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Organotin(IV) compounds have wide applications in industrial and agricultural fields owing
to their ability to act as poly(vinyl chloride) stabilizers and catalytic agents as well as their
medicinal properties. Moreover, organotin(IV) compounds may have applications as
antitumor, anti-inflammatory, antifungal, or antimicrobial agents based on the
observation of synergistic effects following the binding of their respective ligands,
resulting in the enhancement of their biological activities. In this review, we describe
the antiproliferative activities of organotin(IV) compounds in various human cancer cell lines
based on different types of ligands. We also discuss the molecular mechanisms through
which organotin(IV) compounds induce cell death via apoptosis through the mitochondrial
intrinsic pathway. Finally, we present the mechanisms of cell cycle arrest induced by
organotin(IV) compounds. Our report provides a basis for studies of the antitumor activities
of organotin(IV) compounds and highlights the potential applications of these compounds
as anticancer metallodrugs with low toxicity and few side effects.
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INTRODUCTION

Tin is a silvery white metal often found in the form of tin dioxide (SnO2), derived from the Earth’s
crust. The ability of tin to form stable bonds with carbon and other heteroatoms and its inert
characteristics in the presence of air and water have attracted much interest in various research fields
(Van der Kerk, 1975). Importantly, tin is present in a variety of inorganic/organometallic
compounds. Its outer shell contains two 5s and two 5p electrons; loss of the two electrons in
the 5p orbital or sharing of all four electrons with other atoms results in the formation of the Sn2+ ion
and a stable electronic configuration. In aqueous media, the chemistry of tin is more complex; its
stereochemistry involves the presence of inert electron pairs (resulting in stronger shielding of inner
electrons compared with outer electrons). Sn4+ and Sn2+ ions, however, cannot be found in aqueous
solutions. Organotin(IV) derivatives are formed via the binding of tin and carbon (Iqbal et al., 2015;
Adeyemi and Onwudiwe, 2018). The molecular geometry of these compounds varies, including
monomers, dimers, oligomeric ladders, cubics, butterflies, and hexameric drums, with the geometry
playing a role in their biological activity (Holmes et al., 1988; Chandrasekhar et al., 2002;
Chandrasekhar et al., 2005; Hadi et al., 2019a; Khan et al., 2020).

Organotin(IV) compounds also have their own role in commercial uses. According to Ross (1965)
and Ghazi et al. (2018), organotin(IV) compounds are being utilized in three main areas, including 1)
poly(vinyl chloride) (PVC) stabilizers, 2) industrial and agricultural biocides, and 3) catalytic agents.
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Since the 1940s, organotin(IV) compounds have been considered
ideal stabilizer compounds to prevent thermal degradation of
PVC (Martins et al., 2016). During processing, the required
concentration for organotin(IV) compounds ranges from 0.5
to 3.0 parts per hundred parts of resin. The final product is a
clear, colorless polymer because organotin(IV) compounds are
compatible with PVC resins and plasticizers (Piver, 1973; Ghazi
et al., 2018). Moreover, the capability of organotin(IV)
compounds to control many fungi and bacteria enables
organotin(IV)-based preservatives to be applied as industrial
and agricultural biocides. In the 1960s, antifouling paint was
applied in the production of marine vessels, rather than copper
oxides; the organotin(IV) compounds, including tributyltin(IV)
and triphenyltin(IV) compounds (e.g., oxide, chloride, acetate,
and linoleate) were used to minimize fouling, leading to longer
protection of up to 18–24 months (Omae, 2003). According to
Piver (1973) and Sardon et al. (2013), polyurethane foams are
typically prepared through a direct route involving
hexamethylene diisocyanate and 1,4-butanediol with the
presence of organotin(IV) catalysts. The main steps in this
mechanism include chain extension, gas reaction, and
crosslinking. The formation of urethane linkages involves
either a Sn–O-isocyanate-insertion bond or the action of an
organotin(IV) compound as a Lewis acid (Devendra et al.,
2013). Besides, organotin(IV) compounds exhibit an
interesting effect when catalyzing the reaction of chain
extension, allowing optimum rates for both chain extension
and gas formation to be achieved. The most commonly used
organotin(IV) catalysts include dibutyltin(IV) diacetate,
dibutyltin(IV) dilaurate, dibutyltin(IV) dichloride,
dibutyltin(IV) dilaurylmercaptide, and dimethyltin(IV)
dichloride (Piver, 1973; Ghazi et al., 2018).

Over 2000 tin-based pharmacological candidates have been
tested by The National Cancer Institute (Nath and Saini,
2011). Organotin(IV) derivatives, hereby, have attracted
much attention within the last 2 decades owing to their
potential biological activities, including antitumor (Awang
et al., 2011), anti-inflammatory (Niu et al., 2014),
antimicrobial (Sedaghat et al., 2013), antifungal (Najeeb
et al., 2009), antinematicidal, and anti-insecticidal effects
(Jain et al., 2004). Driven by the clinical achievements of
cisplatin, the first platinum-based chemotherapeutic drug,
researchers have focused much attention on nonplatinum-
based chemotherapeutics in order to improve therapeutic
efficacy and prevent severe side effects related to platinum-
based drugs. Among all reported nonplatinum-based drugs,
organotin(IV) compounds may be the most promising
metallodrugs, as, in some cases, they portray better effects
than cisplatin (Hadjikakou and Hadjiliadis, 2009; Attanzio
et al., 2020) and have been shown to have substantial
anticancer effects (Jan et al., 2002; Samuel et al., 2002;
Shuaibu et al., 2003; Tabassum and Pettinari, 2006).

Accordingly, in this review, we discuss the antiproliferative
activities and mechanisms of organotin(IV) compounds to
rationalize the potential of organotin(IV) compounds to be
developed as effective and reliable anticancer agents in the
future.

ANTIPROLIFERATIVE ACTIVITIES OF
ORGANOTIN(IV) COMPOUNDS

Organotin(IV) compounds have attracted much attention
recently as potential metallodrugs since the discovery of their
antitumor activities (Gielen et al., 1999). Based on the wide range
of organic moieties and donor ligands that are attached to the
metal, several diorganotin(IV) and triorganotin(IV) compounds
with in vitro antitumor properties against various solid and
hematologic cancers have been studied (Gielen and Tiekink,
2005; Alama et al., 2009; Hadjikakou and Hadjiliadis, 2009).
These compounds show lower toxic effects, higher
antiproliferative activity, better excretion properties, and fewer
side effects than other platinum-based drugs, even when used at
low concentrations (Florea and Busselberg, 2011; Deo et al., 2018;
Rubino et al., 2018; Attanzio et al., 2020). Additionally, novel
organotin(IV) compounds have been shown to have high
selectivity toward various cancer cell lines, regardless of ligand
diversity (Awang et al., 2014; Girasolo et al., 2017; Attanzio et al.,
2020). Niu et al. (2014), Sirajuddin et al. (2014) and Hadi et al.
(2019a) stated that organotin(IV) derivatives are likely to show
cytotoxic effects with the following trend: RSn3+ < R2Sn

2+ <
R3Sn

+, with triorganotin(IV) substituents demonstrating the
strongest effects. Table 1 shows the half-maximal inhibitory
concentration (IC50) values for organotin(IV) derivatives
against various human tumor cell lines. Here, we describe
studies of the antiproliferative effects of these compounds and
discuss their potential application in the treatment of cancer.

Organotin(IV) Compounds Containing
Hydrazone as Ligands
Devi et al. (2020) reported a series of diorganotin(IV) compounds
derived from the reaction of indole-3-butyric hydrazide with
salicylaldehyde and its derivatives (Scheme 1). The hydrazone
Schiff base ligands were as follows: Nʹ-(2-hydroxybenzylidene)-4-
(1H-indole-3-yl) butanehydrazide [H2L

1], Nʹ-(2-hydroxy-5
nitrobenzylidene)-4-(1H-indole-3-yl)butanehydrazide [H2L

2],
Nʹ-(5-diethylamino)-2 hydroxybenzylidene-4-(1H-indole-3-yl)
butanehydrazide [H2L

3], and Nʹ-(3,5-dibromo-2
hydroxybenzylidene)-4-(1Hindole-3-yl)butanehydrazide
[H2L

4]. The geometry around the metal center indicates the
tridentate nature of Schiff base ligands coordinated by
nitrogen and oxygen donor sites to dialkyl/diaryltin(IV)
moieties, yielding complexes with penta-coordinated geometry.
The analysis of the cytotoxicity of the compounds in human lung
epithelial (A549) and human breast adenocarcinoma (MCF7) cell
lines showed that ethyl compounds displayed better cytotoxic
activity toward both cancer cell lines. Compound 5 (Et2SnL2)
exhibited the highest cytotoxic effects, with IC50 values of 13.4 μM
(A549 cells) and 15.2 μM (MCF7 cells). This was followed by the
ethyl compounds of H2L3 and H2L

4 ligands, which resulted in
stronger cytotoxic effects for both cell lines (IC50 values of less
than 30 μM) in comparison with other compounds within the
corresponding groups. Notably, when compared with the
standard drug, doxorubicin, the ethyl compounds were
approximately eight times less toxic in normal IMR90 cells.
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The antiproliferative activities of diorganotin(IV) compounds
(1–14) decreased in the order of Et > Bu > Ph > Me.

Liu et al. (2017) synthesized and characterized four new
diorganotin(IV) compounds derived from two hydrazone
Schiff base ligands (Scheme 2). The compounds were
Me2SnL1 (25), Ph2SnL1 (26), Me2SnL2 (27), and Ph2SnL2
(28) (H2L1 � 5-chlorosalicylaldehyde isonicotinoyl
hydrazone and H2L2 � 2-hydroxy-4-methoxybenzaldehyde
isonicotinoyl hydrazone) with a trinuclear centrosymmetric
structure (compounds 25 and 26) or distorted trigonal
bipyramid (compounds 27 and 28) for the coordination
environment. The in vitro cytotoxicity of the compounds
was tested against A549 human lung cancer cells and HeLa
human cervical carcinoma cells. The diphenyltin(IV)
compounds 26 and 28 exhibited more potent cytotoxic
activity than the dimethyltin(IV) compounds 25 and 27 in
both cell lines. These results may be because the phenyl groups
showed better planarity in compounds 26 and 28, which may
facilitate insertion into the DNA. These results were
consistent with previous studies of organotin(IV)

compounds conducted by Haque et al. (2015) and Shehata
et al. (2015).

Organotin(IV) Compounds Containing
Dithiocarbamate as Ligands
Phenyltin(IV) compounds containing (2-methoxyethyl)
methyldithiocarbamate (Scheme 3) were examined to
determine their in vitro cytotoxicity in K562 human
erythroleukemia cells (Kamaludin et al., 2019). The cytotoxic
activity of compound 19 was twice that of compound 20 (IC50

values 4.0 and 8.0 μM, respectively). Most studies have shown
that triphenyltin(IV) compounds, which contain three phenyl
groups attached to the central tin(IV) atom, have greater
cytotoxic effects in tested cell lines compared with
diphenyltin(IV) compounds. Additionally, Biplob et al. (2008)
and Ray et al. (2000) demonstrated that the molecular structure of
a compound plays important roles in determining its cytotoxicity,
that is, shorter alkyl substitution groups were found to increase
cytotoxicity.

TABLE 1 | Half-maximal inhibitory concentrations (IC50 values) of organotin(IV) derivatives.

No Compounds IC50 (μM) References

HeLa A549 HCT-116 HepG2 MCF-7 K562 HL-60 Jurkat E6.1

1 Et2SnL
1

— 82.4 — — 79.7 — — — Devi et al. (2020)
2 Bu2SnL

1
— 77.5 — — 74.2 — — — Devi et al. (2020)

3 Ph2SnL
1

— 86.4 — — 95.7 — — — Devi et al. (2020)
4 Me2SnL

2
— 94.1 — — 91.2 — — — Devi et al. (2020)

5 Et2SnL
2

— 13.4 — — 15.2 — — — Devi et al. (2020)
6 Bu2SnL

2
— 84.6 — — 83.2 — — — Devi et al. (2020)

7 Ph2SnL
2

— 73.1 — — 71.2 — — — Devi et al. (2020)
8 Me2SnL

3
— 85.7 — — 82.5 — — — Devi et al. (2020)

9 Et2SnL
3

— 29.6 — — 27.8 — — — Devi et al. (2020)
10 Ph2SnL

3
— 80.5 — — 77.1 — — — Devi et al. (2020)

11 Me2SnL
4

— 107.9 — — 103.2 — — — Devi et al. (2020)
12 Et2SnL

4
— 23.8 — — 20.5 — — — Devi et al. (2020)

13 Bu2SnL
4

— 33.6 — — 31.2 — — — Devi et al. (2020)
14 Ph2SnL

4
— 106.7 — — 104.2 — — — Devi et al. (2020)

15 n-Bu3Sn(5tpO) — — 0.07 0.07 0.23 — — — Attanzio et al. (2020)
16 n-Bu3Sn(mtpO) — — 0.034 0.053 0.118 — — — Attanzio et al. (2020)
17 n-Bu3Sn(HtpO2) — — 0.1 0.117 0.487 — — — Attanzio et al. (2020)
18 Ph3Sn(HtpO2) — — 0.06 0.063 0.102 — — — Attanzio et al. (2020)
19 (C6H5)2Sn[S2CN(C3H7O) (CH3)]2 — — — — — 4.0 — — Kamaludin et al. (2019)
20 (C6H5)3Sn[S2CN(C3H7O) (CH3)] — — — — — 8.0 — — Kamaludin et al. (2019)
21 (C4H9)ClSnL2 758 — — — — — — — Adeyemi et al. (2019)
22 (CH3)2SnL2 56 — — — — — — — Adeyemi et al. (2019)
23 (C4H9)2SnL2 288 — — — — — — — Adeyemi et al. (2019)
24 (C6H5)2SnL2 2 — — — — — — — Adeyemi et al. (2019)
25 Me2SnL

1 14.4 9.9 — — — — — — Liu et al. (2017)
26 Ph2SnL

1 0.62 1.2 — — — — — — Liu et al. (2017)
27 Me2SnL

2 34.69 19.50 — — — — — — Liu et al. (2017)
28 Ph2SnL

2 1.25 3.4 — — — — — — Liu et al. (2017)
29 (C4H9)2SnL — — — — — — 0.40 — Awang et al. (2016)
30 (C6H5)2SL — — — — — — 0.35 — Awang et al. (2016)
31 n-Bu3SnCl — — — — 0.0027 — — — Fickova et al. (2015)
32 Ph3SnCl — — — — 0.609 — — — Fickova et al. (2015)
33 {[Ph3SnL]·0.5C6H6}n 1.76 — — — — — — — Liang et al. (2014)
34 [Bu2LSnOSnLBu2]2 6.6 — — — — — — — Liang et al. (2014)
35 Ph2Sn(mstsc) — — — — — — — 0.3 Khandani et al. (2013)
36 Me2Sn(mstsc) — — — — — — — 0.7 Khandani et al. (2013)
37 Bu2Sn(mstsc) — — — — — — — 0.1 Khandani et al. (2013)
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SCHEME 1 | Chemical structure of 1–14.

SCHEME 2 | Chemical structure of 29–30.
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Four newly identified organotin(IV) compounds containing
N,N-diallyldithiocarbamate (Scheme 4) were synthesized and
characterized by Adeyemi et al. (2019). Compounds 22 and 23
were shown to have skewed trapezoidal–bipyramidal geometry.
The antiproliferative activity of the compounds was evaluated in
HeLa human cervical carcinoma cells, and the results showed that
compound 24 possessed excellent cytotoxic effects (IC50 value as
low as 2 μM). These findings may be explained by the lipophilicity

of the compound, which was related to the presence of two phenyl
groups (Kadu et al., 2015).

Two novel organotin(IV) compounds as
methoxyethyldithiocarbamate ligands (Scheme 5) were
synthesized and characterized in a study by Awang et al.
(2016). Further determination of the cytotoxic effects of
dibutyltin(IV) and diphenyltin(IV) in HL-60 human leukemia
cells showed that both compounds had very low IC50 values (0.40

SCHEME 3 | Chemical structure of 19–20 (Mohamad et al., 2016; Mohamad et al., 2018).

SCHEME 4 | Chemical structure of 21–24.
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and 0.35 μM for compounds 29 and 30, respectively), supporting
the strong cytotoxic activities of both compounds. These findings
were consistent with a previous study by Awang et al. (2010)
demonstrating the high cytotoxicity of dibutyltin(IV) compounds
against tested cell lines.

Dithiocarbamate ligands have the potential to strongly bind
and stabilize metal ions, resulting in a high oxidation number
(Arafat et al., 2013). Chelation of the tin ion by dithiocarbamate
ligands reduces the polar nature of the metal center, thereby
enhancing permeability by increasing lipophilicity. This
increased lipophilicity may enhance the biological activity of
the compounds (Javed et al., 2016). Menezes et al. (2005) and
Mamba et al. (2010) stated that the individual properties of
organotin(IV) and dithiocarbamate constituents may induce
synergistic effects, leading to better biological activities.

Organotin(IV) Compounds Containing
1,2,4-Triazolo[1,5-a]Pyrimidines as Ligands
Attanzio et al. (2020) reported the in vitro antiproliferative
activity of organotin(IV) compounds derived from 1,2,4-
triazolo[1,5-a]pyrimidines (Scheme 6) in three different
human tumor cell lines (HCT-116 colorectal carcinoma cells,
HepG2 hepatocarcinoma cells, and MCF-7 breast cancer cells).
The compounds were as follows: n-Bu3Sn(5tpO) (15),
n-Bu3Sn(mtpO) (16), n-Bu3Sn(HtpO2) (17), and
Ph3Sn(HtpO2) (18), where 5HtpO � 4,5-dihydro-5-oxo-[1,2,4]
triazolo-[1,5-a]pyrimidine, HmtpO � 4,7-dihydro-5-methyl-7-
oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, and H2tpO2 � 4,5,6,7-
tetrahydro-5,7-dioxo-[1,2,4]triazolo-[1,5 a]-pyrimidine.
Interestingly, all of the compounds possessed IC50 values in
the submicromolar range (less than 1 µM) against the three

SCHEME 5 | Chemical structures of the ligands and the atom numbering scheme.

SCHEME 6 | Molecular structure of 25–28 (Girasolo et al., 2005; Attanzio et al., 2020).
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cell lines. Moreover, compound 16 showed the highest cytotoxic
effects in all cell lines. All of the compounds showed high
selectivity indexes (SIs) toward tumor cell lines (SI > 90).

The involvement of 1,2,4-triazolo[1,5-a] pyrimidine in the
coordination of different nitrogen atoms could be used as a model
system to mimic the reactivity between purines and several metal
ions. Alterations in the numbers of exocyclic moieties on the
triazolopyrimidine rings could increase the versatility and
cytotoxicity properties of the compounds (Salas et al., 1999;
Attanzio et al., 2020).

Organotin(IV) Compounds Containing
Chloride as Ligands
The antiproliferative effects of triorganotin(IV) compounds
containing chloride (31 and 32) were assessed in MCF-7
human breast cancer cells. Fickova et al. (2015) showed that
both tributyltin(IV) and triphenyltin(IV) had lower IC50 values
(submicromolar range), demonstrating high potency of antitumor
effects. Additionally, the tributyltin(IV) compound 31 showed
greater growth inhibition in the tested cell lines compared with
triorganotin(IV) (32). These findings were consistent with those
reported by Attanzio et al. (2020) and Awang et al. (2016; 2011),
who showed that butyltin(IV) compounds exhibited better

cytotoxic effects than phenyltin(IV) compounds, regardless of
the types of ligands attached to the central tin atom.

Organotin(IV) chloride derivatives are nanomolar agonists
that can bind to retinoid X receptors (RXR) subtypes and
peroxisome proliferator-activated receptor. These compounds
also function as transcriptional activators. RXR subtypes
modulate hormonal signals within the cells by acting as
heterodimeric partners of various other nuclear receptors
(Brtko and Thalhamer, 2003; Nakanishi et al., 2005; Brtko,
2007; le Maire et al., 2009; Brtko and Dvorak, 2011; Fickova
et al., 2015). The organotin(IV) chloride compounds reported by
Fickova et al. (2015) were shown to inhibit cell growth by
modifying pro-apoptotic p53 and Bax and anti-apoptotic Bcl-2
protein levels in MCF-7 human estrogen receptor-positive breast
adenocarcinoma cells; this signaling pathway was similar to that
affected by other organotin(IV) derivatives.

Organotin(IV) Compounds Containing
(2E)-3-(3-Nitrophenyl)prop-2-Enoic Acid as
Ligands
In a previous study, conducted by Liang et al. (2014), two novel
organotin(IV) carboxylates of (2E)-3-(3-nitrophenyl)prop-2-
enoic acid, compounds 33 and 34 (Scheme 7), showed

SCHEME 7 | Chemical structure of 33–34.
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concentration-dependent antitumor effects in HeLa cervical
adenocarcinoma cells (IC50 values of 1.76 and 6.6 μM,
respectively). The structures of the compounds included bridging
of the carboxylate ligand of {[Ph3SnL]·0.5C6H6}n (33), which
generated one-dimensional polymeric chain structures around the
five-coordinated tin centers. In contrast, [Bu2LSnOSnLBu2]2 (34)
was characterized by a central rhombus Sn2O2 unit with two
additional tin atoms linked at the O atoms. Overall, the findings
showed that the triorganotin(IV) compound (33) showed higher
antitumor activity than the diorganotin(IV) compound (34).

Organotin(IV) Compounds Containing
3-Methoxysalicylaldehyde
Thiosemicarbazone as Ligands
Compounds with 3-methoxysalicylaldehyde
thiosemicarbazone (H2mstsc) were evaluated to determine

their antitumor activity against Jurkat E6.1 acute
lymphoblastic leukemia cells (Khandani et al., 2013). Three
novel diorganotin(IV) compounds, namely Ph2Sn(mstsc) (35),
Me2Sn(mstsc) (36), and Bu2Sn(mstsc) (37), were synthesized
and characterized. Compound 36 and 37 adopted metal
coordination geometry, including a distorted square
pyramid, and the crystal lattices were found to be stabilized
by intermolecular hydrogen bonds. The activities of the
compounds decreased in the order of 37 > 35 > 36; that is,
the dibutyltin(IV) compound showed higher antitumor
activity than the other two compounds. However, all
compounds showed high toxicity, with IC50 values of less
than 1 μM.

Overall, organotin(IV) constituents play a crucial part in
inducing cytotoxicity, with the ligands being involved in
transporting and addressing the molecule to the target while
avoiding unwanted changes within the biomolecules (Alama

FIGURE 1 | Schematic representation of organotin(IV) compounds-induced cell cycle arrest.

TABLE 2 | Differences between apoptosis and necrosis.

Characteristics Apoptosis Necrosis

Type of cell death Controlled cell death Uncontrolled cell death
Cytoplasmic
contents

Contents of the cells are not released into the surrounding
environment for engulfment by macrophages

Release of cellular contents into the surrounding environment

Process Apoptosis initiation depends on the activation of a sequence of
caspases

Involves numerous pro-inflammatory factors, including proteins such as
nuclear factor ĸB, leading to disruption of the cell membrane

Morphology 1. Cell shrinkage 1. Cell swelling
2. Condensation of chromatin 2. Formation of cytoplasmic vacuoles
3. Formation of apoptotic bodies 3. Detachment of ribosomes
4. No occurrence of inflammation 4. Condensation; swelling and rupture of mitochondria, lysosomes, and

organelle membranes
5. Inflammation
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et al., 2009). Many organotin(IV) derivatives were synthesized
and characterized according to their respective ligands, including
oxides, thiolates, carboxylates, halides, fluorides, and hydroxides
(Gielen, 2003; Hadi et al., 2019b), some of which were mentioned
previously (Antiproliferative Activities of Organotin(IV)
Compounds). These compounds were then evaluated
concerning their antiproliferative activity toward various
cancer cell lines. The compounds with halides ligands (Fickova
et al., 2015) and oxygen-donor ligands (Attanzio et al., 2020)
revealed lower IC50 values, up to the submicromolar range.
Moreover, most compounds can be classified as highly toxic
since their IC50 values were lower than 7.34 μM, as mentioned by
How et al. (2008). Noteworthy, the various antiproliferative
activities of the compounds are mainly influenced by their
structure. When the electron withdrawing group(s) are
attached to the tin atom, they tend to reduce the electron

density in the compound; thus, the changing in the alkyl or
aryl substituent in an organotin(IV) compoundmay contribute to
a significant effect on its biological activity (Pellerito and Nagy,
2002; Iqbal et al., 2016). Moreover, the three main factors that are
the nature of the organic R group, of the halide or pseudohalide X
and of the donor ligand L, play a vital role in the structure and
activity of organotin(IV) derivatives (L)xRnSnX4-n (Hadi et al.,
2019b). In addition, the number of the alkyl substituent and its
length in the organotin(IV) moiety may also contribute to the
desirable cytotoxicity on various cell lines, among which the
toxicity will become lesser with longer alkyl chains (Van der Kerk
and Luijten, 1954; Van der Kerk and Luijten, 1956; Kamaludin
et al., 2013; Hadi et al., 2019a). For example, the enzyme
inhibition activity of the five-coordinated organotin(IV)
carboxylates is higher than that of six-coordinated compounds
(Hadi et al., 2019a), suggesting that the activity of the

FIGURE 2 | Three types of reversible DNA binders.

FIGURE 3 | Schematic representation of possible mechanisms of organotin(IV) compounds.
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organotin(IV) compound can be effectively modulated by
selected ligand, thereby potentially overcoming the compound
limitations (Pellerito et al., 2006).

MOLECULAR MECHANISMS UNDERLYING
ORGANOTIN(IV) COMPOUNDS

The antitumor activities of organotin(IV) compounds have been
extensively studied (Shaheen et al., 2017), and most previous
studies have been primarily focused on synthesizing,
characterizing, and screening the antitumor activities of these
organotin(IV) compounds. However, the mechanism of toxicity
has not been clarified for this class of metal-based drugs,
particularly in in vivo studies. Therefore, information on the
mechanism of action has mainly been obtained in studies of
cancer cell lines. For example, Barbieri et al. (2001) showed that
tin(IV) compounds induce cell death via stimulation of apoptosis,
thereby resulting in antitumor toxicity. Consistent with this, we
have found that most organotin(IV) compounds induce cell
death via apoptosis, specifically the intrinsic mitochondrial
pathway, regardless of the donor-ligand.

Some previous researchers have evaluated the molecular
mechanisms underlying the cytotoxicity of organotin(IV)
compounds, demonstrating the involvement of cell death via
apoptosis (Ge et al., 2013; Girasolo et al., 2017; Kamaludin et al.,
2019; Attanzio et al., 2020), and cell cycle arrest (Yunlan et al., 2014;
Asanagi et al., 2016; Attanzio et al., 2020). Organotin compounds
were said to induce apoptotic cell death by binding to DNA at
external phosphate groups subsequently, altering phospholipid
intracellular metabolism (Attanzio et al., 2020). Figure 1 shows a
schematic representation of the potential mechanisms of
organotin(IV)-induced apoptosis and cell cycle arrest in cancer
cells. Moreover, we showed that the mechanisms of organotin(IV)
compounds (regardless of the type of their donor-ligand) are similar
to those of cisplatin, suggesting that organotin(IV) compounds may
have potential applications as metal-based anticancer drugs.

The two main cell death mechanisms are apoptosis and
necrosis; which mechanism is induced depends on the specific
stimulus encountered and the amount of cellular energy available
(Bjelaković et al., 2005). Cell death via apoptosis requires more
energy via necrosis and involves the cleavage of cellular
proteolytic substrates during intermediate stages. Activation of
cysteine-aspartic proteases (caspases) leads to cell death via
induction of DNA breaks and disruption of the adhesion of
cytoskeletal proteins. Moreover, in apoptosis, there is no
occurrence of enzyme release into the extracellular
environment, thereby preventing damage to neighboring cells
and avoiding stimulation of the immune response (Savill, 1997).
Necrosis is a type of uncontrolled cell death typically triggered by
external damage, such as hypoxia and inflammation. Hence, the
cytoplasmic contents of the cell may be released into the
surrounding tissues, resulting in widespread damage (Elmore,
2007; D’Arcy, 2019). Table 2 shows the differences between
apoptosis and necrosis (Kerr et al., 1972; Majno and Joris,
1995; Trump et al., 1997; Elmore, 2007; Panawala, 2017;
D’Arcy, 2019). In apoptosis, inflammation may not occur

owing to lack of release of cellular contents into the
surrounding microenvironment, the immediate phagocytosis of
apoptotic cells prior to the formation of secondary necrosis, and
lack of dissemination of anti-inflammatory cytokines by
engulfing cells (Savill and Fadok, 2000; Kurosaka et al., 2003).

Hereby, the mechanism of action of organotin(IV) compound
may involve triggering of the intrinsic apoptosis pathway, leading to
the generation of DNA damage, oxidative stress, and subsequently,
the activation of p53 (Ge et al., 2013; Fickova et al., 2015; Girasolo
et al., 2017; Attanzio et al., 2020). Most cytotoxic drugs target DNA
(Tabassum and Pettinari, 2006; Yusof et al., 2019). Figure 2 shows
three types of reversible DNA binders (Silverman and Holladay,
2015). Previous mechanistic studies have shown that organotin(IV)
compounds can interact with DNA as intercalative binding-type or
groove binding-type drugs depending on the coordination number of
the attachment and the nature of the groups attached to the central
tin atom (Tabassum and Pettinari 2006; Rehman et al., 2016;
Sirajuddin et al., 2016; Liu et al., 2017; Yusof et al., 2019). The
ability of these compounds to interact with DNA (binding or
cleaving) is thought to arise from the biological potency of the
compounds (Yusof et al., 2019).

Oxidative stress can also be described as the disruption of the pro-
oxidant/antioxidant balance in cells, resulting in substantial oxidative
damage and reduced cell viability (Sinha et al., 2013). Accumulation
of reactive oxygen species (ROS) following induction of oxidative
stress results in oxidative damage to essential biomolecules, such as
proteins, lipids, and nucleic acids (Bilinski et al., 1989; Yakes and
VanHouten, 1997; Cabiscol et al., 2000; Sinha et al., 2013). The three
main types of ROS include hydrogen peroxide (H2O2), hydroxyl
radical (·OH), and superoxide anion (O2·-) (Mate’s et al., 2012). The
formation of H2O2 by O2·- or by the action of oxidase enzymes can
lead to damage. Moreover, leakage in the mitochondrial respiratory
chain may cause the emergence of O2·-. The most damaging type of
ROS is ·OH, which can alter DNA bases and induce DNA strand
breaks, eventually resulting in DNA damage (Mate’s et al., 2010;
Mate’s et al., 2012). Mitochondria are the sites of ROS accumulation
(mainly O2· and ·OH) because most ROS generation occurs in the
mitochondria. This may cause deleterious effects, including oxidative
impairment of mitochondrial DNA and subsequent cell death via
apoptosis (Orrenius et al., 2007; Ricci et al., 2008; Circu et al., 2009;
Rachek et al., 2009; Sinha et al., 2013) as demonstrated by a treatment
with organotin(IV) compounds.

The organotin(IV) compounds were reported to cause
disruption in mitochondrial membrane following the activation
of p53 that induces BH3 pro-apoptotic proteins, such as BID and
BIM, which are translocated to the mitochondria (Riedl and Shi,
2004; Attanzio et al., 2020). The molecular mechanism that
involves in the activation of p53 resulted in targeted cytotoxic
effects via apoptosis or cell cycle arrest. p53 is a major tumor-
suppressor gene that regulates various biological activities,
including cell cycle arrest, cellular aging, DNA repair, and
apoptosis (Kastenhuber and Lowe, 2017). Additionally, via its
function as a transcription factor, p53 forms homotetramers that
can activate almost 500 target genes and regulate apoptosis
signaling (Riley et al., 2008; Aubrey et al., 2018).

The loss in mitochondrial membrane of the cancer cells
induced by organotin(IV) compounds causing the release of
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mitochondrial cytochrome c into the cytosol that is regulated by
Bcl-2 family proteins (e.g., Bax and Bak). This facilitates the
formation of the apoptosome complex (composed of cytochrome
c, the apoptotic molecule activating factor protease 1, and pro-
caspase-9). This complex then induces caspase-9 activation via
cleavage, followed by activation of the effector caspase, caspase-3,
which executes the final steps of apoptosis (Green and Kroemer,
2004; Mohamad et al., 2005; Er et al., 2006; Giam et al., 2008; Ge
et al., 2013). Caspases are defined as synthesized as zymogens and
are then converted from precursors to mature proteases. Initiator
caspases are activated by the oligomerization autoprocess;
effector caspases are activated by other proteases, including the
initiator caspase and granzyme B (Li et al., 1997; Muzio et al.,
1997; Butt et al., 1998; Martin et al., 1998; Srinivasula et al., 1998;
Yang et al., 1998). In addition, there are two types of overlapping
signaling pathways, that is, the intrinsic and extrinsic pathways,
which promote apoptosis. The type of pathway activated depends
on the expression of specific initiator caspases. The intrinsic
pathway is generally activated by mitochondrial dysfunction,
oxidative stress, and pro-apoptotic factor expression, whereas
the extrinsic pathway is activated by ligand attachment on cell
death receptors (Bai and Odin, 2003). Hence, this explained that
organotin(IV) compounds indeed induce apoptotic cell death via
intrinsic mitochondrial pathway. Apart from that, according to
Ge et al. (2013), the mitogen-activated protein kinases JNK and
p38MAPK are also responsive to various types of stress stimuli
and participate in the induction of apoptosis by organotin(IV)
compounds via modulation of phosphorylation.

In addition to modulation of apoptosis, cancer cells also
exhibit loss of cell cycle control, resulting in dysregulated cell
division and proliferation (Senese et al., 2014; Kartal-Yandim
et al., 2015) and lack of cell cycle arrest upon induction of cellular
stress. The cell cycle checkpoint can prevent DNA damage in cells
in response to chemotherapeutic drugs (Sancar et al., 2004),
giving the cells a sufficient amount of time to recover. In
contrast, carcinogenesis can cause disruption of all cell cycle
checkpoints. However, Linke et al. (1996) showed that treatment
with chemotherapeutic drugs and gamma radiation may trigger
DNA damage, resulting in cell cycle arrest at G0/G1 phase. This is
aligned with the previous studies that described the involvement
of the p53/p21WAF1 signaling pathway in cell cycle arrest
induced by organotin(IV) compounds.

The occurrence of cell cycle arrest at different phases is
modulated by p53-dependent transcriptional activation of
p21WAF1, which binds to and regulates several cyclins (Abbas
and Dutta, 2009; Chen, 2016). During G1 phase, cells enter the
cell cycle and prepare themselves for DNA duplication in S phase.
Subsequently, in G2 phase, DNA damage is repaired before cells
enter M (mitosis) phase, during which chromatids and daughter
cells separate (Bible and Kaufmann, 1997; Carlson et al., 1999;
Jackson et al., 2000; Senderowicz and Sausville, 2000; Hirose et al.,
2001; Sausville et al., 2001; Shapiro et al., 2001). The cells then
enter a quiescent (inactive) stage. Disruption of G2 phase may
allow the cells to preserve their viability following induction by
drugs that affect the main checkpoint kinase, Chk1 (Hapke et al.,
2001; Xiao et al., 2003). Indeed, cell cycle checkpoints are
considered strong drug targets because of their ability to

control the cell cycle. Hence, researchers in the field of
anticancer drugs often evaluate the effects of drugs on the cell
cycle in cancer cells. Organotin(IV) compounds have been shown
to cause G2/M phase arrest in several cancer cell lines (Yunlan
et al., 2014; Asanagi et al., 2016; Attanzio et al., 2020) and G0/G1
phase arrest in other cancer cell lines (Attanzio et al., 2020) as
shown in Figure 3. The arrest of proliferation at different cell
cycle phases highlights the important properties of organotin(IV)
compounds and ligand moieties in modulating biological activity.

As described above, most studies of organotin(IV) compounds
have been performed in cancer cell lines. However, Verginadis
et al. (2011) and Barbieri et al. (2000) found that organo-based
compounds could also show antitumor activity in tumor-bearing
animals. Indeed, triorganotin(IV) compounds show potent
antitumor activities and prolong survival time in tumor-
bearing animals (Barbieri et al., 2000).

CONCLUDING REMARKS

In this review, we discussed the strong cytotoxic effects of
organotin(IV) compounds. Most organotin(IV) compounds
have been shown to activate apoptosis via the intrinsic
mitochondrial apoptosis pathway, suggesting potential
applications in anticancer chemotherapy (Cima and Ballarin,
1999; Pellerito et al., 2005). The ideal characteristics of
anticancer drugs include the ability to induce apoptotic cell
death (Yamaguchi et al., 2007; Husaini et al., 2017) and
selectivity toward cancerous cells. Thus, organotin(IV)
compounds show high potential for use as chemotherapeutic
metallopharmaceuticals based on their excellent cytotoxic
characteristics. However, more studies of the mechanisms of
action of these compounds both in vitro and in vivo are
required in order to elucidate the exact mechanisms through
which cell death is induced.
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