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Over the years, lung cancer remains the leading cause of cancer deaths in worldwide. In
view of this, increasingly importance has been attached to the further optimization and
improvement of its treatment. Reactive oxygen species (ROS) play a key role in regulating
tumor development and anti-cancer treatment. Recently, the development of
nanomaterials provides new platforms for ROS-based cancer treatment methods,
which can help to reduce side effects and enhance anti-cancer effects. In recent
years, a variety of lung cancer treatment models have been reported, such as
chemodynamic therapy (CDT), photodynamic therapy (PDT), radiation therapy (RT) and
controlled drug release (CDR). In this review, we are going to discuss the possible
mechanism of action and current research status of ROS-based nanomaterials in the
treatment of lung cancer in order to provide constructive ideas for relative research and
expect this work could inspire the future development of novel lung cancer treatments.
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INTRODUCTION

Reactive oxygen species (ROS) is a collective term used to describe chemicals which were
formed from incomplete reduction of oxygen (D’Autreaux and Toledano, 2007). It mainly
consists of superoxide anion (O2

−), hydrogen peroxide (H2O2), hydroxyl radical (OH) and
singlet oxygen (1O2), etc. (Auten and Davis, 2009; Nosaka and Nosaka, 2017) ROS are believed
to be necessary to regulate the following normal physiological functions: 1) cell cycle
progression and proliferation; 2) differentiation; 3) migration; 4) cell death. On the one
hand, endogenous ROS are mainly produced in mitochondria, which plays an important
physiological role in cell signaling and metabolism. On the other hand, ROS also participate in
the regulation of many biological processes. Cancer cells have higher ROS levels than normal
cells due to the increased metabolism and mitochondrial dysfunction. The increase of ROS
production in cancer cells is a biochemical and molecular change, which is necessary for: 1)
tumorigenesis; 2) progression; 3) metastasis; 4) tumor resistance to chemotherapy(Tafani et al.,
2016). Therefore, the increase of ROS in cancer cells can provide an opportunity to activate
various ROS-induced cell death pathways or inhibit the resistance of cancer cells to
chemotherapy. This can be achieved by using increased ROS generation, inhibition of
antioxidant defenses or even a combination of the two (Galadari et al., 2017). Excessive
intracellular ROS levels can cause damage to proteins, nucleic acids, lipids, membranes and
organelles, thus activating cell death processes such as apoptosis. What’s more, ROS can
effectively regulate the cell signal transduction and major pathways of apoptosis mediated by: 1)
mitochondria; 2) death receptors; 3) endoplasmic reticulum (Yang et al., 2019). Given all that,
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ROS-based cancer therapies will open up possibilities to a new
generation of cancer treatment strategies.

All over the world, there were an estimated 9.6 million cancer
deaths and 18.1 million new cancer cases in 2018. Lung cancer
remains the leading cause of cancer incidence and mortality, with
2.1 million new cases and 1.8 million deaths. In both males and
females, lung cancer is the most commonly diagnosed cancer
(11.6%) and the leading cause of cancer death (18.4%) (Bray et al.,
2018; Siegel et al., 2020). Among all the treatments of lung cancer,
surgery, chemotherapy, radiotherapy, targeted therapy and other
surgeries are the main ways to treat non-small cell lung cancer.
Unfortunately, many lung cancer patients are already found to be
in the advanced stage when seekingmedical help. Considering the
difficulty to carry out effective surgical treatment for advanced
lung cancer, so comprehensive systemic anti-tumor therapy
comes to be a necessary way to prolong the survival time. As
an important part of lung cancer treatment, non-surgical
treatment can not only target the primary lesion but also the
metastatic lesion. Hence it is imperative to optimize and improve
non-surgical treatment in lung cancer.

Aiming to improve the reflection efficiency and biological
interaction, nanotechnology has brought a new round of
technological revolution to ROS science. This promotes the
emergence of many multifunctional nanomaterials, including
ROS generation, conversion and consumption. Doing this will
achieve better therapeutic effects. As materials grow in size to the
nanoscale, they exhibit new and unique properties (Auffan et al.,
2009). In the treatment of cancer, the small size of nanomaterials
contributes to the penetration of the nanosystem into tissues,

enrichment of tumor tissues, cellular uptake, intracellular
transport and elimination of the nanosystem(Yang et al.,
2018). ROS nanotechnology intersects chemistry and biology
at the nanoscale to construct nano-drugs with ROS regulation
function and improve therapeutic effect, providing new
directions for tumor therapy.

MECHANISM OF ROS-BASED LUNG
CANCER THERAPY

ROS play a key role in regulating tumor development and anti-
cancer treatment. High levels of ROS are usually harmful to cells.
When cells change from normal state to carcinomatous
condition, ROS levels are gradually increased. Through the
antioxidant defense system, ROS levels are maintained to a
new stable equilibrium state, and ROS levels are regulated
below the toxicity threshold to avoid oxidative damage.
(Gorrini et al., 2013). Thus, tumor cells can be induced to die
by the breakdown of antioxidant system caused by the
accumulation of excessive ROS, which can be used in the
treatment of cancer. Cancer cells rely on the endogenous
antioxidant defense system to maintain the new redox
homeostasis, while exogenous ROS intervention can disrupt
this balance, causing the rise of ROS and thereby destroying
cancer cells (Yang et al., 2019). Based on this, ROS-based
nanomaterials can be applied to various treatment modes of
lung cancer, such as CDT, PDT, RT and CDR (Figure 1). In the
following sections, we introduce the advances in the application

FIGURE 1 | Mechanism of ROS-based nanomaterials in lung cancer therapy.
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of these ROS-based nanomaterials in lung cancer treatment in
recent years.

Chemodynamic Therapy (CDT)
The unique biochemical characteristics of tumor
microenvironment (TME), such as high GSH concentration,
elevated H2O2 level and mild acidity make it possible to
distinguish tumor tissue from normal tissue (Tang et al., 2019;
Yang et al., 2019). We can use these intrinsic biochemical
properties as an endogenous stimuli to target the activation of
nanomaterials in tumor tissues and transform the chemicals in
the tumor into ROS to cause tumor cell damage. Most
nanosystems are designed to respond to intratumoral H+ and
H2O2, thereby promoting the production of Fenton or Fenton-
like reactions in TME, and facilitating the production of highly
toxic OH to damage the cancer cells (Liu et al., 2019). The TME-
activated localized Fenton reaction for cancer therapy mentioned
above was termed as CDT by Zhang et al. in their 2016 report
(Zhang et al., 2016). Lee et al. reported that SnFe2O4 nanocrystals
could effectively transform endogenous H2O2 into highly active
hydroxyl radicals through catalyzing heterogeneous Fenton
reaction, causing apoptosis and death of lung cancer cells.
Moreover, they proved and demonstrated that the key role to
achieve selective elimination of cancer cells is the catalase for the
first time (Lee et al., 2017). Das et al. showed synthesis iron oxide
nanoparticles (IONPs) can induce apoptosis of lung cancer cells.
Fe2+ ions can react with H2O2 through Fenton reaction to
produce hydroxyl radical to destroy DNA. This research study
may provide valuable information about therapeutic dose and
side-effects in chemotherapy for drug delivery (Das et al., 2020).

The application of ROS-based nanomaterials to lung cancer
CDT is a promising field, but there are few reports on it. By
stimulating the endogenous biochemical characteristics of tumor
tissues, tumor cytotoxic ROS can be generated without damaging
normal tissues. CDT will be a new anti-cancer treatment with
good efficacy and few side effects.

Photodynamic Therapy (PDT)
PDT is composed of photosensitizer (PS), light and tissue oxygen.
The corresponding wavelength irradiation can activate the PS,
resulting in excessive intracellular ROS production, leading to
apoptosis, death of cancer cells and stimulating the host immune
system (Dolmans et al., 2003; Agostinis et al., 2011). Less toxic to
normal tissues, PDT has organ function-sparing effects and lacks
drug resistance mechanism. Thus, it can prolong the survival time
and improve the quality of life of cancer patients who cannot be
operated on. However, the ability of excitations light to penetrate
tissue limits the clinical application of PDT (Fan et al., 2016).
ROS-based nanomaterials promise to break through this barrier.

As a PS drug delivery system, nanoparticles (NPs) can increase
the targeting and stability of PSs, reduce side effects, and protect
the PSs to reach the cancer tissue successfully. Nanomaterials
wrapped by cell membrane or protein coat can improve the defect
of photosensitizers such as: 1) poor water solubility; 2) rapid
blood clearance; 3) lack of effective targeting. Therefore, the
wrapped nanomaterials have affinity with tumor blood vessels
and tumor cell membranes to promote the uptake of PSs by

tumor cells. Feng et al. synthesized a drug delivery system
(Ng/Ce6@SCV) composed of hydrophobic PS, chlorin e6
(Ce6), gelatin nanogels (Ng) and coated stem cell membrane
vesicles (SCV) as the outer shells. Ng/Ce6@SCV can slow the
release of Ce6 to maintain high Ce6 concentration in the cancer
tissues so that it can achieve more eminent anti-tumor efficacy
(Feng et al., 2020) Nag et al. synthesized a nanohybrid (AuNP-
PpIX) of protein assembled gold nanoparticles (AuNPs),
attaching Protoporphyrin IX (PpIX) to the protein coat of the
NPs. The protein coat gives the AuNP-PpIX a higher stability to
show excellent anti-cancer efficiency upon irradiation on A549
cells through intracellular ROS generation (Nag et al., 2020).
Zhou et al. synthesized the Nanoparticle of a Ru(II)-based
photosensitizer and complementary Pt(II)-based building
blocks, which was encapsulated into an amphiphilic polymer
to encourage cell uptake and localization. The Nanoparticle can
destroy cancer cells though the generation of ROS in the
lysosomes under 2-photon near-infrared light (NIR)
irradiation (Zhou et al., 2019). Tokarska et al. presented that
they constructed a well-defined multilayer oil core nano capsules
with tumor targeting by layer-by-layer assembly strategy. The
multilayer nano capsules loaded with tetraphenyl porphyrin
(TPP) have selective photodynamic activity in A549 cells,
which can increase the uptake of TPP by cells, and generate
ROS to enhance toxicity in A549 cells(Tokarska et al., 2019).

Nanomaterials can enhance the anti-cancer ability of PDT by
stimulating the ROS generation in tumor cells. Sakr et al. showed
a preparation of core-shell-shell magnetite-silica-titania
nanoparticles (Fe3O4@SiO2@TiO2 NPs), stained with a
polypyridyl ruthenium dye. Under 532 nm light illumination,
the excellent ROS production is observed while the singlet oxygen
generation is negligible. The advantages of the dyed NPs might be
a significant increase in ROS production and it’s efficient action
against low-oxygen cancerous cells (Sakr et al., 2016). NPs can
destroy the endogenous antioxidant defense system by
consuming intracellular antioxidant substances. Further, ROS
improve to a higher level on the basis of PSs production of
ROS and induce cell apoptosis to achieve the purpose of anti-
cancer treatment. Sun et al. synthesized a kind of nanoparticle
containing β-seleno diesters and porphyrin derivates. They
introduced the selenoxide elimination reaction into
nanomedicine mediated cancer therapy for the first time. The
acrylic ester produced by selenoxide elimination reaction can
consume intracellular GSH. Therefore, the intracellular ROS level
of lung cancer cells is continuously increased, leading to cell
apoptosis. Moreover, this combination of structural design and
PSs would achieve a persistent production of ROS, which can be
used for sustainable phototherapy even in dark conditions (Sun
et al., 2019).

PDT, as one of the key means of ROS-based nanomaterials
applied in the treatment of lung cancer, stands a good chance to
embrace a broader clinical application prospect with the
development of nano-platform technology.

Radiation Therapy (RT)
RT is still one of the main clinical treatments for cancer, which
uses ionizing radiation to cause physical and chemical changes,
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leading to DNA damage in cancer cells and then inhibiting tumor
development. In clinical treatment, RT is used in local metastases
of advanced lung cancer and to prolong the life cycle of patients.
However, it often leads to collateral damage of normal tissues.
ROS-based nanomaterials can improve the effect of RT through
radiation sensitization of tumors, regulation of TME and
improvement of radiation protection (Yang et al., 2019).

Ma et al. synthesized FePt NPs and assembled them on the
surface of graphene oxide (GO) into novel FePt/GO nanosheets
(FePt/GO NSs). The NSs can increase ROS production, improve
the radiation sensitivity of lung cancer cells and induce cell
apoptosis combined with the X-ray (Ma et al., 2019).
Nanomaterials contained with high atomic number (high-Z)
elements can release electrons (auger electrons and
photoelectrons) and show strong photoelectric absorption
ability for subsequent ROS generation. They have strong X-ray
attenuation ability and can be used as radiation sensitizers. Li
et al. prepared porous platinum nanoparticles (PtNPs) to
effectively enhance RT in lung cancer cells, taking into
account the combined benefits of photoelectric absorption
ability and oxygen generation capability in the high-Z
elements. PtNPs can significantly deposit X-ray radiation
energy and covert endogenic H2O2 to O2 within the lung
cancer cells in order to increase ROS stress, DNA damage and
cell cycle arrest(Li et al., 2019). The application of ROS-based NPs
to RT will improve the therapeutic effect of advanced lung cancer,
which deserves further study and discussion.

Controlled Drug Release (CDR)
Chemotherapy is one of the main therapeutic methods for lung
cancer, but the resistance of chemotherapy drugs and the damage
to normal tissues lead to unsatisfactory therapeutic effect(Thakor
and Gambhir, 2013; He and Shi, 2014). In recent years, ROS -
mediated CDR can initiate endogenous drug release in the tumor
region and has been extensively developed (Tapeinos and Pandit,
2016). At present, ROS-mediated CDR can be divided into three
categories: 1) endogenous H2O2 directly activated CDR; 2)
endogenous H2O2 breakdown and O2 generation activated
CDR; 3) exogenous physical irradiation produce 1O2 activated
CDR (Yang et al., 2019).

ROS-based nanomaterials activate specific chemical reactions
by ROS generation, causing targeted release of anti-cancer drugs,
reducing damage to normal tissues, increasing drug
concentration in tumor tissues and improving the therapeutic
effect of anti-cancer drugs. A PH/ROS-responsive micelle drug
delivery system was developed by Zhang et al. Doxorubicin
(DOX) and α-tocopheryl succinate (TOS) were released in an
environment with rich in ROS and acid of lung cancer cells. TOS
further induced ROS production, accelerated DOX release, and
induced apoptosis of lung cancer cells (Zhang et al., 2020). Seah
et al. reported a photodynamic method for triggering drug release
from NPs via ROS - mediated polymer degradation under NIR
irradiation. Paclitaxel and 2, 3-naphthalene phthalocyanine bis
(trihexylsiloxane) were co-encapsulated in biotin-decorated poly
(ethylene glycol) polythioketal micelles bundles as anti-cancer
drugs and photosensitizers, respectively. NIR activates
naphthalocyanine to produce ROS, cleaved the thioketone

groups in the micelle, release the encapsulated paclitaxel, and
increase the cell uptake in vitro to achieve better anti-cancer
therapeutic effect (Seah et al., 2018).

ROS-mediated CDR provides a new way for nano-drugs to
accurately release anti-cancer drugs in lung cancer tissues. This
treatment model provides a new way of thinking for optimizing
anti-cancer drugs and improving the curative effect of
chemotherapy, which will be a crucial instrument in clinical
anti-cancer treatment.

Synergistic Therapy
Single treatment modes often fail to achieve ideal cancer
treatment expectations due to the diversity and complexity of
tumors. Recurrence, drug resistance and mutation of tumor
tissues often lead to unsatisfactory anti-cancer treatment effect
(Chen et al., 2014). Therefore, it is imperative to shift from single-
mode treatment to multi-mode cooperative treatment, and
integrate the advantages of multi-mode treatment to make up
for the disadvantages, so as to improve the anti-cancer treatment
effect (Fan et al., 2017; Sun et al., 2017). The ROS-based
nanomaterials developed on the basis of ROS science have
been applied to a variety of anti-cancer treatment strategies
(CDT, PDT, RT, and CDR). Thus, we hope that multi-mode
therapy can be activated synchronously or successively through a
specific stimulus and different therapeutic functional modules of
ROS-based nanomaterials can be activated through multiple
specific stimuli, so as to achieve the purpose of collaborative
therapy. The development of multi-functional ROS-based
nanomaterials makes multi-mode collaborative treatment
possible.

Guo et al. reported a new type of platinum (IV) complex-based
polyprodrug for first time, which can produce high level of ROS
under light irradiation and in situ to produce highly toxic
platinum (II) as a chemotherapeutic drug in a PDT-like
process without the use of PS or consumption of oxygen. The
nanogels can continuously release drug and reverse drug
resistance for combined chemotherapy-photodynamic therapy
(Guo et al., 2018). Cai et al. prepared a chlorin-lipid nanovesicle
using Ce6 and phospholipids as conjugations. 131I-labeled bovine
serum albumin (131I-BSA) was loaded into nanocapsules as an
internal light source, and Ce6 was stimulated to produce ROS for
the treatment of lung cancer combined with RT and PDT (Cai
et al., 2020). Hauser et al. used iron oxide NPs, combining with
cell penetrating peptide TAT, and radiation to synergistically
improve anti-cancer ability. Radiation irradiates lung cancer cells
to produce H2O2 and iron oxide NPs catalyze Fenton reaction,
significantly increasing the production of radiation-related ROS.
Combined with radiotherapy, synergistic combination therapy
can be produced in the lung cancer (Hauser et al., 2016; Sun et al.,
2018). Yue et al. synthesized a ROS-responsive drug with the PS
Ce6, TL-CPT (camptothecin conjugated with thioketal linker)
and carboxyl-mPEGwere loaded on the c nanoparticles (UCNPs)
which were named Ce6-CPT-UCNPs. Ce6 generates ROS
triggering thioether linker oxidation under NIR irradiation and
promotes the release of the anti-cancer drug into the cytoplasm of
lung cancer cells. The Ce6-CPT-UCNPs were successfully used
for fluorescence imaging, and simultaneous combined
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chemotherapy and PT of lung cancer under 980 nm laser
irradiation. This should be first report (Yue et al., 2016).

Synergistic treatment combines the advantages of various
treatment methods and acts synergistically in anti-cancer
treatment to achieve therapeutic effects that are difficult to be
achieved by single treatment. By interweaving treatments with
different mechanisms of action, more effective antitumor
manifestations can be achieved. Therefore, in-depth study on
anti-cancer mechanism of ROS-based nanomaterials is the
premise of multi-mode collaborative treatment, which still
needs further researching.

CONCLUSION AND OUTLOOK

In conclusion, the treatment of lung cancer with ROS-based
nanomaterials has been extensively studied, but many projects
are still in the exploratory stage and need further
improvement. We reviewed the application of ROS-based
nanomaterials in lung cancer treatment in recent years from
CDT, PDT, RT and CDR. Many studies have demonstrated the
potential application of ROS-based nanomaterials in the field
of lung cancer treatment, but these studies cannot be
immediately pressed into service to benefit patients. We
hope that the synthesis of multifunctional nanomaterials
through some ingenious designs will have a synergistic
effect on the treatment of lung cancer, while optimize the

synthesis process, quality, cost and production. Through
further research on ROS-based nanomaterials, the future
research should focus on materials can be synthesized to
achieve precision, safety and individualized therapeutic
effects. Most of the current research projects are still
limited to the cell and animal level. Hence, we have to take
into account the complexity of human body, the applicability
of clinical treatment and the application from “bench to
bedside.” With the development of nanotechnology and
biological sciences, we can be optimistic that these barriers
will be knocked down. ROS-based nanomaterials will break the
shackle of lung cancer treatment, improve the prognosis of
lung cancer and enhance the therapeutic effect of lung cancer.
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