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Cryopreservation prolongs the storage time of cells and plays an important role in modern
biology, agriculture, plant science and medicine. During cryopreservation, cells may suffer
many damages, such as osmotic dehydration, large ice puncture and oxidative damages
from reactive oxygen species (ROS). Classic cryoprotectants (CPAs) are failing to dispose
of ROS, while antioxidants can turn ROS into harmless materials and regulate oxidative
stress. The combination of antioxidants and CPAs can improve the efficiency of
cryopreservation while negative results may occur by misuse of antioxidants. This
paper discussed the feasibility of antioxidants in cryopreservation.
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INTRODUCTION

Cryopreservation is a technique for preserving cells at low temperatures, which can prolong
their storage time. However, organisms are easy to be damaged during freezing for the following
two reasons: osmotic damage and mechanical damage. Osmotic damage is caused by the
freezing of the extracellular solution, leading to increases in the concentrations of the solutes.
Subsequently, the cells are damaged by osmotic dehydration. Mechanical damage refers to the
puncture damage of cells by sharp ice crystals (Yang et al., 2017). Therefore, many
cryoprotectants (CPAs) have been developed to reduce damages. Permeable CPAs, such as
DMSO(Ock and Rho, 2011) and glycerol (Rogers et al., 2018), can enter cells to adjust osmotic
pressure and reduce osmotic damage. Impermeable CPAs, such as antifreeze protein (Xiang
et al., 2020) can decrease the size of extracellular ice crystals to reduce mechanical damage. The
addition of CPAs can improve the efficiency of cryopreservation.

However, recent studies have shown that oxidative stress occurs in cells during cryopreservation.
Oxidative stress refers to a state of imbalance between oxidation and anti-oxidation, which is caused
by the massive production of reactive oxygen species (ROS) in extreme conditions such as low
temperatures in cells (Evangelista-Vargas and Santiani, 2017). Cellular antioxidants, such as
glutathione and thioredoxin, can resist ROS by participating the reduction process when the
concentration of ROS is low (Yang et al., 2018; Alhayaza et al., 2020). However, the large
amount of ROS produced during cryopreservation can cause the oxidation of proteins, lipids
and nucleic acids (Chen and Li, 2020). These may cause irreversible damages to cells and even lead to
apoptosis (Len et al., 2019). Classic permeable and impermeable CPAs are failing to reduce oxidative
damage to cells.
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Antioxidants, such as ascorbate acid (Mathew et al., 2019),
glutathione (Diengdoh et al., 2019), mitoquinone (Sui et al.,
2018), salidroside (Alotaibi et al., 2016), resveratrol
(Longobardi et al., 2017) and so forth, can resist the
oxidative stress and reduce the damages from ROS.
Therefore, antioxidants and CPAs can be used together to
comprehensively reduce the harm in cryopreservation. It
must be noted that the misuse of antioxidants could cause
negative effects. So appropriate antioxidants must be carefully
selected in cryopreservation. In this paper, the source, species,
properties, mechanisms and damages of ROS are introduced
in detail. The results of the combination with CPAs and
antioxidants are also concluded to promote the
development of cryopreservation.

REACTIVE OXYGEN SPECIES

Properties
ROS mainly includes superoxide anion radical (O•−

2 ),
hydrogen peroxide (H2O2) and hydroxyl radical (·OH) in
cryopreservation (Huang et al., 2018). Under normal
physiological conditions, ROS can regulate cell growth and
differentiation (Len et al., 2019). However, ROS could be
overwhelmingly produced at low temperature and cause
damages to cells (Jia et al., 2017). Generally, O•−

2 derives
from complex Ⅲ in mitochondria. Coenzyme Q
intermediate ·Q− easily transfers electrons to O2 and O•−

2 is
formed (Finkel and Holbrook, 2000). O•−

2 is moderately active
with a short half-life (about 1 μs), and it is the main source of
other ROS in cells (Sharma et al., 2012). The high solubility of
O•−

2 makes it difficult to penetrate the cell membrane
(Mumbengegwi et al., 2008), and O•−

2 cannot react with
most biomolecules (Halliwell, 2006). Under the existence
of superoxide dismutase (SOD) or by spontaneous
dismutation, O•−

2 can react with H+ to form
H2O2(Marrocco et al., 2017). H2O2 is moderately active
with a half-life of 1 ms. Unlike other ROS, H2O2 has no
charge and can enter cells easily through aquaporin. So
H2O2 can cause damage in multiple places due to its
strong membrane permeability (Bienert et al., 2007). O•−

2
and H2O2 can produce ·OH by the Haber-Weiss reaction.
·OH contains an active unpaired single electron that can react
with most biological molecules. So ·OH is considered to be the
most toxic ROS (Sharma et al., 2012).

Damages
In cryopreservation, the damage caused by ROS can be
attributed to lipid peroxidation (Banday et al., 2017),
protein oxidation (Mostek et al., 2017) and DNA damage
(Ladeira et al., 2019). Lipid peroxidation (LPO) refers to the
decomposition of lipids into aldehydes such as 4-
hydroxynonenal (4-HNE) and malondialdehyde (MDA)
under the action of ROS. The content of MDA in cells can
reflect the degree of LPO (Tsikas, 2017). LPO seriously
affects cells’ function due to lipid is an important part of
cell membranes (Uchendu et al., 2010). Besides, MDA is

highly toxic and can react with nucleic acids and proteins,
further causing damages to cells (Long et al., 2009). Proteins
can be converted into carbonyl proteins by ROS, and
the content of carbonyl in proteins can indicate the
degree of protein oxidation (Li et al., 2010). Protein
oxidation can induce DNA damage, lipid damage, cell
secondary damage, and lower enzyme efficiency (Davies,
2016). Furthermore, gene mutation, double/single strand
breaking occur in DNA in the presence of ROS (Len
et al., 2019), causing serious damage such as apoptosis
(Zhao et al., 2016). Comet assay is a standard test to
quantitatively detect the degree of DNA damage (Ladeira
et al., 2019). All the damages caused by ROS can seriously
affect the physiological function of cells and reduce the
efficiency of cryopreservation.

THE EFFECTS OF ANTIOXIDANTS

Antioxidants are powerful substances to counter ROS. The use of
specific antioxidants at appropriate concentrations can
significantly reduce the damages from ROS and improve the
efficiency of cryopreservation. However, the wrong use of
antioxidants can result in negative results.

Positive Effects
In cryopreservation, antioxidants can reduce oxidative
stress (Mathew et al., 2019), regulate the synthesis of
mitochondrial proteins (Banday et al., 2017), decrease ROS
production (Zhu et al., 2019), clear intracellular ROS (Len
et al., 2019), enhance the activity of antioxidant enzyme
(Azadi et al., 2017), resist to LPO and DNA fragmentation
(Yousefian et al., 2018). Specifically, for germ cells such as
sperm, antioxidants can increase motility parameters (Toker
et al., 2016), acrosomal integrity (Lone et al., 2018),
mitochondrial membrane potential (Fontoura et al., 2017)
and pregnancy rates (Ren et al., 2018). Therefore, the
combination of antioxidants and CPAs may reduce the
damages to cells caused by osmotic dehydration, large ice
puncture and ROS during freezing and thawing, and improve
the efficiency of cryopreservation (as shown in Table 1 and
Figure 1).

Negative Effects
There are some negative effects of using antioxidants in
cryopreservation. For instance, when ascorbic acid is used
for cryopreservation of Aranda Broga Blue orchid, the growth
regeneration percentage will be reduced from 5 to 1.7% (Khor
et al., 2020). In the cryopreservation of human semen, the
addition of ascorbic acid, vitamin E, and L-carnitine can
adversely affect sperm motility, especially at high
concentrations (Banihani and Alawneh, 2019). The reason
may be that antioxidants not only reduce ROS but also have
negative effects on the endogenous antifreeze mechanism of
cells (Khor et al., 2020). Furthermore, the high concentrations
of antioxidants transform cells from oxidative stress to
reductive stress, which may also have negative effects on
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TABLE 1 | The applications of antioxidants.

Antioxidants CPAs Cryopreservation
objects

Positive results Cryopreservation
method

References

Ascorbate acid Sucrose and PVS2a Kiwifruit shoot tips Lipid peroxides↓ Droplet vitrificationb Mathew et al. (2019)
Protein carbonyls↓
Regeneration↑

TEYCAFGc Cross-bred cattle bull
semen

Live spermatozoa↑ 4°C for 4 h, programmatically cool to
−140°C and transfer into LN

Singh et al. (2020a)
Acrosomal integrity↑
Sperm
abnormalities↓
MDA↓
SOD↑

Glutathione, ascorbate
acid and vitamin E

Sucrose Mint shoot tips Stable samples
percentage↑

Vitrification González-Benito
et al. (2016)

Catalase and malate
dehydrogenase

None Paeonia and Magnolia
pollen

Germination rate↑ Vitrification Jia et al. (2018)
SOD↑
ROS and MDA↓

Glutathione Sucrose and PVS2 Orchids protocorms Post-thaw recovery↑ Encapsulation-vitrification Diengdoh et al.
(2019)

Single-wall carbon
nanotubes

PVS2 Agapanthus praecox
embryogenic callus

ROS↓ Vitrification Ren et al. (2020)
Cells oxidative injury↑
Survival rate↑

N-acetyl-L-cysteine DMSOd Human cord blood
nucleated cells

ROS↓ Cool at 1–3°C/min to −80°C, then
transfer into LNe

Makashova et al.
(2016)Viability↑

Preservation rate↑
Catalase and
α-tocopherol

DMSO and fetal bovine
serum

Spermatogonial stem cells ROS↓ Store at −80°C for 1 day then transfer
into LN

Aliakbari et al. (2017)
The number of cells↑
Cells quality↑
Viability↑

Mitoquinone VS83f Heart valve tissue Tissue viability↑ Programmatically cool to −130°C for
24 h and transfer into LN for 2 mouths

Sui et al., (2018)

Salidroside Glycerol or trehalose Sheep red blood cells Hemolysis↓ Vitrification Alotaibi et al. (2016)
Protein oxidation↓
Lipid oxidation↓

Taurine Tris extenderg Crossbred ram sperm Percent sperm
motility↑

Programmatically cool to −140°Cand
transfer into LN

Banday et al. (2017)

Live sperm count↑
MDA↓
Glutathione↓

Leptin SpermFreezeh Human sperm DNA fragmentation↓ Store at LN vapor phase then transfer
into LN

Fontoura et al. (2017)
Antioxidant enzymes
activity↑

MitoTEMPO SpermFreeze Human spermatozoa Sperm motility↑ Place in vapor LN and transfer into LN Lu et al. (2018)
Viability↑
Membrane integrity↑
Mitochondrial
membrane potential↑

Coenzyme Q10 Soybean lecithin-based
extenderi

Buck spermatozoa Total motility↑ 4°C for 2 h, LN vapor phase for 12 min;
last transfer into LN

Yousefian et al.
(2018)Sperm viability↑

Plasma membrane
functionality↑
Sperm abnormality↓
Mitochondrial
activity↑

Lycopene Triladylj Bovine sperm Mitochondrial
activity↑

4°C for 2 h,programmatically cool to
−140°Cand transfer into LN

Tvrda et al. (2017)

ROS↓
Protein carbonyl↓
Lipid peroxidation↓
DNA damage↓

Lycopene and alpha-
lipoic acid

Extender IIk Goat spermatozoa Sperm motility↑ 4°C for 2 h,programmatically cool to
−5°Cand transfer into vapor LN

Ren et al. (2018)
Acrosome integrity↑
Membrane integrity↑
Mitochondrial
activity↑
Pregnancy rates↑

(Continued on following page)
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the structure and function of cells (Bisht and Dada, 2017). It is
noticeable that the use of antioxidants in cryopreservation is
not always satisfactory.

CONCLUSION AND PROSPECT

Cryopreservation is more and more widely used nowadays.
Many CPAs have been developed to reduce damages during
freezing and thawing. ROS produced at low temperatures can
cause lipid peroxidation, protein oxidation and DNA damage,
seriously affect the structure and function of cells, and even
cause cell apoptosis. Traditional CPAs cannot resist ROS.
Antioxidants can decrease oxidative stress, reduce the
production of ROS, convert ROS into harmless substances,
and increase the activity of ROS enzymes. Therefore, the use
of antioxidants and CPAs in cryopreservation may increase
cells’ survival rate, motility and reproductive capacity, reduce

lipid peroxidation, protein oxidation and DNA damage,
decrease the osmotic and mechanical damages by ice, so
the efficiency of cryopreservation is increased. It must be
noted that the use of antioxidants does not always have a
positive effect, especially when the concentration of
antioxidants is relatively high. This may be that
antioxidants can destroy the natural antifreeze mechanism
of cells and transform cells from oxidative stress to reductive
stress. This suggests that antioxidants are a double-edged
sword, and good results only occur when antioxidants are
used properly.

At present, there are the following research directions of
antioxidants in cryopreservation.

(1) Expanding applications. Currently, antioxidants are mainly
used for the cryopreservation of cells and plant tissues. In the
future, antioxidants can be used cautiously in the
cryopreservation of human tissues and organs to promote

TABLE 1 | (Continued) The applications of antioxidants.

Antioxidants CPAs Cryopreservation
objects

Positive results Cryopreservation
method

References

α-Tocopherol and
ascorbic acid

DMSO, glucose and
bovine serum albumin

Spermatozoa of Atlantic
salmon

Lipid peroxidation↓ Programmatically cool from 4°C to
−120°C

Figueroa et al. (2018)
Glutathione
peroxidase↑
Catalase activity↑
ROS↓
Mitochondrial
membrane potential↑
Percentage of
motility↑

Melatonin BotuCriol Equine sperm Percentage of sperm
cells ↑

Programmatically cool to −140°C and
transfer into LN

Lançoni et al. (2018)

Mitochondrial
membrane potential↑

Resveratrol Optidylm Goat semen The total motility↑ 5°C for 4 h, place in vapor LN for
10 min, last transfer into LN

Lv et al. (2019)
Progressive motility↑
Membrane and
acrosome integrity↑
Mitochondrial
activity↑
Percentage of viable
spermatozoa↑
ROS↓

Aloe vera Tris-egg-yolk-citric-acid-
fructose-glycerol
extender

Bull semen Progressive motility↑ 4°C for 4 h, programmatically cool to
−140°Cand transfer into LN

Singh et al. (2020b)
Live spermatozoa↑
Acrosomal integrity↑
MDA↓

aPVS2: plant vitrification solution 2:30% (w/v) glycerol, 15% (w/v) ethylene glycol and 15% (w/v) dimethyl sulphoxide.
bVitrification: a method for cryopreservation which can make the intracellular and extracellular environment form a glass-like shape, usually requiring high CPA concentration and rapid
cooling (Rienzi et al., 2016).
cTEYCAFG: Tris-Egg-Yolk-Citric-acid-Fructose-Glycerol extender.
dDMSO: dimethyl sulfoxide.
eLN: Liquid nitrogen.
fVS83: vitrification solution 83%:4.65 M dimethyl sulfoxide, 4.65 M formamide, and 3.30 M 1,2-propanediol.
gTris extender (Tris citric acid buffer 73 ml; fructose 1.25 g; egg yolk 20 ml; glycerol 7 ml; penicillin G sodium 80,000 IU; streptomycin 100 mg).
hSpermFreeze: a commercial CPA(Vitrolife, Sweden).
iSoybean lecithin-based extender: (3.07 g Tris, 1.26 g fructose, 1.68 g citric acid in 100 ml distilled water), soybean lecithin 1.5% (w/v) and glycerol 5% (v/v).
jTriladyl: a commercial CPA (Minitub GmbH, Tiefenbach, Germany).
kExtender II: 6 mM glucose, 600 mM Tris, 190 mM citric acid, 0.4 g/ml streptomycin, 2000 IU/ml penicillin, egg yolk (15%, v/v) and glycerol (5%, v/v) in 200 ml deionized water.
lBotuCrio: a commercial CPA (Botupharma, Botucatu, SP, Brazil)ptidyl: a commercial CPA(Biovet, France).
mOptidyl: a commercial CPA(Biovet, France).
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the development of organ transplantation, regenerative
medicine and cryomedicine.

(2) Exploring mechanisms. The microcosmic interaction
between antioxidants and ROS in cells is still unclear. The
study of mechanisms can guide the development and
application of antioxidants.

(3) Using untapped antioxidants. Many natural and artificial
antioxidants may have potential in cryopreservation and not
be used yet. Using untapped antioxidants with proper CPAs
may increase the efficiency of cryopreservation cheaply and
effectively.

(4) Revealing effective conditions. Sometimes antioxidants may
cause negative results in cryopreservation. For the

development of antioxidants in cryopreservation, it is
important to reveal the conditions that positive results
will occur.
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