
of the self-powered flexible temperature sensor is 0.093 V K−1 in
temperature range of 293–323 K.

Self-Healing Flexible Temperature Sensor
Self-healing performances of the materials used in the wearable
devices enable the extended usage periods if scratch or cut
generates. It has high practical value in bionic robots, medical
care and other fields. Through self-repairing, the service life of
self-healing flexible temperature sensor can be prolonged. This
functionmainly introduces self-healing characteristics into elastic
materials. Self-healing must occur at ambient conditions without
any trigger or external stimulus. Herein, we discuss both intrinsic
and extrinsic self-healing polymers. The intrinsic self-healing is
based on molecular interactions (e.g., π-π stacking, metal-ligand

FIGURE 5 | (A) Optical image and schematic drawing of flexible temperature sensor array (the scale bar is 10 mm). (B) Schematic of a flexible temperature sensor
unit. (C) Schematic of flexible temperature sensor array attached to the forehead. (D)Optical image of the flexible temperature sensor array. (E)Corresponding mapping
of distribution of the flexible temperature sensor array on the forehead (Ren et al., 2016).
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coordination and hydrogen bonding), whereas the extrinsic self-
healing polymers are dependent on the release of monomers and
catalysts packed in vessels or capsules dispersed in an otherwise
nonhealing polymer (Hart et al., 2014; Burattini et al., 2010).
Although extrinsic self-healing materials are more efficient in
recovering larger-scale damage compared with intrinsic
materials, they are, however, less suitable for flexible thin
devices because they are not easily fabricated, and their
integration into fully functional applications-especially in health
monitoring applications-is complicated. The intrinsic self-healing
polymers are more advantageous due to their ability to reversibly
heal themselves multiple times and functionalization of polymer
with different self-healing groups (Woola, 2008; Yang and Urban,
2013; Abraham et al., 2013; Kristen Means1 et al., 2019). Although
researchers have achieved self-repairing of flexible temperature
sensors, their stability and sensitivity need to be improved.

Self-Cleaning Flexible Temperature Sensor
The self-cleaning function of electronic skin tactile sensor is also of
great significance. It has broad application prospects in robots,
medical equipment and other fields. However, few results of the
self-cleaning function of electronic skin tactile sensor have been
reported. Abraham group (Abraham et al., 2013) showed a self-
cleaning sensor composed of thermoresponsive double network
nanocomposite (DNNC) membrane including poly
(N-isopropylacrylamide) (PNIPAAm) and embedded polysiloxane
NPs. When thermoresponsive PNIPAAm hydrogels is thermally
cycled above and below its volume phase transition temperature
(VPTT) of ∼33–35°C, this process will lead to the associated
deswelling and reswelling respectively and self-cleaning of
material’s surface. A. Kristen Means group (Kristen Means et al.,
2019) demonstrated a self-cleaning biosensor consisting of 2-
acrylamido-2-methylpropane sulfonic acid (AMPS) and
N-isopropylacrylamide (NIPAAm) (ratios of AMPS: NIPAAm
are 25: 75 and 0: 100) in the 1st and 2nd networks. Cellular
attachment is inhibited by this reported membrane utilizing “self-
cleaning” or “actively antifouling” mechanism through cyclic,
continuous deswelling/reswelling in response to subcutaneous
tissue’s normal temperature fluctuation (Kristen Means et al., 2019).

APPLICATIONS

Recent progresses in materials and fabrication allow the
development of flexible temperature sensors with induction
performances highly compatible with other functions, and
allow the expansion of applications of flexible temperature
sensors. Flexible temperature sensors are indispensable devices
with stereotypical applications involving robots, medical health,
military, intelligent manufacturing, aircraft safety and daily life
(Zheng et al., 2019; Zhang et al., 2015b; Peter et al., 2015), as
shown in Figure 7. The applications of flexible temperature
sensors will lead to a reduction in cost and an increase in
accuracy. Associated with bionic skin, surface acoustic wave,
spacecraft and battery, a more comprehensive discussion of
applications and importance is elaborated.

Power System
In the power system, many major accidents are caused by
overheating of electrical equipment (Jintae et al., 2014). Real-
time monitoring of the temperature of electrical equipment can
discover the hidden danger of overheating of electrical
equipment, ensure timely maintenance, eliminate the hidden
danger of failure as soon as possible, and greatly reduce the
operation accidents of power supply system. Therefore, the safety
of power supply area is improved.

Battery Temperature Monitoring
Battery is an emergency standby power supply for operation, control
and communication of electrical equipments such as power plants
and substations (Huda et al., 2013). High-temperature operation will
accelerate the aging of batteries, and even have the risk of explosion.
At the same time, there will be bulging, plate deformation and other
faults. These battery failures will cause system failures such as
operation, control, communication, and erroneous instructions, so
it is very important to monitor the real-time temperature of the
battery. At present, the temperature monitoring method of storage
battery is mainly manual detection by infrared temperature detector,
which is low in mechanization and high in cost, and can not realize
on-line monitoring. Flexible temperature sensor can be attached to a

FIGURE 6 | (A)Optical image and schematic drawing of STPC, (B) variation of average Voc of STPC at 293, 308, and 232 K under a constant periodic pressure of
1 kPa, and the schematic of measurement technique is shown in the inset, (C) the linear fitted curve of Voc vs. temperature at the temperature region of 293–323 K, and
the relative sensitivity coefficient (S) of Voc with temperature is shown in the inset (Karmakar et al., 2019).
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surface of storage battery to realize the measurement of distributed
temperature (Shin et al., 2013). This method is easy to conduct, and
can realize fault monitoring and early warning, reducing the security
risk of power system.

When the battery operates at high temperature for a long
time, it is easy to accelerate the aging of the battery, and
aggravate the corrosion of the plate and water loss (Atsushi
et al., 2019). The flexible temperature sensor is used to paste on
the surface of the battery, having the advantages of easy install,
simple implement and easy integration with equipment. It can
monitor the temperature of the battery in real time, warn the
failure and reduce hidden dangers (Shih et al., 2010).

Applications of Capacitor Temperature Monitoring
Capacitor is an important component of reactive power
compensation in power system. It plays an important role in
improving power and reducing line loss (Lee et al., 2011b).
However, due to the influence of various factors such as
external working environment, current overload loss and
over rated voltage operation, oil leakage will occur in long-
term used capacitors (Pontus et al., 2011). Almost all capacitor
faults such as belly bulging, fuse breaking and shell flashing, are
accompanied by temperature rise (Lee et al., 2011a). Therefore,
capacitor temperature monitoring can detect capacitor faults as
early as possible and effectively avoid the power loss caused by
capacitor faults. Traditional monitoring methods have some
shortcomings, such as high cost, difficult installation and poor
insulation (Mankay, 2010). Flexible temperature sensor can
cover the surface of capacitor as a thin film topography, and

measure the temperature accurately. It is easy to install and
operate, and can realize real-time monitoring and early warning
of faults effectively (Shin et al., 2013).

Cable Temperature Monitoring
In the power system, the cable is the main electrical equipment of
power plants and substations, and its failure often causes large-scale
power outages. Cable’s heat mostly occurs at the joint, because the
current transmitted in the cable is larger, if the contact resistance is
slightly increased, and the temperature will be high (Oprea et al.,
2009). Therefore, it is necessary to ensure that all busbar joints are in
good contact. Therefore, it is very important to monitor the joint
temperature in real time to find out the fault of power equipment
and to maintain power equipment in time. Flexible temperature
sensors can be used as patches attached to the cable for accurate real-
time monitoring of temperature, thereby reducing human
consumption, improving the mechanization and efficiency of the
power system, so as to more effectively prevent, monitor and repair
cable faults (Jiang, 2017).

Industrial Production
In industrial production, accurate measurement and control of
temperature parameters are essential for output quality,
production efficiency and safe operation. At present, the
commonly used heat treatment and thermal processing are
begun to use the flexible temperature sensor to replace the
traditional temperature sensor, which has never realized the
measurement and control of temperature in the production
process or important production equipment.

FIGURE 7 | Applications of flexible temperature sensors.
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Surface Acoustic Wave
One of the most concerning performances of surface acoustic wave
is the fact that it can propagate along the dielectric’s surface. Based
on transmitting or intercepting signals from the dielectric’s surface,
signal processing functions such as filter and sensor can be realized.
There is a positive correlation between temperature and frequency.
We can obtain accurate signals from the dielectric’s surface
attached flexible temperature sensors (Kun et al., 2014).

Spacecraft
With the development of aerospace technology, the shape and
structure of aircraft become more and more complex. When
measuring the surface’s heat flux, the distance between
measured points cannot be smaller because of the size of sensor.
Since the base material of thin film resistance temperature sensor is
solid material such as glass and ceramics, the measuring end
surface of sensor does not coincide well with the model surface,
resulting in inaccurate measuring structure. If the sensor has a
flexible base, it can solve the problem of measurement of heat flux
on the surface of complex surface model to a certain extent. It can
not only make the installation of the sensor more convenient, but
also make themeasurement of end surface coincide with the model
surface better (Wang et al., 2015).

Medical Device
The application of temperature sensor in medical electronics is also
common. For example, a non-contact thermometer can measure
the heat emitted from a remote infrared radiation heat source, a
thermistor element temperature sensor for a blood analyzer can be
employed for monitoring the temperature of chambers, diffuser
lamps and oil-cooled motors in order to avoid overheating. With
the development of technology, temperature sensor manufacturers
can help designers to reduce the size of medical devices in four
ways, including providing flexible packaging options, reducing the
size of sensor integrated circuits, integrating multiple sensor
functions and intelligent devices.

Bionic Skin
Bionic skin based on various sensory functions of human body is
an important development direction in the field of bionics at
present. Various bionic sensors can replace organism’s response
to temperature, humidity and pressure through structure and
function design. This has prompted the generation of various
bionic sensors. One major bionic sensor is flexible temperature
sensor. Application of flexible temperature sensors in bionic skin
will provide a much-needed objective tool for temperature
induction and help in increasing induction accuracy. A recent
analysis of these studies highlighted the importance due to use of
various flexible temperature sensors. The authors reported that
the flexible temperature sensor array can realize tactile
perception, and it provides a design scheme for bionic skin
(Wu, 2015; Kumar et al., 2019).

Prosthetics
Prosthetics are essential tools for people with disabilities to gain
normal abilities. The current prosthesis only has the function of

moving, but it does not have the function of sensing. Flexible
temperature sensors are small, highly integrated, and can adhere
to surfaces of any shape. If a flexible temperature sensor is applied
to an existing prosthesis, the disabled can not only move
normally, but also sense the temperature of the object. The
application of flexible temperature sensors greatly enhances
the sensory experience of people with disabilities and reduces
the risk of secondary injuries (Mallory et al., 2013b).

CONCLUSION AND PROSPECTS

Flexible temperature sensors can be applied to robots, medical
health, military, intelligent manufacturing, aircraft safety and
daily life, and have broad application prospects. Flexible
temperature sensors have many characteristics, such as high
flexibility, high elasticity, high sensitivity, high resolution, and
lightweight. Various sensing principles have been applied to the
study of flexible temperature sensors, and have benefited from the
emergence of new sensitive materials, new sensor structures and
microstructures, as well as advanced technologies such as nano-
fabrication and printing technology. Flexible temperature
sensors have made breakthroughs in flexibility, sensitivity
and multi-function. Most flexible temperature sensors
utilizing an individual material only focused on the unitary
state of mechanical stimuli or applied composites for
multifunctional flexible temperature sensors. Increased
manufacturing cost and complicated fabrication process will
be obtained by this approach. Therefore, most flexible
temperature sensors are still in the laboratory stage, and they
are individual and isolate device, therefore, they are not really
put into use to serve the human society. The existing flexible
temperature array sensors still have difficulties in obtaining
both high elasticity and high flexibility. Large-area flexible
temperature sensors have poor scalability, are not easy to cut
and splice, and have high sensitivity of electronic skin contact.
The most important research directions of flexible temperature
sensors are high sensitivity and multi-function, self-healing and
self-cleaning, self-power supply and transparency (White et al.,
2001; Rodriguez-Donate et al., 2011; Jie, 2012).
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