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Metabolomics data analysis depends on the utilization of bioinformatics tools. To meet

the evolving needs of metabolomics research, several integrated platforms have been

developed. Our group has developed a desktop platform IP4M (integrated Platform

for Metabolomics Data Analysis) which allows users to perform a nearly complete

metabolomics data analysis in one-stop. With the extensive usage of IP4M, more

and more demands were raised from users worldwide for a web version and a more

customized workflow. Thus, iMAP (integrated Metabolomics Analysis Platform) was

developed with extended functions, improved performances, and redesigned structures.

Compared with existing platforms, iMAP has more methods and usage modes. A

new module was developed with an automatic pipeline for train-test set separation,

feature selection, and predictive model construction and validation. A new module was

incorporated with sufficient editable parameters for network construction, visualization,

and analysis. Moreover, plenty of plotting tools have been upgraded for highly customized

publication-ready figures. Overall, iMAP is a good alternative tool with complementary

functions to existing metabolomics data analysis platforms. iMAP is freely available for

academic usage at https://imap.metaboprofile.cloud/ (License MPL 2.0).

Keywords: metabolomics, statistical analysis, workflow, correlation-based network, visualization

INTRODUCTION

Metabolomics data analysis depends on specialized bioinformatics tools. After raw data pre-
processing (peak finding, matching, and quantifying), metabolomic data analysis can be
summarized as three steps. Step 1: data-processing including data filtering and normalization.
Step 2: metabolites-selection. In this step, statistical analysis will be performed to identify/select
metabolites that are significantly changed between/among groups or are significantly correlated
with phenotypes. Step 3: data-interpretation. The aim of this step is to reach a biologically
significant conclusion from previous results (Wanichthanarak et al., 2017). Plenty of open-
source platforms, including Metaboanalyst (Chong et al., 2018), W4M (Giacomoni et al., 2015),
Galaxy-M (Davidson et al., 2016), XCMS-online (Huan et al., 2017), MZmine2 (Pluskal et al.,
2010), MetaBox (Wanichthanarak et al., 2017), and MS-DIAL (Tsugawa et al., 2015) have been
developed and successfully used formetabolomics data analysis. There are usually two usagemodes,
predefined workflows and independent modules, taken in these platforms with their advantages
and disadvantages. Comparatively, the predefined workflows are simpler with complete (or nearly
complete) functions and recommended parameters. It is more preferred for batch analysis or
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preliminary analysis. The independentmodules aremore flexible.
Users can select one or some of the modules they want and get
quick or refined results.

We have developed IP4M (Liang et al., 2020) for
metabolomics data mining which covers all the key steps
from pre-processing to data-interpretation and can be freely
accessed via https://github.com/IP4M. Given the new trends
of metabolomics data analysis and to meet the evolving needs
of IP4M users, we improved the modules and workflows and
developed a webserver named integrated Metabolomics Analysis
Platform (iMAP). Compared with IP4M, iMAP provides
more optional methods and workflows with more adjustable
parameters and improved figures. New modules for predictive
model building and validation and correlation-based network
construction and analysis have been added. Modules of raw
data preprocessing and peak picking and annotation were not
implemented considering the risk of data security and the
burden of big data uploading. In terms of usage mode, besides
the aforementioned “independent modules” and “predefined
workflows” iMAP also supports “customized workflows”
mode. Modules belong to steps 1–3 can be incorporated into
a thread-like or tree-like workflow freely by users according
to their study aims and data characteristics. The user-defined
workflows and relevant parameters can be saved for later
analysis. This mode is particularly suitable for batch analysis or
studies with special requirements. In summary, iMAP is a more
mature, comprehensive, and modern platform to empower the
metabolomics community. Here, we present the functions and
applications of iMAP with the focuses on newly-added modules
and workflows.

MATERIALS AND METHODS

iMAP is an R-based free web application. Users can mine
their data by either running the modules separately or
running a customized workflow composed of multiple modules.
Screenshots of some iMAP interfaces are shown in Figure 1. The
main menu, available modules, interface for plot modification,
interface for workflow construction, and interface for workflow
result review are shown in Figure 1. The online “User guide &
Demos” in iMAP provides more detailed information.

All the resulting data files of iMAP are in CSV format and
hence can be imported directly (or after minor revision) to many
existing platforms for further analysis. Users are advised to check
and download their results in a timely manner. We will preserve
up to 100 module results and 100 workflow results for each user,
for up to 1 month.

Input Data
The following three types of files can serve as the “Input data”:

(1) A data matrix of preprocessed peaks intensity or
compounds concentration.

(2) Sample information table with SampleID and group
and other alternative information (such as pair_ID in
paired groups study, time in repeated measurement, clinical
information for patients, phenotype etc.).

(3) Variable information table with variable names and variable
features such as class, or subclass of metabolites. The variable
information table is an optional input file.

Demonstration input data for workflow was provided and was
available in the popped-up window (Supplementary Figure 2A)
after clicking the “Choose file” button in Figure 1E.
Demonstration input data for every single module in
Figure 1A was also provided and was available in a similar
way (Supplementary Figure 2B). Demonstration input data was
also available in the “Data repositories” in Figure 1A. Users can
access the input data and check the format by clicking “Upload
file” -> “Using the sample file” (Supplementary Figure 2C).

Data-Processing
In the workflow, the input data will first go through a
data-processing module including highlighting missing value,
removing samples/variables which have more missing values
than the thresholds, filling up the missing value, normalization,
batch effect correcting, remove unstable variables according to
quality control samples, selecting variables by their absolute
value, transformation, and scaling. Three data-processing
examples summarized from published metabolomic studies
were provided for users to choose (Supplementary Figure 1).
Users can also change order and activated/deactivated steps or
modify the parameters to build their customized data-processing
strategies. A basic statistics summary and a principal components
analysis (PCA) will be performed to explore the data onto the end
of the data-processing.

Metabolite Selection
After data-processing, statistical analysis will be performed in
various ways to select key metabolites (“metabolites-selection”)
including metabolites with a significant change between groups,
metabolites with significant correlation with other data, or top-
ranked metabolites in feature selection modules. Most of the
commonly used methods in metabolomics studies were involved
in the metabolites-selection section (Table 1). Analysis methods
were packed in different modules. Figure 2 showed a typical
workflow for metabolomics studies. The selected metabolites
from univariate analysis and OPLS-DA were integrated. These
selected metabolites can be directly passed to the pathway
analysis module for result interpretation or be transferred to
some feature selection modules (such as Random Forest or
support vector machine). Users can add/remove/edit modules
by clicking the mouse and connecting modules with arrows to
control modules’ execution order. After connecting two modules
with an arrow, the metabolites used in the downstream module
will be decided by the upstream module.

To integrate selected metabolites from different modules,
specialized summary modules (the “Union of selected
metabolites” module and the “Intersection of selected
metabolites” module in Figure 2) were provided to get union sets
or intersection sets. By connecting multiple upstream modules
(such as the univariate analysis module and OPLS-DA in
Figure 2) to a downstream summary module, users can integrate
selected metabolites from different modules. The intersection or
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FIGURE 1 | Interfaces screenshots of iMAP. (A) The main menu and part of modules. The main menu lies on the left. And modules are shown on the right after

clicking “Modules” in the main menu. Over 20 modules are available in iMAP at present. Click “User guide & Demos” to check detailed manuals. (B) The interface

showing results from modules. Users can view detailed results, change parameters for visualization, download the results or rerun the module with modified

parameters. Interface showing the results from workflows working in the same way. (C) Demonstration of the visual parameter in OPLS-DA result. Users can change

parameters for layout (such as whether to show labels and confidence ellipse, picture size), choose colors, and adjust font parameters. (D) Demonstration of the visual

parameter in a correlation-based network. All plot results from modules and workflows can be modified like the OPLS-DA results and the correlation-based network,

designed to provided users with high-quality, publishable plots. (E) The workflow creation interface. After the data matrix and sample information table were chosen,

modules in the left panel can be dragged into the center panel. Users can construct their customized workflow by connecting modules with arrows. Parameters can

be modified in the right panel when a module was selected. (F) The interface of detailed workflow results. Users can see the workflow in the center panel. The number

in brackets showed the count of the selected metabolites by each module. The selected module’s outline will turn blue like the “SVM” module in the center panel.

Users can click on a module to check the parameters used in the right panel. Users can also click on the module and check the metabolites selected by that module

on the left panel. The 10 metabolites selected by the SVM module, including undecanedionate, indoe-3-propionate, etc., were shown in the left panel.

union sets metabolites can also change metabolites to be used in
the downstream modules (such as “Feature selection by RF” in
Figure 2). A variety of optional methods and parameters were
provided for metabolites-selection.

Univariate Analysis
Thresholds for P and FDR and |log2FC| can be set to select
metabolites for analysis between two groups. When it comes to
analysis among three (or more, here use three as an example)
groups, P and FDR among three groups, thresholds for pairwise
P and post-hoc P and |log2FC| can be set to select metabolites.
Besides those commonly used thresholds, iMAP provided extra

parameters named “trends-across-groups” to select metabolites.
By setting the trend like “control -> low -> medium -> high,”
metabolites which were sequential ascending or descending in
control, low, medium, and high groups will be selected. In some
study design, biomarkersmeet the trends-across-groupsmight be
more biologically interpretable (Sreekumar et al., 2009; Ramautar
et al., 2013; Randall et al., 2013; Kim et al., 2017).

Multivariate Analysis
OPLS-DA and PLS-DA analysis are commonly used multivariate
methods for metabolites-selection in metabolomics studies.
iMAP provided VIP for metabolites-selection in PLS-DA
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TABLE 1 | Metabolites-selection methods provided by iMAP modules.

Methods Description

Univariate analysis Parametric and non-parametric test for

two or more paired/independent groups.

Mutivariate analysis with

dimensional reduction

PCA, PLS-DA and OPLS-DA

Other metabolite selection

methods

RF, SVM, Boruta

Correlation-based network analysis Correlation analysis

Partial correlation analysis

GRaMM

Node centrality analysis

Pathway analysis Metabolite set enrichment analysis

(MSEA)

Metabolomics pathway analysis (MetPA)

Model building and validation RF, SVM, GB, Boruta, Logistic regression,

Elastic Net

and OPLS-DA modules. To meet the increasing demand for
controlling confounders and covariates in the metabolomics
study, iMAP provided multivariate logistic regression to explore
the adjusted relationship between groups and metabolites.
Additionally, the commonly used feature selection methods in
machine learning were also provided. Random forest, support
vector machine, and Boruta can be utilized to select metabolites.

Correlation and Partial Correlation
Correlation analysis and partial correlation analysis can also
be utilized to select metabolites. Users can set thresholds for
correlation coefficients and P-value for metabolites-selection.
Partial correlation coefficients can be calculated in the partial
correlation analysis module by controlling confounders
and covariates.

Parametric and non-parametric tests between
paired/independent groups, PLS-DA, OPLS-DA, RF, SVM,
Boruta, correlation analysis, and partial correlation analysis are
available to select metabolites in iMAP at present.

Data Interpretation
After metabolites-selection, modules in data-interpretation can
be performed to interpret the result by utilizing the metabolites
selected from the upstream modules (Figure 2). Users can also
build and validate a predictive model, or perform a correlation-
based network analysis or do pathway analysis, including
metabolite set enrichment analysis (MSEA) and metabolic
pathway analysis (MetPA), by using pathway analysis modules.

Customized Workflow
A customized workflow is a thread-like or tree-like diagram
constructed by users according to their study aims. It can
be constructed in the interface (Figure 1E) by dragging the
wanted modules into the center panel and then connecting
them by clicking the arrows on the modules. Users can
modify the parameters of each module freely and save
the workflow for later usage. There are seven example

workflows provided in iMAP. They were summarized from
published metabolomic studies with different strategies for
key metabolites selection, pathway analysis, and/or predictive
model building (Sreekumar et al., 2009; Liu et al., 2019;
Bushman et al., 2020). It’s convenient to construct customized
workflows by modifying these example workflows. More
information about the example workflows was provided in
Supplementary Figure 1.

Pipelines for Predictive Model Building and
Validation
To our knowledge, there were four commonly used pipelines
for the predictive model building to diagnose diseases or to
predict the prognosis (Figure 3). Pipeline① build and validate
the model based on the same data, thus might create an
overly optimistic model and leave the risk of over-fitting
(Ambroise and McLachlan, 2002; Cawley and Talbot, 2010).
Pipeline② seems to return a more objective evaluation of
the model by split raw data and use different data set to
build and validate the model separately. However, pipeline②
could lead to “data leakage” (also known as data snoop)
because feature selection was performed before data separation
(Kaufman et al., 2012). Because the raw data for feature
selection in pipeline② contains information from the test set,
the selected features already have the test set’s information.
Thus, this information will leak to the predictive model.
Data leakage makes the test set previewed by the model and
may create an overly optimistic model. An overly optimistic
model may exaggerate the model’s predictive ability and may
mislead and frustrate the following researchers. Pipeline③
could avoid data leakage by using the train set for feature
selection. Furthermore, pipeline④ could verify the predictive
model’s robustness and generalization performance by importing
external validation data.

Both biological and statistical experience were required to
design a statistically appropriate analysis pipeline with a low
risk of over-optimistic and/or over-fitting model. Programming
skills may also be required to perform this pipeline with
the high-dimensional metabolomics data. All four pipelines
can be performed via iMAP workflow. All modules in “2.1.3
Metabolites selection” were available to select metabolites for
predictive modeling. However, only pipeline③ and pipeline④
were recommended for more statistically appropriate conclusion.
Users can activate a built-in parameter to separate raw data
into train set and test set by stratified random sampling.
Metabolites will be selected in step 2 by using train set
data. After metabolites were selected, models will be built
by the train set and validated by the test set to finish the
predictivemodel via pipeline③. Users can also perform pipeline④
by importing external validation data for model validation.
Users newly to metabolomics can build their workflow by
editing the default workflow provided. Experienced users can
organize workflow according to their personalized demands.
Thus, both green hand users and experienced users can
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FIGURE 2 | Customized analysis workflows demonstration. Customized workflow is constructed with modules in step 1–3, including data-processing modules (Step

1, purple), metabolites-selection modules (Step 2, blue), and data-interpretation modules (Step 3, red). Users can add/remove/edit/reorder modules in each step.

Users can also skip any step if they do not need it.

conveniently design a customized and complicated workflow
without coding.

A Module for Correlation-Based Network
Construction and Analysis
A correlation analysis involving omic data will generate vast
results. It will be challenging and effort-consuming to summarize
and interpret the vast correlation results. Correlation-based
networks and graph-theory properties are commonly used in
this condition and can help conquer this challenge (Batushansky
et al., 2016). iMAP provided a correlation analysis module
to meet these needs. The module can perform correlation
(Pearson or Spearman) or partial correlation analysis and

filter each pair of variables by thresholds (|r| > 0.5 and P
< 0.05 by default) to get the edge table for the network.
Other variables, including -ln(P), FDR, -ln(FDR), and the
absolute value of correlation coefficient, will be calculated to
map edges’ visual features in the network. The node table
will be generated from the edge table. The graph-theory
centralities of nodes (including degree centrality, betweenness
centrality, closeness centrality, and eigenvector centrality) will
be calculated (Csardi and Nepusz, 2006). Centralities can
reflect the importance of nodes and help users locate critical
nodes in the network. Users can change parameters to control
filtering algorithm and change mapping ways from variables
to visual features. The module will create a network plot
according to the user’s setting. Users can also import the
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FIGURE 3 | Four pipelines for the predictive model building. Four different pipelines for feature selection, model building, and model validation were shown.

edge table and node table into Cytoscape to perform more
personalized modifications.

Implementations
The iMAP V1.0 was developed by Scala 2.13.1 (https://www.
scala-lang.org/) and R 3.6.1 (https://www.r-project.org/). R
packages including ropls, MetaboAnalystR, Hmisc, pROC,
randomForest, and Boruta were utilized for analysis. The
interactive build tool is SBT 1.3.5 (https://www.scala-sbt.org/).
Web server is AKKA 2.6.5 (https://www.akka-technologies.
com/) and database server is PostgreSQL 9.5 (https://www.
postgresql.org/). The interfaces were designed and implemented
using the Play Framework 2.8.2 (https://www.playframework.
com/) and Bootstrap 3.3.0 (https://getbootstrap.com/). The
correlation-based network module was developed by open-
source graph network library Cytoscape.js 3.15.1 (https://
js.cytoscape.org/). The draggable widget of workflow is
developed based on a modified version of diagram (topology,
UML) framework Le5le 0.3.11 (https://github.com/le5le-com/

topology). The entire software was hosted on an Ali server with
64GB of RAM and 16 virtual CPUs with 3.2 GHz each. iMAP
supports multi-user multi-threading operation and can be used
by several users at the same time. The backend R scripts are
available at https://github.com/IP4M/R-scripts-for-iMAP.

APPLICATIONS

Omics Data Sets
Two independent data sets were utilized to demonstrate the
metabolomics data analysis performed by iMAP. Workflow with
the predictive model building was performed on 234 clinical
samples (Zhu et al., 2014) from three groups (66 colorectal cancer
patients, 76 polyp patients, and 92 healthy controls). The data set
contains 113 metabolites detected by targeted serum metabolic
profiling. Gender and age were matched in each group, and no
statistical significance was found by the Mann-Whitney U test.
A correlation-based network was constructed from proteomics
and metabolomics data of 308 clinical stool samples (Lloyd-Price
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FIGURE 4 | Metabolomic profile and predictive models built by selected metabolites. (A) Heatmap showed the Z-score value of metabolites intensity. The annotation

bars above the heatmap showed groups and train/test information of the samples. (B) PCA scores plot. (C) Venn plot showed the intersections of metabolites filtered

by three different criteria. (D) ROC plot of random forest and elastic net. The optimal cutoff value, specificity, and sensitivity were shown beside the optimal cutoff point

in the ROC plot. The AUC and 95% Confidence interval was shown in the middle of the ROC plot.
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et al., 2019) from patients with inflammatory bowel disease and
health control in the IBD database at https://ibdmdb.org/.

Predictive Model Building
Pipeline① and pipeline③ were performed separately to illustrate
the difference between different model building pipelines.
Samples were divided into the train set and test set (train:
test = 8:2) by stratified random sampling. The intensity of
metabolites in train and test samples was shown in the heatmap
(Figure 4A). PCA scores plot (Figure 4B) with the first two
principal components shows that principal component scores
among three groups were gathered very close, and most areas of
the confidence ellipse from the three groups were overlapped to
each other. Train set data were used for metabolites-selection and
modeling. Metabolites that met all three following criteria were
selected for predictive model building:

(1) Pairwise post-hoc P < 0.05 between ≥1 group pair by Tukey
test after Kruskal Wallis test.

(2) |log2FC| > 0.25 between colorectal cancer (CRC) patients
and polyp patients (PolyP), and |log2FC| > 0.25 between CRC
patients and healthy controls (HC).

Detailed metabolites-selection results and model building
were summarized in Supplementary Tables 1–8 separately
(Screenshot of the workflow and parameters used were shown
in Supplementary Figure 3). Venn plot (Figure 4C) showed
that 4 metabolites, including Adenylosuccinate, Histidine,
Hydroxyproline Aminolevulinate, and Linolenic Acid, meet all
the criteria in selection. Random forest (RF) modeling and
elastic net modeling with these 4 selected metabolites were
constructed. The train set (Pipeline①) and test set (Pipeline③)
were used to validate the model separately. Model AUC in the
train set and test set were shown in Table 2, and the ROC
plot between CRC-PolyP and between CRC-HC are shown in
Figure 4D. AUC in the train set (Pipeline①) is higher than AUC
in the test set (Pipeline③) in all conditions except elastic net
model between group HC and group PolyP. AUC in the train
set even reached 1 in the RF model between all group pairs.
However, the error rates of out-of-bag (OOB) samples was 0.364,
0.255, and 0.453, respectively, between CRC-PolyP, CRC-HC,
and PolyP-HC (Supplementary Figure 3). The high OOB error
rates (especially for PolyP-HC) indicated that the AUC of amodel
from Pipeline① could be overly optimistic and had a higher risk
of overfitting. Additionally, the AUC values of all the test sets
were < 0.8, which verified that Pipeline① was overly optimistic
and had a higher risk of overfitting.

Correlation-Based Network
Both proteomics data and metabolomics data were processed
separately in the data-processing model. Samples with >

90% zeros and variables with > 40% zeros were removed.
Moreover, the data in each sample were normalized to counts
per million. Two hundred and two shared samples in two data
sets were reserved, and 234 metabolites and 112 proteins were
reserved after processing (Supplementary Tables 9, 10).
Spearman correlation analysis was performed on the
processed data. FDR < 0.05, and |r| > 0.3 were used

TABLE 2 | AUC of ROC in the test set and train set for pair group discrimination.

Group pair Method note AUC in testa AUC in trainb

HC vs. CRC Random forest 0.743 1

HC vs. CRC Elastic net 0.7 0.865

CRC vs. PolyP Random forest 0.746 1

CRC vs. PolyP Elastic net 0.746 0.823

HC vs. PolyP Random forest 0.528 1

HC vs. PolyP Elastic net 0.5 0.5

aAUC by pipeline③, model was built by the train set and validated by the test set. bAUC

by pipeline①, model was built by the train set and validated by itself.

to filter correlations between metabolites and proteins
(Supplementary Figure 5). The 95 correlations qualified
to the threshold were selected as edges to construct the
correlation-based network (Supplementary Tables 11, 12).
The correlation-based network contains 33 proteins, including
glutamate dehydrogenase [NAD(P)(+)], 6-phosphofructokinase,
and aspartate-semialdehyde dehydrogenase, and contains
39 metabolites such as adipate, 3-methyladipate/pimelate,
and pentadecanoate.

Graph-theory centralities were calculated for nodes in the
network, and the network was visualized by the correlation-
based networkmodule based on Cytoscape.js. A primary network
plot was constructed based on regular visual settings, including
mapping different colors and shapes to nodes from different
data sets, mapping node size to evcent centrality, mapping edge
color and width to r. Users can import the primary network into
Cytoscape and modify it directly. Users can also import the edge
table and the node table into Cytoscape for network construction
(Supplementary Tables 12, 13). After modifying the layout and
edge width, the final network plot was shown in Figure 5.
Glutamate dehydrogenase [NAD(P)(+)] was the biggest node
in proteins, followed by 6-phosphofructokinase. Moreover, these
two biggest metabolites have wider edges with metabolites than
others in the network. Adipate and 3-methyladipate/pimelate
were the biggest two nodes in metabolites. The two biggest
protein nodes are significantly correlated to the two biggest
metabolite nodes in the network, indicating that these four
molecules may be critical hubs for the network and may play
essential roles in IBD progression.

FUNCTION COMPARISONS WITH
EXISTING TOOLS

Functions of iMAP and 8 widely used integrated platforms
were compared in Table 3. All platforms can preprocess
MS and MS/MS data except iMAP and Metabox. iMAP
and W4M have more data processing methods than the
other platforms. iMAP, IP4M, and MetaboAnalyst have more
metabolite selection methods than the other platforms. Only
the iMAP, IP4M, and MetaboAnalyst can build predictive
models. MetaboAnalyst needs to select samples for model
building and validation manually. In iMAP, this step can
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FIGURE 5 | Correlation-based network. Network showed 95 qualified (|r| > 0.3 and FDR < 0.05) correlation. Nodes were colored and shaped by variables type

(metabolite or protein). Nodes size depends on the evcent centralities of the variables. Edges were colored by the sign of r, and edges’ width depends on |r|. A primary

network plot was generated in iMAP, and the layout of nodes was modified in Cytoscape 3.8.0. A circular layout was applied, and the four biggest nodes were placed

in the center manually.

be done automatically by the “Train set ratio” defined
by user. iMAP is the only platform provides 3 types of
usage modes, predefined workflows, independent modules,
and customized workflows, while the other platforms support
one or two modes. However, some commonly used methods,

such as linear regression with covariant variables, cross-
validation in predictive modeling, and DESeq2, are not
supported in iMAP. Few functions are provided for time series
analysis, function-based network analysis, and multi-omics data
integrative analysis. Overall, iMAP is a good alternative tool

Frontiers in Chemistry | www.frontiersin.org 9 May 2021 | Volume 9 | Article 659656

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zhou et al. iMAP for Metabolomics Data Analysis

TABLE 3 | Function comparisons of iMAP and other 7 tools.

Function tool iMAP IP4M MetaboAnalyst

4.0

W4M Galaxy-M XCMS-

online

MZmine2 MetaBox MS-DIAL

MS and MS/MS data process –
√ √ √ √ √ √

–
√

Data processing

Normalization, scaling, and zero filling
√ √ √ √ √ √ √ √ √

Transformation
√ √ √ √ √

– –
√ √

Variables merging
√ √

–
√

– –
√

– –

Remove variables or samples
√ √ √ √ √

–
√

–
√

batch-effect correction
√

–
√ √

–
√

–
√ √

Metabolites-selection

Univariate analysis
√ √ √ √ √ √ √ √ √

PCA/(O) PLSDA
√ √ √ √ √ √ √ √ √

Regression analysis
√ √

– – – –
√

– –

Time series analysis – –
√

– – – – – –

SVM
√ √ √

– – – – – –

RF
√ √ √

– – – – – –

Correlation/distance
√ √ √ √

– –
√ √ √

Gradient boosting (GB)
√ √

– – – – – – –

Pathway enrichment and topology analysis
√ √ √

– –
√

–
√ √

Other functions

Predictive model building
√ √ √

– – – – – –

Hierarchical cluster
√ √ √ √

–
√ √ √ √

Plotting tools
√ √ √ √

–
√ √ √

–

Omics data integration analysis –
√ √

– –
√

–
√

–

Integrated workflows
√ √ √ √ √ √ √ √

–

customized workflow
√

– – – – – – – –

Developing language R, Java R, Java, Perl R, Java R, tabular R, Python,

Matlab

R R, Java R, C#

Platform Web server Local GUI;

Windows/

Linux/

Mac OS

Web server;

Local R

package

Web server Web server Web server Local GUI;

Windows/

Linux/

Mac OS

Local GUI;

Windows/

Linux/

Unix;

Local R

package

Local GUI;

Windows

with complementary functions to existing metabolomics data
analysis platforms.

DISCUSSIONS

In the first application on real world data, 4 biomarkers selected
by a combination of 3 criteria in iMAP were also listed as
biomarkers by original researchers (Zhu et al., 2014). Combining
adenylosuccinate, histidine, hydroxyproline/aminolevulinate,
and linolenic acid, predictive model ROC between group CRC
and the other two groups can reach an AUC > 0.70. Significant
expression change of adenylosuccinate in CRC has been reported
(Brown et al., 2016). Adenylosuccinate lyase (ADSL) converts
adenylosuccinate to AMP and fumarate, which is an essential
part of the purine nucleotide cycle. ADSL was reported to be
upregulated in various malignancies, including CRC. ADSL
upregulation can upregulate fumarate expression and may
enhance cell proliferation, migration, and invasion through

regulation of killer cell lectin-like receptor C3 (Park et al.,
2018). Isozyme shifted of adenylosuccinate synthase in rat
and human neoplasms has also been reported (Ikegami et al.,
1989). Downregulation of histidine in CRC was observed in
the train data set and several other studies (Masini et al., 2005;
Wierzbicki et al., 2009; Qiu et al., 2010; Nishiumi et al., 2012).
The downregulation of histidine may be due to the acceleration
of decarboxylation from histidine to histamine in CRC patients,
caused by the increased activity of histidine decarboxylase.
Hydroxyproline is abundant in collagen, and interstitial collagen
is a major constituent of the CRC matrix. This may explain the
significant change of hydroxyproline observed in CRC patients
(Karna et al., 2012; Holowatyj et al., 2020). Aminolevulinate
(also known as 5-aminolevulinic acid or 5ALA) is a precursor
to fluorescent protoporphyrin IX. Moreover, the regulatory
enzyme activity for these processes has a significant increase
in the CRC tissue. Thus oral administration of 5ALA and
observe the tumor-specific accumulation of fluorescence from
protoporphyrin IX can differentiate CRC tissue and normal
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tissue, which has already been clinically used to detect the
peritoneal dissemination of CRC (Kondo et al., 2014). Linolenic
acid was reported significantly changed in adipose tissue from
newly diagnosed CRC patients compared with control subjects
(Cottet et al., 2015). EFSA recommends daily intakes of linolenic
acid for 4% of total energy since 2010, and the protective effect
of linolenic acid from CRC risk (OR = 1.20, 95% CI, 1.07–1.36)
is observed in a case-control study with 1953 CRC patients and
4,154 controls (Turati et al., 2012). The abundant evidence from
studies for all 4 biomarkers selected by iMAP shows that by
merely inducing trends among groups intometabolites-selection,
users can improve the result’s interpretability. Thus, different
research types (such as exploratory study and biomarkers
identification study) may require different selection strategies.
Additionally, metabolites-selection strategies may also need to
be adjusted based on the data. In this demonstration, neither
PLS-DA nor OPLS-DA model was performed because the
samples from three groups can hardly differentiate from other
groups in the principal component score plot. Additionally,
there was no obvious patterns among groups in the heatmap plot
(Figure 4A). However, biologically significant biomarkers could
be discovered, and an acceptable model with AUC > 0.7 could
be built via the customized workflow. These conditions may also
happen to data from other users, which is another reason for
the customized workflow being helpful in metabolomics data
analysis. Gaps between AUC in the train set and AUC in the test
set showed that Pipeline① could be overly optimistic and have a
higher risk of overfitting. Five methods, including RF, Gradient
boosting model, Logistic regression, SVM, and Elastic Net
model, are available for predictive modeling in iMAP at present.
RF is one of the frequently used machine learning methods in lab
and industry and may be over-fitting sometimes. The Elastic Net
is a regularized regression method that linearly combines the L1
and L2 penalties of the lasso and ridge methods to combating the
over-fitting. In our work on the demonstration data. RF model
in the train data was over-fitted with out-of-bag (OOB) error
rates of 0.364, 0.255, and 0.453 between CRC-PolyP, CRC-HC,
and PolyP-HC, respectively. AUC in train set get by Elastic Net
was close to AUC in the test set than that get by RF model. And
AUC in the train set [Pipeline①] is higher than AUC in test set
[Pipeline③]. We compared RF and Elastic Net to illustrate:

(1) Predictive models may be over-fitting sometimes
(especially those built by Pipeline①).

(2) Models with L1 and L2 regularization might be helpful for
users to combating over-fitting.

(3) Pipeline③ [and Pipeline④] can also help users to
combat over-fitting.

There are some reasons for the not good result in
distinguishing HC and PloyP by metabolic features in the
predictive models, including the high prevalence in old people
(Pan et al., 2020; Rex et al., 2020), only part of polyp
patients have neoplastic polyps (Lieberman et al., 2008)
and the neoplastic polyps may take decades to progress
(Rutter et al., 2015; Short et al., 2015), and most low-risk
polyps may have limited influence on the serum metabolism
(Wang et al., 2018).

Network plots can directly and effectively summarize the
information from correlation analysis cause the importance
of variables can be emphasized by node size, and correlation
strength between variables can be showed by edge width.
Readers can quickly locate critical hubs by these visual features
in the network. Glutamate dehydrogenase [NAD(P)(+)], 6-
phosphofructokinase, Adipate, and 3-methyladipate/pimelate
were critical hubs in the demonstration network plot. The
connection between these hubs and IBD have already
been reported except 6-phosphofructokinase. Glutamate
dehydrogenase enzyme immunoassay (EIA) is a commonly
used rapid testing option for identifying Clostridium difficile
infection (CDI). CDI has a higher prevalence in IBD patients,
and the prevalence has been increasing in recent years (Sinh
et al., 2011; Albarrak et al., 2019). The influence on inflammation
induced by NAD-dependent enzymes, including Sirtuin 1
(Caruso et al., 2014; Wellman et al., 2017; Sedda et al., 2018) and
NAMPT (Gerner et al., 2018) may interpret the relation between
glutamate dehydrogenase [NAD(P)(+)] and IDB. Adipate was
reported to be significantly elevated in urine from rats with
IDB (Wang et al., 2020). 3-methyladipate was reported to be
significantly decreased in IDB patients in an Italian cohort
study (Santoru et al., 2017). 3-methyladipate was also the
only metabolites in the study to show a significant correlation
with Akkermansia muciniphila species, which was found to be
selectively decreased in the fecal microbiota of patients with IBD
(Plovier et al., 2017). Pimelate was reported to be significantly
elevated in urine from children with IDB (Martin et al., 2017).
Moreover, adipate and 3-methyladipate/pimelate were also
emphasized as critical hubs in the correlation-based network
between microbiome data and metabolome data in the original
report. No connection between 6-phosphofructokinase and IBD
was reported yet. Thus, it may be study-worthy by “data-driven
strategy” because 6-phosphofructokinase has the second evcent
centrality in proteins and significantly correlates with the other
two critical hubs in metabolites.

The interpretability of key hubs indicates that the node
centrality can help locate the disease process’s critical entities. To
better understand the complicated disease process, multi-omic
methods are increasingly needed. A correlation-based network
is a powerful tool for analyzing and interpreting the multi-omic
result. Using the correlation-based network module in iMAP,
users can construct and analyze network plots to demonstrate
their multi-omics result conveniently.

CONCLUSIONS

This study reported a new web tool, iMAP, for metabolomics
data analysis. As the updated version of IP4M, besides enhanced
visualizations and results, more methods and modules, and
various predefined workflows, iMAP enables users to construct
customized workflows taking into considerations of their specific
study aims and data characteristics. Most modules in iMAP
can also be utilized on other omics data sets. Although
there are still many limitations, iMAP is an alternative tool
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with complementary powers to existing metabolomics data
analysis platforms.
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