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Despite the remarkable advances in the area of asymmetric catalytic oxidations over the
past decades, the development of sustainable and environmentally benign
enantioselective oxidation techniques, especially with the efficiency level similar to
natural enzymes, still represents a challenge. The growing demand for enantiopure
compounds and high interest to industry-relevant green technological advances
continue to encourage the research pursuits in this field. Among various oxidants,
molecular oxygen is ubiquitous, being available at low cost, environmentally benign
and easy-to-handle material. This review highlights recent achievements in catalytic
enantioselective oxidations utilizing molecular oxygen as the sole oxidant, with focus
on the mechanisms of dioxygen activation and chirogenesis in these transformations.

Keywords: oxygen, aerobic oxidation, asymmetric synthesis, enantioselective catalysis, chirality, organocatalysis,
transition metals

INTRODUCTION

In modern organic synthesis, asymmetric oxidations are of fundamental importance. The early
works of Sharpless, (Katsuki and Sharpless, 1980; Jacobsen et al., 1988; Katsuki and Martin, 2004),
Jacobsen (Zhang et al., 1990; Jacobsen et al., 1988) and Shi (Tu et al., 1996) on the stereoselective
epoxidation and dihydroxylation of alkenes have established prominent benchmarks, with a strong
impact to the whole field of enantioselective catalysis. Owing to the valuable contributions of
numerous esteemed research groups, contemporary methods of asymmetric oxidation constitute a
powerful and multifunctional tool for the preparation of versatile chiral molecules. However,
widespread utilization of hazardous oxidants with poor atom economy (e.g. hypochlorites,
iodine(III), and iodine(V) reagents, quinones, peroxy compounds) constitutes a serious
shortcoming in the view of current green chemistry paradigm (Anastas and Warner, 1998).

As a consequence, the asymmetric catalytic oxidations with molecular oxygen as a terminal
oxidant can be considered as the next Frontier in organic synthesis, (Mukaiyama and Yamada, 1995;
Jiao and Stahl, 2019; Sterckx et al., 2019), being especially attractive for large-scale industrial
applications (Caron et al., 2006; Hone et al., 2017). Dioxygen itself is an abundant compound
presented in air (21% by volume) and vital for the metabolism of aerobic organisms, thus
representing an inexpensive and eco-friendly oxidizing agent. It also offers excellent atom
economy: as a rule, aerobic oxidation usually produces low molecular weight by-products (e.g.
H2O) or even proceeds with 100% atom efficiency (e.g. formation of peroxides). Hence, atmospheric
oxygen nicely fits the green chemistry requirements, being a nearly “ideal” oxidant.

Besides the mentioned green chemistry benefits, recent accomplishments in asymmetric synthesis
with atmospheric oxygen often represent prominent examples in the catalytic reaction engineering.
Indeed, to ensure reliable stereodiscrimination of a prochiral substrate and enhanced reactivity of
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oxygen, the design of enantioselective aerobic oxidation process
should commonly comprise two main components: an effective
oxygen activation pathway and a proper method of chirality
induction (termed “chirogenesis”) (Borovkov et al., 2001).

In its ground state, dioxygen molecule represents a stable
biradical (triplet oxygen, 3O2). Although the oxidation of organic
compounds is thermodynamically favorable, the reaction of
triplet oxygen with usually singlet-state organic molecules is
spin forbidden, hence imposing a kinetic limitation on this
reaction pathway (Miller et al., 1990). As a consequence, the
organic substrates can only be oxidized with triplet oxygen via a
radical autoxidation process (Doering and Haines, 1954; Ingold,
1961; Porter, 2013; Poon and Pratt, 2018). Alternatively,
transformation of 3O2 into another type of the oxidative
species must be implemented to overcome the corresponding
kinetic constraint. As one option, activation of triplet oxygen can
be achieved with the aid of photocatalysis, resulting in generation
of highly reactive singlet oxygen 1O2 (Figure 1A) (Zamadar and
Greer, 2009; Ghogare and Greer, 2009). Another activation
pathway is based on single electron transfer from a
photoredox catalyst (Romero and Nicewicz, 2016) (or another
monoelectronic reductant) yielding superoxide anion radical O2

−

(Figure 1B). Furthermore, various transition metal complexes
can shuttle oxygen atoms even at ambient conditions via
generation of the corresponding oxo- and peroxo species, or
transfer electrons in the oxidation reactions (Figure 1C) (Miller
et al., 1990; Parmeggiani and Cardona, 2012; Allen et al., 2013).
The chirogenic process in transition metal-catalyzed

transformations is conventionally induced by a judicious
choice of chiral ligand, while photocatalytic approaches are
commonly merged with asymmetric organocatalysis.

It is remarkable that the mechanisms outlined above are also
relevant for the operation of iron- (Meunier et al., 2004), copper-
(Festa and Thiele, 2011), manganese- (Dismukes, 1996), and
metal-free flavin-containing enzymes, which provide an
inspiration for designing the analogs of the enzymatic
reactions (de Gonzalo and Fraaije, 2013; Petsi and Zografos,
2018). Many of these transformations involve synergetic or dual
catalytic cycles, featuring masterpieces in the catalytic reaction
engineering.

The main aim of the current review is to outline the key
catalytic strategies and latest innovative concepts in design of the
asymmetric reactions with molecular oxygen as a terminal
oxidant. Therefore, the most prominent examples have been
judiciously selected among the research works published in the
last 20 years. However, for a more detailed overview of the field,
especially earlier contributions, a number of comprehensive
reviews (Uchida and Katsuki, 2013; Bryliakov, 2015; Bryliakov,
2017; Ottenbacher et al., 2018), and personal accounts
(Mukaiyama and Yamada, 1995; Irie and Katsuki, 2004) can
be recommended for further reading.

The first part of the review describes transformations mediated
by transition metals. Besides asymmetric oxidations mediated by
chiral metal complexes, dual catalytic processes are also
mentioned, in which the aerobic oxidation step is used solely
to generate a prochiral intermediate for the subsequent

FIGURE 1 | Schematic representation of O2 activation pathways and chirogenesis in enantioselective catalytic aerobic oxidations: (A) generation of singlet oxygen;
(B) photoredox catalysis yielding a superoxide anion; (C) transition metal catalysis.

Frontiers in Chemistry | www.frontiersin.org March 2021 | Volume 9 | Article 6149442

Kananovich et al. Asymmetric Aerobic Oxidations

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


asymmetric reaction. The second part focuses on metal-free
aerobic oxidations, commonly operating via dual photo-
organocatalytic cycles. It worth mentioning that
enantioselective oxidations mediated by enzymes, (Endoma
et al., 2002; Boyd and Bugg, 2006; Gandomkar et al., 2019),
heterogeneous catalysts, (Miyamura et al., 2013), and
nanoparticles (Miyamura et al., 2015; Hadian-Dehkordi and
Hosseini-Monfared, 2016) also represent an important cluster
of valuable synthetic methodologies, however these approaches
are out of the scope of this review.

TRANSITION METAL-CATALYZED
TRANSFORMATIONS

Transition metal-catalyzed transformations constitute the
mainstream approach in enantioselective aerobic oxidations.
In general, the corresponding catalytic cycles mimic enzymatic
activity of metal-containing oxidases and oxygenases
(Figure 2), (Bugg, 2003; McCann and Stahl, 2015) with
asymmetry typically induced by a chiral environment.
Besides being an oxidant, transition metal can also act as a
Lewis acid to enable substrate coordination and to facilitate
stereodiscrimination of the enantiomeric pairs in oxidative
kinetic resolution process.

Among the recent advances, synergetic transition metal-
photocatalysis (Ding et al., 2017) can be mentioned as a more
intricate reaction design, in which photochemically-generated
singlet oxygen is exploited.

The transformations presented in this section are subdivided
according to the catalytic strategy and origin of chirogenesis.
While the majority of enantioselective metal-catalyzed aerobic
oxidations relies on the use of a single chiral transition metal
catalyst, several cascade or dual catalytic transformations are also
known, in which aerobic oxidation cycle is used solely to generate
a reactive prochiral intermediate (Figure 3). In the latter
approach, chirality is typically induced in an additional
catalytic cycle, as presented in the second subsection.

Asymmetric Aerobic Oxidations Mediated
by Chiral Metal Complexes
Application of the transition metal complexes as chiral oxygen
carriers in asymmetric aerobic oxidations was pioneered by the
Mukaiyama’s group in 1990s, (Mukaiyama and Yamada, 1995)
which designed a number of optically active MnIII complexes to
perform the enantioselective epoxidation of olefins (Yamada
et al., 1992; Mukaiyama et al., 1993; Nagata et al., 1994;
Yamada et al., 1994) and oxidation of sulfides to chiral
sulfoxides (Imagawa et al., 1995; Nagata et al., 1995). These
keynote contributions were followed by the discovery of chiral
nickel (Kureshy et al., 1998) and ruthenium complexes, (Kureshy
et al., 1997; Lai et al., 1998), which are capable to mediate the
enantioselective aerobic epoxidation of olefins, and works of the
Bolm’s group on the copper-catalyzed Baeyer-Villiger oxidation
of cyclic ketones (Bolm et al., 1994; Bolm and Schlingloff, 1995;
Bolm et al., 1997). It should be noted that these prominent early
contributions have been extensively discussed in several reviews
(Mukaiyama and Yamada, 1995; Bryliakov, 2017; Ottenbacher
et al., 2018). The use of chiral metal complexes still represent a

FIGURE 2 | Oxygenase and oxidase pathways of transition metal-
mediated aerobic oxidations.

FIGURE 3 | Dual catalytic enantioselective aerobic oxidation cascade.
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prevalent approach among the known aerobic oxidation
methods.

In 2000, Katsuki et al. reported a highly efficient protocol for
chemo- and enantioselective aerobic oxidation of secondary
alcohols 1 under visible-light irradiation, mediated by optically
active (nitroso)-salen ruthenium complex 2 (Scheme 1)
(Masutani et al., 2000). The reaction mechanism was
suggested on the basis of kinetics and kinetic isotope effect
studies (Shimizu et al., 2005). It was suggested that irradiation
triggers the dissociation of complex 2 and release of NO ligand,
thus providing a free coordination site for the alcohol substrate.
The produced RuIII complex A captures molecular oxygen to
afford RuIV peroxo complex B, where the peroxo ligand accepts
α-carbynol hydrogen of the alcohol ligand via a hydrogen atom
transfer (HAT) process. The resulting ketone-anchoring RuIII

species C finally recovers the complex A via replacement of the
ketone ligand with the next molecule of alcohol. In a more recent
study the same group demonstrated that a broad range of
alcoholic substrates can be employed in aerobic oxidative
kinetic resolution even without irradiation, just with the aid of
(aqua)-salen ruthenium complex 3 (Mizoguchi et al., 2014).
Applications of chiral (NO)Ru-salen complexes in
enantioselective aerobic oxidations showed a great potential
for further development and have been expanded far beyond
the kinetic resolution of alcohols in subsequent works of the same
group (Irie and Katsuki, 2004). Thus, similar ruthenium-based
catalysts have been successfully used in the enantioselective
oxidative couplings of 2-naphthols, (Irie et al., 2000), radical
cyclization of 2,2′-dihydroxystilbene, (Masutani et al., 2002), and
asymmetric desymmetrization ofmeso-diols (Shimizu et al., 2002;
Shimizu and Katsuki, 2003).

Katsuki’s chiral Ru-salen complexes are also capable to
mediate the “oxygenase type” transformations, such as
epoxidation of olefins and oxidation of sulfides (representative

examples 6 and 7 are shown in Scheme 2) (Tanaka et al., 2010;
Koya et al., 2012). In comparison with early works on the
enantioselective Ru-catalyzed aerobic epoxidations of olefins,
(Kureshy et al., 1997; Lai et al., 1998), Katsuki’s protocol did
not require an aldehyde co-reductant or high oxygen pressure
and operates at ambient conditions. Interestingly, water was
found to be an essential additive, which serves as a proton
transfer mediator.

Palladium is one of the most versatile and prominent
transition metals in catalysis, including its well-documented
role in aerobic oxidative transformations (Stahl, 2004). In
2001, the enantioselective palladium-catalyzed oxidation of
secondary alcohols with molecular oxygen was independently
reported by Stoltz’s (Ferreira and Stoltz, 2001) and Sigman’s
groups (Jensen et al., 2001) (Scheme 3). The chirality was enabled
by (–)-sparteine ligand, which also acted as a base. Later, Stoltz
and co-workers presented application of this methodology to
obtain pharmaceutically potent building blocks (Caspi et al.,
2004) and in enantioselective synthesis of several alkaloids
(Scheme 3) (Krishnan et al., 2008). The precursors 8–11 of
the targeted natural products were prepared with exceptional
enantioselectivity (90–96% ee) and respectable yields (compared
to 50% theoretical maximum), enabling facile preparation of the
required chiral motifs. Noteworthy, several functional groups
within the substrates (e.g., free hydroxyls, esters) were compatible
with the reaction conditions.

In recent decades, investigation of the catalytic reactions with
earth-abundant transition metals as sustainable alternatives to
precious metal catalysts has become a general trend. Several chiral
complexes of the first-row transition metals have been applied in
the catalytic oxidative kinetic resolutions of secondary alcohols
with molecular oxygen as an oxidant. In these transformations,
transition metals acted as oxygen carriers and/or chiral Lewis
acids to enable stereodifferentiation of racemic substrates.

SCHEME 1 | Aerobic oxidative kinetic resolution of secondary alcohols with Ru-salen complexes 2, 3 and a simplified representation of its mechanism (Masutani
et al., 2000; Shimizu et al., 2005).
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Thus, Chen et al. developed a series of chiral N-salicylidene
vanadyl carboxylate complexes to perform catalytic kinetic
resolution of α-hydroxycarboxylic esters, thioesters, amides
(Weng et al., 2006; Chen et al., 2007; Salunke et al., 2011) and
α-hydroxyketones (Chen et al., 2011) by using molecular oxygen
as the terminal oxidant at ambient conditions. It was found that
aerobic oxidation of (S)-alcohols proceeds more readily than their
(R)-counterparts in the presence of vanadium complex 12 and its
congeners (Scheme 4). As a notable example illustrating high
oxidation selectivity, (R)-isomer of N-benzylamide 13 was
obtained in 50% yield and 98% ee (Weng et al., 2006).
Drastically slower rate of the oxidation for (R)-isomer (krel �
458) was rationalized based on the results of single crystal X-ray
analysis of the corresponding catalyst-substrate adduct 14. It was
found that α-carbinol hydrogen of (R)-13 is shielded with a
neighboring tert-butyl group of the chiral ligand, thus making it
barely accessible for elimination through a two-electron
oxidation process (Weng et al., 2006). However, the shielding
is absent in the diastereomeric complex with (S)-13, what results

in its fast transformation into the α-ketoamide oxidation product
and low-valent vanadium complex. Reoxidation of the latter with
molecular oxygen recovers the reactive vanadium (V) species. As
a further development, reusable polystyrene-supported vanadium
catalysts have also been prepared to promote oxidations of
α-hydroxy (thio)esters and amides with enantioselectivities of
up to 99% ee (Salunke et al., 2011).

Alamsetti and Sekar reported the first cobalt-catalyzed
oxidative kinetic resolution of α-hydroxyesters 15 with
molecular oxygen as the sole oxidant (Scheme 5) (Alamsetti
and Sekar, 2010). However, 2,2,6,6-tetramethylpiperidin-1-oxyl
(TEMPO) was required as a co-catalyst (Wertz and Studer, 2013).
Among several cobalt salts and chiral ligands screened, Co(OAc)2
and salen ligand 16 provided the best reaction outcome with
racemic methyl mandelate 15 (R � Me, Ar � Ph). The developed
conditions were also suitable for a range of α-hydroxyesters, with
the maximum selectivity of 99.9% ee achieved for allyl mandelate.
Although no mechanistic studies have been performed and a role
of cobalt as a potent oxygen carrier has not been manifested,
coordination of 15 to the chiral metal complex producing
diastereomeric complexes with the different rates of TEMPO-
mediated aerobic oxidation could be suggested as a plausible
scenario.

The same group applied similar methodology for the kinetic
resolution of benzoin 17 via the TEMPO-catalyzed aerobic
oxidation in the presence of a chiral zinc complex, generated
in situ from ZnSO4 and salen ligand 18 (Scheme 6) (Muthupandi
and Sekar, 2011). This approach yields enantiomerically enriched
17 with low 43% ee. Since zinc possesses a single stable oxidation
state +2 in its compounds, complex 17 could only play a role of
chiral Lewis acid, while the oxidation should occur as a nitroxide-
catalyzed process (Wertz and Studer, 2013).

Dioxygen has also been utilized as an oxidant in the
asymmetric dehydrogenative C–C coupling reactions. A
notable example of such transformation was developed by
Egami and Katsuki, who reported in 2009 an aerobic oxidative
coupling of 2-naphthols mediated by Fe(salen) complexes
(Scheme 7) (Egami and Katsuki, 2009). Chiral iron(III)
complex 19 was found to be especially effective for the
asymmetric coupling of 3-substituted 2-naphthols 20, featuring
bi-2-naphthols (R)-21 with enantioselectivities greater than 90%
ee, with the only exception of methyl-substituted compound (R �
Me, 77% ee). The mechanistic studies suggested the coordination
of a naphthol substrate to FeIII in a chiral complex, followed by
the “oxidase mode” SET oxidation with dioxygen as a rate-
determining step. This process generates the radical cationic
naphthol species, undergoing subsequent cross-coupling with
the anionic 2-naphthol counterpart (Matsumoto et al., 2012;
Uchida and Katsuki, 2013).

Chiral binuclear copper oxo-complex 22, generated in situ
from (–)-sparteine, Cu(CH3CN)4PF6 and molecular oxygen, was
introduced by the Porco group to perform asymmetric
dearomatization of phenolic compounds (representative
example is shown in Scheme 8). The approach was
successfully applied as a key step in asymmetric synthesis of
natural products, such as azaphilones (Zhu et al., 2005; Zhu and
Porco, 2006; Qian et al., 2007; Germain et al., 2011).

SCHEME 2 | Photo-promoted Ru-catalyzed enantioselective sulfide
oxidation and alkene epoxidation with molecular oxygen (Tanaka et al., 2010;
Koya et al., 2012).
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In contrast to the mainstream use of transition metals as
oxygen carriers or redox catalysts, Xiao et al. developed a
synergetic transition metal-photocatalytic approach, which
was applied for highly enantioselective α-hydroxylation of
β-ketoesters and β-ketoamides 23 (Scheme 9) (Ding et al.,
2017). A family of visible-light-responsive chiral ligands was
prepared by grafting a photosensitive thioxanthone motif
onto a chiral bisoxazoline scaffold. In the catalytic
complex, the thioxanthone motif acts as a triplet-state
sensitizer to enable photogeneration of singlet oxygen,
while the Ni2+ cation acts as a Lewis acid to coordinate
β-keto ester substrate 23 in the enolate form. Besides the

preparation of indanone-derived α-hydroxylated esters and
amides (e.g. 24a and 24b), the reaction protocol was also
suitable for α-hydroxylation of heterocyclic and even
aliphatic substrates (e.g. 24c and 24d). Several functional
groups prone to oxidation (alkynyl, vinyl, thiophene, etc.)
were inert under the reaction conditions. Asymmetric
induction model was proposed, assuming the most
preferable coordination of 23 with the most distant
position of the bulky adamantyl group (1Ad) from the
chiral ligand. Such mode of the coordination enables the
Re-face attack of oxidants (either activated 1O2 or peroxide
25), since the Si-face is blocked by the rear phenyl groups of

SCHEME 3 | Palladium-catalyzed aerobic oxidative kinetic resolution of secondary alcohols and its application in the total synthesis of alkaloids (Ferreira and Stoltz,
2001; Jensen et al., 2001; Caspi et al., 2004; Krishnan et al., 2008).

SCHEME 4 | Kinetic resolution of N-benzyl mandelamide 13 via vanadium-mediated aerobic oxidation (Weng et al., 2006).
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the ligand. The model agrees with the experimentally
assigned (R)-configuration of product 24a.

Dual Catalytic Transformations With a
Complementary Asymmetric Step
Another important group of synthetic methods is based on the
generation of a prochiral oxidized intermediate, which is
subsequently involved into a complementary asymmetric
catalytic cycle (Figure 3). Commonly, but not necessarily, the

first oxidative catalytic step is transition metal-mediated, while
the second asymmetric step is organocatalytic.

Hence, the enantioselective synthesis of 4H-chromenes 26
from 2-alkyl-substituted phenols 27 and β-diketones 28 was
developed by the Schneider group (Scheme 10) (Gebauer
et al., 2017). The process consists of two stages and features a
relay catalysis approach with two in situ generated manganese
catalysts. In particular, the corresponding β-diketonato
complexes of MnIII, generated from Mn(dbm)3 pre-catalyst
and β-diketones 28, were identified as superior oxygen carriers

SCHEME 5 | Cobalt-catalyzed enantioselective aerobic oxidation of α-hydroxy esters (Alamsetti and Sekar, 2010).

SCHEME 6 | Oxidative kinetic resolution of (±)-benzoin 17 using chiral zinc catalyst (Muthupandi and Sekar, 2011).
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SCHEME 7 | Iron-catalyzed aerobic oxidative coupling of 2-naphtols (Egami and Katsuki, 2009).

SCHEME 8 | Copper-mediated enantioselective oxidative dearomatization of phenols (Zhu et al., 2005).
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to perform in situ generation of transient ortho-quinone
methides 29 by oxidation of phenols 27. At the second stage,
asymmetric Michael addition of 28 to 29 was occurred and
mediated by another type of the chiral MnIII complexes,
generated from MnIII diketonates and enantiopure phosphoric

acid HX*. The process furnished 4H-chromenes 26 in up to 79%
yield and 74% ee. However, the reaction outcome was found to be
very sensitive to structural changes in the substrates 27 and 28.

In another representative example, Kananovich’s group
developed a two-step and one-pot protocol for the asymmetric

SCHEME 9 | Enantioselective aerobic oxidation of β-ketoesters mediated by a chiral nickel complex (Ding et al., 2017).

SCHEME 10 | Asymmetric synthesis of 4H-chromenes (Gebauer et al., 2017).
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synthesis of epoxy ketones 30 from easily available tertiary
cyclopropanols 31 (Scheme 11) (Elek et al., 2017). Oxidation
of 31 with atmospheric oxygen proceeded readily in THF in the
presence of manganese(III) acetylacetonate catalyst, to afford
prochiral 1,2-dioxolanes 32a (equilibrating with β-peroxo
ketones 32b) in nearly quantitative yields. The intermediates

32 were further converted into chiral epoxy ketones 30 by
treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in
the presence of immobilized on silica gel poly-L-leucine
(PLL) catalyst. The experimental protocol is operationally
simple and affords 30 in generally high yields and
enantioselectivities (80–97% ee). Several functionalities in the

SCHEME 11 | Asymmetric synthesis of epoxy ketones via aerobic oxidation of cyclopropanols (Elek et al., 2017).

SCHEME 12 | Versatile asymmetric transformations with nitroso compounds generated in situ by aerobic oxidation (Frazier et al., 2011; Xu et al., 2014; Maji and
Yamamoto, 2015).
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R group of 31 tolerate the reaction conditions, except of the
metal-coordinating (e.g. amine) and base-sensitive moieties.
The α-helical structure of PLL catalyst is responsible for the
supramolecular binding of prochiral substrate 32 and favors the
corresponding transition state (TS≠) leading to the
R-enantiomer of 30 (Kelly and Roberts, 2004; Berkessel et al.,
2006). The developed transformation was successfully applied
in a short and stereodivergent synthesis of chlamydocin, a
natural histone deacetylase inhibitor with chiral epoxy ketone
warhead (Elek et al., 2019).

Several enantioselective cascade transformations with reactive
intermediates generated by aerobic oxidation in the presence of
copper salts have also been reported. Thus, Whiting (Chaiyaveij
et al., 2011) and Alaniz (Frazier et al., 2011; Frazier et al., 2012)
independently disclosed a convenient protocol for the generation
of nitrosocarbonyl compounds (e.g. 33, Scheme 12B) by copper-
catalyzed aerobic oxidation of N-protected hydroxylamines 34.
These reactive electrophilic nitroso compounds have been utilized
in a number of robust transformations, including the asymmetric
ene reactions (Scheme 12A), (Frazier et al., 2011) inter- and
intramolecular hetero-Diels–Alder reactions, (Chaiyaveij et al.,
2011; Frazier et al., 2012) α-amination of silyl enol ethers,
(Sandoval et al., 2015) β-dicarbonyl compounds (Scheme 12B),
(Xu et al., 2014) and α-hydroxylation of β-ketophosphonates 35
(Scheme 12C) (Maji and Yamamoto, 2014; Maji and Yamamoto,
2015). The asymmetric α-amination of β-ketocarbonyl compounds

under aerobic conditions, developed by Luo et al., can represent a
notable example (Scheme 12B) (Xu et al., 2014). In this
transformation, aerobic generation of nitrosocarbonyls was
beneficially merged with enamine catalysis enabled by a chiral
primary amine 36. The process featured high chemo- and
enantioselectivity for a broad range of β-ketocarbonyl substrates,
for example β-ketoester 37 furnished the corresponding amination
adduct (R)-38 in 97% yield and 96% ee. Based on the absolute
configuration of product 38, as well as X-ray crystal and solution
structures of enamine intermediate 39, the transition state was
suggested to account for the observed stereoselectivity, in which the
hydrogen-bonding network between 39 and 33 facilitates the Re-
face attack of enamine to give adduct 38 with the (R)-
configuration.

An interesting example of the enantioselective assembly of
structurally complex 5,5,5-tricyclic products 40 with eight
stereocenters via the multicomponent cascade reaction was
described (Scheme 13) (Potowski et al., 2015). The cascade
process is triggered by copper-catalyzed aerobic oxidation of
cyclopentadiene 41 to cyclopentadienone 42. It was supposed
that the allylic C–H oxidation of 41 is mediated by the copper
peroxo-complex 43, formed by trapping molecular oxygen by
Cu(CH3CN)4BF4 in the presence of (R)-Fesulphos ligand 44.
The subsequent double catalytic asymmetric 1,3-dipolar
cycloaddition of azomethine ylides, derived from glycine ester
imines 45, delivers the final tricyclic product 40. In turn,

SCHEME 13 | Catalytic aerobic oxidation of cyclopentadiene and tandem enantioselective cycloaddition (Potowski et al., 2015).
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azomethine ylides are generated by deprotonation of the glycine
ester imine ligand in the chiral copper complex 46. The step-wise
double cycloaddition proceeds via the endo transition state with 42

(or intermediate 47) approaching from the Re-face of ylide (with
respect to C�N) to avoid unfavorable interactions with the t-Bu
group of the ligand 44.

SCHEME 14 | Enantioselective cross dehydrogenative coupling of alkynes 49 with tetrahydroisoquinoline derivatives 48 (Kumar et al., 2017).

SCHEME 15 | Copper-catalyzed oxidative kinetic resolution of oxazolidines 54 (Nechab et al., 2007).
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In 2017, Khan et al. described a visible-light enabled
enantioselective cross dehydrogenative coupling between
tetrahydroisoquinoline derivatives 48 and alkynes 49, using
molecular oxygen as the sole oxidant (Scheme 14) (Kumar
et al., 2017). The reaction was mediated by in situ generated
copper complex with chiral salen ligand 50 and Rose Bengal as a
complementary photo-redox catalyst, furnishing alkynylation
products 51 in up to 90% yield and up to 99% ee. According
to the suggested reaction mechanism, prochiral iminium ion 52 is
produced by oxidation of 48 in the photo-redox catalytic cycle. In
turn, the chiral copper complex (L*)CuOTf activates terminal
alkyne 49 and serves as a precursor of chiral acetylide species 53,
which affords the optically active coupling product 51 after
addition to the intermediate imine 52.

Copper salts are also able to assist in the recovery of
catalytically active nitroxide radical species by oxidation with
molecular oxygen. Hence, Einhorn et al. disclosed kinetic
resolution of oxazolidines 54 by the oxidative ring-opening,
catalyzed by chiral N-hydroxyphthalimides (NHPI) and
copper(I) chloride (Scheme 15) (Nechab et al., 2007). Fast
reaction rates for the aerobic oxidation of 54 and selectivity
factors s > 20 were observed for a range of the substrates with
the most efficient chiral NHPI catalyst 55. As notable examples,
o-bromophenyl-substituted oxazolidine (R)-54a was obtained in
97% ee at 58% conversion, while o-iodophenyloxazolidine 54b
had the ee value of 60% at 39% conversion that corresponds to s >
50. The reaction proceeds via intermediate phthalimide N-oxyl
radical (PINO), which enables a hydrogen atom transfer from the
substrate 54. While a precise role of copper is unclear, it could be
attributed to the formation of μ-oxocopper(II) species by the

reaction of CuCl with dioxygen, which are capable to generate
PINO from 55 (Nechab et al., 2004).

The last representative example in this subtopic is based on the
work of Wang et al., who demonstrated that coordinatively
unsaturated RuCl3 can act as a synergistic co-catalyst in tandem
with chiral N-heterocyclic carbenes (NHC) (Wang et al., 2018).
The authors performed the aerobic [3 + 3] annulation reaction of
β-dicarbonyl compounds 56 and enals 57 to access
enantiomerically enriched lactones 58 in the presence of
carbene precursor 59 (Scheme 16). The developed methodology
exhibits a broad substrate scope, such as enals with complicated
skeletons and diketones with exceptional structural diversity (23
examples in total). The obtained chemical yields were good-to-
excellent along with the enantiomeric purity of up to 94% ee.
According to themechanistic studies, the reaction proceeds via acyl
azolium intermediate D, generated by the ruthenium-catalyzed
aerobic oxidation of homoenolate E. As a further extension,
azolium dienolate intermediates can be generated from
β,β-disubstituted enals, which smoothly afford δ-chiral lactones
with 80–84% ee upon the [4 + 2] annulation reaction with
trifluoromethyl ketones.

METAL-FREE CATALYTIC SYSTEMS

Another important synthetic strategy of asymmetric aerobic
oxidations is based on the metal-free catalytic systems. The
research activity in this field was commenced in the late 1980s
by Shioiri, who described the first α-hydroxylation of achiral
ketones with molecular oxygen in a two-phase system, which was

SCHEME 16 | Aerobic oxidation/annulation cascade through synergistic catalysis of RuCl3 and N-heterocyclic carbene (NHC) precursor 59 (Wang et al., 2018).
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mediated by chiral phase transfer catalysts (PTC) and triethyl
phosphite as a co-reductant (Masui et al., 1988). In 1995, Brussee
utilized chiral aza-crown ethers for the same purpose (de Vries
et al., 1995). The chiral phase transfer catalysis still represent the
most frequently exploited approach among the organocatalytic
aerobic oxidation methods. Importantly, a specific dioxygen
activation process may not be required, since many enolizable
carbonyl compounds can readily react with molecular oxygen
under basic conditions (Doering and Haines, 1954; Gardner et al.,
1968; Konen et al., 1975). As a rule, the organocatalytic methods
are tolerant to both air and water what makes them especially
attractive for various practical applications.

Following the seminal works of Shioiri (Masui et al., 1988) and
Brussee, (de Vries et al., 1995) in 2008, Itoh group reported
asymmetric hydroxylation of oxindoles 60 in the biphasic solvent
system (toluene/water), mediated by chiral cinchonidine-derived
PTC 61 (Scheme 17) (Sano et al., 2008). In this transformation, a
set of 3-alkyl-, alkenyl-, and alkynyl-substituted oxindoles 60
were hydroxylated by a simple reaction of oxindole-derived
enolates with molecular oxygen and triethyl phosphite, acting
as a reductant for peroxide intermediates. The process furnished
the corresponding 3-hydroxylated oxindole products 62 in up to
quantitative yields and 67–93% enantioselectivities. The (R)
absolute configuration at the stereogenic center in 62 (for R �
allyl) was confirmed by chemical correlation with the known
indole compound. In 2012, Tan and Jiang designed similar
transformation, utilizing pentanidinium PTC 63 (Yang et al.,
2012). In comparison to the Itoh’s work, in this case a lower

SCHEME 17 | Asymmetric hydroxylation of oxindoles 60 under phase transfer catalysis (Sano et al., 2008; Yang et al., 2012).

SCHEME 18 | Enantioselective α-hydroxylation of cyclic and acyclic
ketones (Sim et al., 2015).
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catalyst loading (5 mol%) was sufficient and no additional
reductant such as triethyl phosphite was necessary. In 2015,
Zhao et al. followed a similar phase-transfer catalytic strategy
with 1,2-bis(diphenylphosphino)ethane or triethyl phosphite as
reductants to perform the aerobic enantioselective
α-hydroxylation of cyclic and acyclic ketones with higher
yields and enantioselectivities achieved for cyclic ketones
(representative examples are shown in Scheme 18). Dimeric
PTC 64 was utilized and provided excellent stereoinduction at
only 5 mol% loading (Sim et al., 2015).

Several recent developments relied on combined photo-
organocatalysis to produce more reactive oxygen species, as
schematically outlined in Figure 4. The photochemical
activation of dioxygen delivers highly reactive singlet oxygen
in the presence of organic dyes acting as photosensitizers.
Alternatively, a photoredox catalytic cycle can be involved. In
such a case, the generation of superoxide anion (O2

−) in an
oxidative quenching cycle can be considered as a plausible O2

activation pathway. Subsequent asymmetric induction and
activation of a substrate take place in a complementary
organocatalytic cycle, which may include different types of
chiral organocatalytic species, e.g. secondary amines, hydrogen
bonding catalysts, phase transfer catalysts. Notable, an
organocatalytic molecule and an organic dye can be covalently
linked to form a bifunctional catalyst.

The first example of photochemically-driven asymmetric
organocatalytic oxidation with singlet oxygen was described by
Córdova group, in 2004 (Sundén et al., 2004). They found that
singlet oxygen, generated in the presence of tetraphenylporphyrin
(TPP) as a photosensitizer, furnished the enantioselective
α-oxidation of ketones in the presence of several natural
amino acids as organocatalysts. For example, cyclohexanone
65 produced α-hydroxyketone (S)-66 in 93% yield and 56% ee
in the presence of L-alanine (20 mol%, Scheme 19A). The key
steps of the proposed reaction mechanism imply the intermediate
formation of enamine 67, which undergoes the Re-face addition
of singlet oxygen producing (2S)-α-hydroperoxide intermediate
68. In the case of a cyclic L-amino acid (e.g. L-proline) the
addition of 1O2 occurred to the Si-face of corresponding
enamine, thus providing opposite (R)-enantiomer of 66.

As further expansion of the method utility, in 2006 the
Córdova group presented the synthesis of 1,2-diols 69 via
organocatalytic enantioselective α-oxidation of aldehydes 70
(Scheme 19B) (Ibrahem et al., 2006). The process relies on the
generation of enamine species 71, formed in situ from aldehyde
70 and secondary amine organocatalyst 72. The addition of 1O2

occurs from the more sterically accessible Re-face of enamine 71.
Reduction of produced α-hydroxy aldehydes 73 with NaBH4

furnished 1,2-diols 69 in 64–76% yields and 74–98% ee.
Works of the Meng group represent a notable recent example

of chirality induction in the α-hydroxylation reactions by means
of phase transfer catalysis and visible light activation of
dioxygen (Lian et al., 2012; Wang et al., 2016; Tang et al.,
2018; Tang et al., 2019a; Tang et al., 2019b). The method can be
considered as complementary to the Ni-mediated
transformation developed by the Xiao group (Scheme 9)
(Ding et al., 2017). For example, the aerobic oxidation of

FIGURE 4 | Schematic representation of tandem photo-organocatalysis
in asymmetric metal-free aerobic oxidations.

SCHEME 19 | Enantioselective α-hydroxylations of carbonyl compounds with singlet oxygen (Sundén et al., 2004; Ibrahem et al., 2006).
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ester 74 furnished hydroxylation product 24a in 98% yield and
90% ee in the presence of 2.5 mol% of phase transfer catalyst 75
(Scheme 20) (Wang et al., 2016). The reaction conditions are
mild, being applicable for a range of the β-carbonyl compounds
(30 examples in total). Furthermore, the synthetic protocol is
scalable and suitable for preparation of 24a in gram quantities
without the loss of enantioselectivity (Wang et al., 2016).

The key step of the suggested reaction mechanism (Scheme
20) implies the addition of singlet oxygen to the chiral enolate-
PTC complex 76, in which ion-paring, hydrogen bonding and
π-π stacking between PTC and substrate were suggested as key
supramolecular interactions (Wang et al., 2016). The produced
hydroperoxide intermediate 25 then rapidly reacts with the
enolate complex 76 furnishing the final product 24a. The
stereochemical outcome of the oxidation could be explained
by the Si-face attack of 1O2 or hydroperoxide 25, since the
opposite Re-face of enolate in the complex 76 is shielded by 1-
adamantyl group.

A bifunctional photo-organocatalyst 77 has also been
developed by the same group, with a tetraphenylporphyrin
unit grafted to the cinchona alkaloid-derived phase-transfer
catalyst (Tang et al., 2018). With the catalyst 77 (5 mol%),
visible-light induced aerobic oxidation of 74 afforded (S)-24a
in 95% yield and 86% ee. Further methodological improvements,
such as greatly reduced reaction times, were achieved by using a
flow photomicroreactor technology (Tang et al., 2019a; Tang
et al., 2019b).

Besides α-hydroxylation of carbonyl compounds, the
asymmetric metal-free oxidations with molecular oxygen can
also be applied for the synthesis of other valuable chiral
products, although such examples are less common.

In 2013, Shibata group reported a highly enantioselective
aerobic epoxidation of β-trifluoromethyl β,β-disubstituted
enones in the presence of methylhydrazine and catalytic
amounts (5 mol%) of cinchona alkaloid-derived PTC 78
(Scheme 21) (Kawai et al., 2013). The use of methylhydrazine
was essential to enable a unique dioxygen activation pathway, in

which highly pure hydrogen peroxide was produced in situ by
reduction of molecular oxygen. The subsequent asymmetric
Weitz-Scheffer reaction of enones 79 with H2O2 afforded
chiral epoxide products 80.

The enantioselective aerobic oxidation of 2-aryl-3-
alkylsubstituted indoles 81, accompanied with the semipinacol
rearrangement, was reported by Zhao and Jiang in 2018 (Scheme
22) (Bu et al., 2018). The developed cooperative catalytic
approach involved organophotoredox 82 and hydrogen
bonding 83 catalysts. The preliminary mechanistic studies
proved the formation of 3-hydroxylated compound 84 at the
first step of aerobic oxidation. It was shown that chiral
phosphoric acid 83 provided stereocontrol already at the first
step, since the intermediate 84 was formed in its enantiomerically
enriched form (59% ee at 65% conversion). However, higher
enantioselectivity was observed in the subsequent pinacol
rearrangement step (92% ee for 85; Ar � R2 � Ph), indicating
that the generated 3-hydroxy intermediate 84 could be engaged at
this step and hence affected the enantioselectivity of this
rearrangement. The reaction mechanism is apparently similar
to that mediated by Ru(bpy)3Cl2 as a photocatalyst, which was
thoroughly investigated by Xiao and Lu (Ding et al., 2014) and
could involve the reaction between photochemically generated
indole cation radical and superoxide radical anion, formed from
molecular oxygen. While the generation of singlet oxygen cannot
be completely excluded, it is unlikely a dominant pathway.

In 2018, Maity et al. presented an example of kinetic resolution
in the aerobic visible-light induced oxidation of isoquinolinium
salt 86 (Scheme 23) (Motaleb et al., 2018). The process was
mediated by the TADDOL-based phosphite catalyst 87, which led
to the oxidation product (S)-88 in 70% ee at 45% conversion (s �
12.3). The proposed reaction mechanism implies the initial
formation of an adduct between 86 and organocatalyst 87,
which further converts into the organocatalyst-bound
α-aminoalkyl radical intermediate. The latter furnishes the
oxidation product 88 upon reaction with oxygen or
superoxide anion.

SCHEME 20 | Enantioselective α-hydroxylation of β-keto esters with singlet oxygen under chiral phase transfer catalysis (Wang et al., 2016; Tang et al., 2018).
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SCHEME 21 | Enantioselective aerobic epoxidation of enones 79 (Kawai et al., 2013).

SCHEME 22 | Enantioselective aerobic oxidation of 2-aryl-3-alkylsubstituted indoles 81 (Bu et al., 2018).
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CONCLUSION AND OUTLOOK

The progress in enantioselective aerobic oxidations in the last decades
clearly demonstrates that molecular oxygen can be considered as a
viable oxidant in the asymmetric transformations, being especially
attractive for the development of sustainable oxidation protocols.
Importantly, an efficient way of chirogenesis must be enabled along
with a complementary O2-activation cycle to ensure high yields,
extended substrate scope, and excellent optical purity of the
oxidation products. In turn, the activation of O2 can be achieved
with either transitionmetal catalysis as amainstream approach or with
the help of photocatalytic methods as another direction. The use of
electrosynthesis can also be foreseen (Kawamata et al., 2017; Sambiagio
et al., 2017), although it does not have any asymmetric applications yet.
Dual catalytic processes have been commonly utilized, aswith the aid of
custom-designed bifunctional ligands and organocatalysts and with an
additional catalytic cycle. Despite of the promising potential of tandem
catalytic processes for further application, the design of task-specific
catalysts and merging two complementary catalytic cycles into a
tandem process are still arduous tasks.

For the forthcoming successful developments in the field, several
existing challenges must be properly addressed. Although aerobic
oxidations themselves are considered as “green-by-design” processes,
their safety and energy efficiency characteristics are often not
satisfactory for industrial applications. The use of air and especially
pure oxygen in the large-scale manufacturing is hampered by
incompatibility with flammable solvents, along with accompanying
problems such as heat- and mass transfers in a liquid-gas reaction
media (Osterberg et al., 2015; Sterckx et al., 2019). Furthermore, non-
catalytic radical autooxidation events may represent an additional
obstacle (Sterckx et al., 2019). Fortunately, it is possible to attenuate the
impact of these negative phenomena with the aid of modern flow
chemistry techiques (Gemoets et al., 2016; Hone and Kappe, 2018).
Complications for the industrial use of light-driven reactions arise
from their significant running cost and high energy demands (Protti
et al., 2009) that eventually results in enhanced CO2 emissions,
especially in the case of fossil fuel as a source of energy. This
problem can be attenuated and eventually circumvented by further

technology advances, such as design of more energy-efficient light
sources, photoreactors, and use of clean energy. As for the latter, direct
use of sunlight is especially appealing (Haggiage et al., 2009; Cambié
et al., 2017; Cambié et al., 2019). Although the concept is more than a
century old (Ciamician, 1912), its renaissance has begun only recently.

Besides the technology-related issues outlined above, chemical
diversity of the available transformations must be considerably
expanded. Despite rapid progress in the field of aerobic oxidations
in general, the contribution of the corresponding asymmetric reactions
is rather low and mostly limited to the α-hydroxylation of reactive
carbonyl compounds, epoxidations of alkenes, and oxidative kinetic
resolutions of secondary alcohols. As one of the solutions, an inspiration
for the development of new highly chemo- and enantioselective
transformations could arise from enzymatic reactions, of which
many have no artificial analogs, such as efficient enantioselective
hydroxylation of inactivated C–H bonds (Chang et al., 2000),
including hydrocarbons (Adam et al., 2000a; Adam et al., 2000b),
and cis-dihydroxylation of aromatic compounds (Endoma et al., 2002;
García-Urdiales et al., 2005; Boyd and Bugg, 2006).

Albeit the enantioselective oxidation reactions with molecular
oxygen are still in their infancy and cannot be considered as
dominant among the asymmetric oxidation methods, their
sustainable design and prominent potential for environmentally
benign chemical industry will certainly stimulate further research
activity in the field.
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