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Graphene oxide–silver nanoparticle nanohybrids were synthesized by simple reduction of
the silver nitrate and graphene oxide (GO) mixture in water using the mild reducing agent
ascorbic acid. The concentration of ascorbic acid was varied to verify the possible
influence of the GO surface composition on the efficiency of the hybrid material as
substrates for surface enhanced Raman spectroscopy (SERS). Furthermore, the
composites were conditioned in ammonia solution or in potassium hydroxide diluted
solution. For comparison, the graphene oxide–silver nanoparticle composite has been
synthesized using the ammonia-treated GO. All materials were characterized using
spectroscopic and microscopic methods including UV–Vis, infrared, and Raman
spectroscopy and scanning electron microscopy. The SERS efficiency of the
nanohybrids was tested using 4-aminothiophenol (PATP). The optimal synthesis
conditions were found. Ammonia and potassium peroxide drop-casted on the
composite changed the SERS properties. The sample treated with KOH showed the
best SERS enhancement. The variation of the SERS enhancement was correlated with the
shape of the UV–Vis characteristics and the surface structure of the composites.

Keywords: plasmon, Raman spectra, ammonia solution, basic solution, infrared, poly-o-aminothiophenol, surface
enhanced Raman spectroscopy), noble metal nanoparticles

INTRODUCTION

Surface enhanced Raman spectroscopy (SERS) shows exceptional sensitivity, enabling detection of
analytes at micromolar or lower concentrations (Zhang et al., 2017). Under optimized conditions,
even single molecules can be studied (Zrimsek et al., 2017). Thanks to the fingerprint specificity of
Raman spectra, SERS is successfully used in detection of viruses (Luo et al., 2014; Maddali et al.,
2021), bacteria (Lin et al., 2014; Dina et al., 2021), and toxins in biological and environmental
samples (Li et al., 2016). SERS probes designed with antigens or aptamers are used for the highly
sensitive detection of cancer cells and biologically important molecules (Wu et al., 2012; Darrigues
et al., 2017).

Such a wide field of applications of SERS stimulates research on new SERS-active materials to
ensure the selectivity, sensitivity, and repeatability of SERS probes. Extensive efforts are directed to
find all factors influencing the enhancement mechanism and the stability of SERS-active materials.
Until now, it was generally agreed that localized surface plasmon resonance is responsible for the
largest part of the enhancement of the Raman signal (Langer et al., 2020). Another factor is the
chemical effect resulting from the charge transfer between the SERS-active material and the adsorbed
molecule. The chemical enhancement is much lower than the plasmon resonance contribution, but it

Edited by:
Christa Brosseau,

Saint Mary’s University, Canada

Reviewed by:
Yingshu Guo,

Linyi University, China
Huawen Wu,

Hitronics Technologies, Inc.,
United States

*Correspondence:
Barbara Pałys

bpalys@chem.uw.edu.pl

Specialty section:
This article was submitted to

Analytical Chemistry,
a section of the journal
Frontiers in Chemistry

Received: 07 February 2021
Accepted: 12 May 2021
Published: 07 June 2021

Citation:
Kasztelan M, Studzinska A,
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attracts significant attention because it operates not only on
metals but also on semiconductors and carbon nanomaterials
(Otto, 2005; Lombardi, 2017). Aside from the two main
mechanisms, the dipole contribution from polar surface
groups is also taken into account. The dipole moments
induced by the electromagnetic radiation enhance the
electromagnetic field in the vicinity of the SERS-active surface
(Wang et al., 2020).

Silver nanostructures belong to the most effective enhancers of
the Raman signal, although the very high enhancement factors
are compromised by limited stability (Berbeć et al., 2019). A
possible way to achieve highly efficient and stable SERS supports
is employing silver and silver oxide hybrid nanostructures (Zou
et al., 2019). Combining silver nanoparticles with graphene family
materials is another way to improve the stability and repeatability
of SERS enhancement (Mohammadi et al., 2018). Graphene itself
enhances the Raman intensity of adsorbed molecules (Zhang
et al., 2016) and dumps the fluorescence background significantly,
which often obscures the Raman spectra. Another member of the
graphene family—graphene oxide (GO)—also has the ability of
fluorescence quenching. It also has the ability of the enhancement
of the Raman signal by the chemical mechanism, similar to
graphene. The unique feature of GO is the presence of the
polar oxygen groups on its surface. The polar groups
contribute to the SERS activity, generating the local dipole
field upon interaction with the laser beam (Wang et al., 2020).
The presence of the polar groups also influences the adsorption of
studied molecules. GO can be gradually reduced by chemical or
electrochemical methods, providing the unique ability to tune the
physicochemical properties of the surface.

Despite the extensive research published on the hybrid
materials based on noble metal nanoparticles and graphene,
the physicochemical properties of these materials are not fully
elucidated yet (Kavitha, 2018). The SERS enhancement and other
optical properties of the composites depend on many factors. The
shape of silver nanostructures influences their plasmonic
properties and, consequentially, the SERS enhancement
factors. Among silver nanospheres, nanocubes, and
nanoctahedra combined with GO, the octahedral nanoparticles
showed the highest enhancement ability (Fan et al., 2014). Dai
et al. (2015) have shown that the number of graphene layers
covering the silver bowtie nano-antenna arrays influences the
photocatalytic conversion of para-aminothiophenol (PATP) into
p,p’-dimercaptoazobenzene, suggesting that the number of
graphene layers has an important contribution to the optical
characteristics of the hybrid materials. Yang et al. (2013)
compared the SERS properties of graphene, GO, and reduced
graphene oxide (rGO). It has been shown that the enhancement
of the Raman signal increases with the increasing number of GO
layers, but an opposite rule is valid for graphene or rGO,
indicating that oxygen surface groups, present in GO, are
important for the SERS properties. Typically, GO shows
higher enhancement than rGO (Yu et al., 2011; Yan et al.,
2017; Wang et al., 2018), but there are exceptions to this rule.
Mohammadi et al. (2018) have shown that in the case of
composites of rGO and silver nanodendrites, the reduction of
GO improves the SERS signal.

Li et al. (2015) synthesized the silver nanoparticle
(AgNP)—graphene oxide hybrid by the reduction of a
mixture of AgNO3 and GO with sodium citrate. The hybrid
film composed of reduced GO (rGO) and AgNP hybrid film
was then fabricated by evaporating the reaction mixture
solution and harvesting the film formed at the air–liquid
interface with a solid substrate. The SERS performance of
such nanohybrids was dependent on the AgNO3 dosage. The
silver load proved to be important also for the properties of the
AgNP–rGO hybrid synthesized in the presence of poly vinyl
pyrrolidone (Naqvi et al., 2019). Another type of hybrid
material was obtained by the photochemical reduction of
AgNO3 with graphene oxide nanocolloid (GON) spherical
silver cores stabilized by the reduced GON, which serves as
both reducing and stabilizing agent (Kim et al., 2017). The
Ag@GON nanoparticles showed great stability. Cao et al.
(2020) designed an effective SERS support using silver
nanoparticles embedded in multilayer graphene. The highest
enhancement was reached for the cross section of the
membrane composed of the water-dispersible graphene and
silver nanoparticles. Authors attributed the high enhancement
to the plasmonic coupling between the silver nanoparticles
resulting from the optimized distance between silver
nanoparticles.

The listed examples indicate that the role of GO in SERS
enhancement is still a subject of discussion and there are many
possible factors which influence the SERS properties of GO itself
or the properties of hybrid materials involving GO. Recently, we
have shown that simple room temperature treatment of GO with
ammonia solution improves the SERS enhancement factors for
GO composites with gold nanoparticles (Kasztelan et al., 2021).
In this contribution, we study silver composites synthesized by
the simultaneous reduction of GO and silver ions using ascorbic
acid as a mild reducing agent. The concentration of ascorbic acid
was optimized to obtain the highest SERS enhancement. PATP
was used as the SERS probe. The composite with an optimized
concentration of ascorbic acid was further conditioned using
ammonia or potassium hydroxide solution. For comparison, we
synthesized the composite using pristine GO andGO conditioned
in the aqueous ammonia solution. The overview of the studied
composites is illustrated in Figure 1. We demonstrate the

FIGURE 1 | Overview of studied composites.
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differences between the SERS characteristics of the studied
materials.

MATERIALS AND METHODS

Chemicals and Reagents
All reagents were available commercially and were used without
further purification. Graphite powder (1–2 μm, synthetic), 4-
aminothiophenol (4-ATP), potassium hydroxide (KOH),
ascorbic acid (C6H8O6), and silver nitrate (AgNO3) were
purchased from Sigma Aldrich and used without further
purification. Sulfuric acid (H2SO4), potassium permanganate
(KMnO4), and trisodium citrate (dihydrate, C6H5Na3O7

2H2O) were purchased from Avantor Performance Materials
Poland S.A. Hydrogen peroxide (H2O2, 30%) and ammonia
solution (NH4OH, 25%) were purchased from Chempur,
Poland. All solutions were prepared using distilled water
(Millipore Milli-Q, 18.2 MΩ cm).

Preparation of GO and
Ammonia-Modified GO
Graphene oxide (GO) was synthesized using the modified
Hummers–Offeman method. Typically, 6 g of graphite
powder was mixed with 150 ml of concentrated sulfuric acid
while being cooled in an ice bath to avoid overheating.
Subsequently, 21 g of potassium permanganate was slowly
added while stirring (maintaining the temperature below
30°C). After that, the mixture was stirred for 2 h, followed by
slowly adding 150 ml of distilled water and 35 ml of 30%
hydrogen peroxide. As-prepared GO solution was centrifuged
at 6,000 rpm for 30 min. The supernatant was removed, and a
portion of distilled water was added to the GO precipitate. This
cleaning procedure was repeated 4 times. After that, the GO was
left to dry.

To prepare ammonia-modified GO (GO/NH3), 25 mg of
synthesized GO was mixed with 3.75 ml of 3% ammonia
solution. After that, the solution was sonicated for 30 min and
mixed using a magnetic stirrer for 24 h to allow the modification.
Subsequently, GO/NH3 was centrifuged at 6,000 rpm for 30 min
and left to dry at room temperature.

Synthesis of AgNPs@rGO Composites
25 mg of GO was mixed with 25 ml of water and sonicated for
10 min. After that, 5 ml of GO solution was diluted using 95 ml of
distilled water and sonicated for 30 min, followed by the addition
of 3 ml of 0.04 M silver nitrate solution and 15 ml of 1% trisodium
citrate solution. The mixture was further sonicated for 20 min.
Subsequently, 2.25 ml of ascorbic acid was added to the mixture
and stirred for 30 min using a magnetic stirrer. Three different
composites were synthesized using different concentrations of
ascorbic acid (0.002, 0.01, and 0.05 M) in order to evaluate the
optimal concentration of the reducing agent. The same approach
was used to synthesize the AgNPs@rGO/NH3 composite, where
GO was replaced with GO/NH3. In this case, 0.01 M solution of
ascorbic acid was used.

Preparation of SERS Substrates
AgNPs@rGO and AgNPs@rGO/NH3 substrates were prepared
by immersing ITO glass for 24 h in diluted solutions of AgNPs@
rGO or AgNPs@rGO/NH3, respectively. The concentration of
AgNPs@rGO and AgNPs@rGO/NH3 was equal to 1 mg/ml.
AgNPs@rGO + NH3 and AgNPs@rGO + KOH substrates
were prepared by dropping 100 μl of 3% ammonia solution or
3% KOH solution, respectively, on the AgNPs@rGO substrate.
For SERS measurements, ethanol solutions of 4-PATP with
concentrations from 10−7 to 10−3 M were deposited onto
substrates by simply dropping 20 µL of the solution on the
SERS substrate.

Infrared Spectroscopy
Infrared spectra were recorded using a Nicolet iS50 FT-IR
spectrometer (Thermo Scientific) with a DTGS detector. For
all experiments, an iTR-attenuated total reflection accessory
with a diamond crystal was used. Samples were prepared by
drop-casting a small amount of the diluted composite on the
diamond crystal. All experiments were performed with a
resolution of 4 cm−1, and typically, 32 scans were taken for
each sample.

Raman Spectroscopy
Raman spectra were recorded using a DXR Raman microscope
(Thermo Scientific) with a 50×/0.50 NA objective. In all
measurements, the exposure time was 1 s, and typically, 4
scans were collected. To ensure repeatability, 10 spectra were
collected in random spots on the sample and averaged for each
concentration of 4-PATP. For each experiment, green laser
(532 nm) was used as a source of excitation.

UV–Vis Spectroscopy
UV–Vis spectra were recorded using a UV–Vis Lambda 650
spectrophotometer (PerkinElmer) with a variable slit. The
spectral resolution was equal to 0.2 nm.

Spectra of the AgNPs@rGO composites synthesized using
different concentrations of ascorbic acid were collected as
diluted solutions in a quartz cuvette with an optical path
length of 10 mm. Spectra of the composites treated with NH3

and KOH solutions were collected as thin layers deposited on ITO
glass prepared in the same way as the SERS platforms.

Scanning Electron Microscopy
The morphology of the SERS composites was investigated using a
Merlin field emission scanning electron microscope system
(Zeiss, Germany) at an operating voltage of 3 kV. Samples
were prepared in a manner identical to that used for the SERS
substrates.

RESULTS AND DISCUSSION

Influence of the Ascorbic Acid
Concentration on AgNPs@rGO Composites
To optimize the concentration of the reagents for the synthesis of
AgNPs@rGO, the following concentrations of the ascorbic acid
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solution were used: 0.002, 0.01, and 0.05 M. The infrared spectra
of the obtained products were compared to the spectrum of the
pristine GO. Figure 2 shows the typical spectra of all the AgNPs@
rGO synthesized composites.

All spectra of the composites show no clear band due to the
epoxide groups, which typically occur at 1,225 cm−1 in the GO
spectrum (Świetlikowska et al., 2013), suggesting that the
opening of the epoxide ring occurs easily—already at a low
concentration of the reducing agent. In all composites, GO is at
least partially reduced; therefore, we label them “AgNPs@
rGO”. The increasing concentration of the ascorbic acid
generally causes the diminishing of band intensities. The
band at 1,730 cm−1, corresponding to the COOH groups,

disappears, suggesting the removal of the COOH groups.
But, the absence of the 1,730cm−1 band can also be
attributed to the dissociation of the carboxylic groups. The
antisymmetric and symmetric bands of COO− are expected at
1,620 and 1,370 cm−1 (Socrates, 2001). There are bands at close
frequencies observed in the spectra of AgNPs@rGO, but they
can come from the citric ligands attached to silver
nanoparticles. Infrared spectra cannot discern between the
carboxylic groups coming from GO and the citric ligands
attached to silver nanoparticles. Probably, both types of
carboxylic groups are present in the studied samples.
Spectra of all AgNPs@rGO composites also show band
characteristics for OH surface groups. The OH stretching
mode gives rise to the broad band with the maximum at
3,440 cm−1. The band at 1,060 cm−1 probably corresponds
to the C–O stretching mode of the C–OH groups.

Raman spectra of the composites were collected and are
presented in Figure 3. In the typical spectrum, two main
bands are observed in the fingerprint region. The band around

FIGURE 2 | Infrared spectra of AgNPs@rGO composites synthesized
using various concentrations of ascorbic acid: 0.002 M (A); 0.01 M (B); and
0.05 M (C).

FIGURE 3 | Raman spectra of AgNPs@rGO composites synthesized
using various concentrations of ascorbic acid: 0.002 M (A); 0.01 M (B); and
0.05 M (C).

FIGURE 4 | SEM images of AgNPs@rGO composites synthesized using
various concentrations of ascorbic acid: 0.002 M (A); 0.01 M (B); and
0.05 M (C).

Frontiers in Chemistry | www.frontiersin.org June 2021 | Volume 9 | Article 6652054

Kasztelan et al. AgNPs@rGO: Basic Treatment and SERS

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


1,590 cm−1, called the G band, is due to the doubly degenerated
C–C stretching mode of sp2 carbons, while the band around
1,340 cm−1 originates from sp3 defects and disruptions in the
graphene layers (Beams et al., 2015). The spectra of all three
composites are very similar, with only slight shifts in the band
positions. The ID/IG ratio can be utilized to evaluate the relative
amount of defects in the GO plane since it increases with the
increase in the ID/IG ratio. Figure 3 shows that there is no
significant change between the ratios in all three composites,
which indicates that the different concentrations of ascorbic acid
used in the syntheses have only a minute impact on the carbon
structure of GO layers.

The example SEM pictures of the composites are shown in
Figure 4. The composite obtained at the concentration of
ascorbic acid equal to 0.002 M shows isolated spherical silver
structures stuck to the GO planes. A higher concentration of the
reducing agent yields a composite with numerous spherical silver
structures. A further increase in the concentration of the reducing
agent causes the formation of irregular silver structures.

The UV–Vis spectra of the composites (Figure 5) show
plasmonic absorption of silver at ca. 420 nm. The intensity of
the plasmon bands is strongest for the intermediate concentration
of the reducing agent. The composite obtained at the highest
concentration of ascorbic acid shows a rather broad absorption
without the clear maximum, which is related to the
nonhomogeneous distribution of the sizes and shapes of the
silver structures obtained under these conditions.

The obtained composites were examined as possible SERS
platforms. Figure 6 compares the typical spectra of PATP
adsorbed on the three AgNPs@rGO composites. The spectra
were recorded by drop-casting 20 µl of the 10−4 M solution of
PATP on the studied support. There are five bands at 1,074, 1,136,

FIGURE 5 | UV–Vis spectra of AgNPs@rGO composites synthesized
using various concentrations of ascorbic acid: 0.002 M (A); 0.01 M (B); and
0.05 M (C).

FIGURE 6 | SERS spectra of PATP (10−4 M) adsorbed on AgNPs@rGO
composites synthesized using various concentrations of ascorbic acid:
0.002 M (A); 0.05 M (B); and 0.01 M (C).

FIGURE 7 | SEM images of AgNPs@rGO/NH3 (A); AgNPs@rGO + NH3

(B); and AgNPs@rGO + KOH (C).
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1,386, 1,430, and 1,573 cm−1, which are repeated in all the spectra
in Figure 6. These bands are characteristic for p,p′-
dimercaptoazobenzene (DMAB). It has been reported before
that PATP undergoes a photochemical reaction on the silver
supports, producing DMAB (Huang et al., 2010) and graphene-
coated Ag bowtie nano-antenna arrays (Dai et al., 2015). The
occurrence of DMAB bands indicates that AgNPs@rGO
composites catalyze the photochemical dimerization of PATP.

Comparing the intensities of the SERS spectra shown in
Figure 6, the highest is observed for the composite obtained at
the intermediate concentration of the reagent. The highest SERS
intensity correlates with the highest intensity of plasmonic
absorption in the UV–Vis spectra. The synthesis with the
intermediate concentration of ascorbic acid has been chosen
for further studies.

Influence of the Treatment of AgNPs@rGO
With Ammonia and KOH Solutions
Structure and Morphology
The AgNPs@rGO composite has been treated by a simple drop-
casting of the ammonia solution or the KOH solution. The treated
samples are labeled AgNPs@rGO + NH3 and AgNPs@rGO +
KOH, respectively. For comparison, we have also synthesized a
composite using the ammonia-treated GO, which is labeled
AgNPs@rGO/NH3. Such treatment causes the partial
reduction of GO, as shown by previous studies (Liu et al.,
2015; Park et al., 2017). The morphology of the obtained
samples has been studied by SEM. Figure 7 presents typical
images. Comparing the images of AgNPs@rGO (Figure 4B) and
AgNPs@rGO/NH3 (Figure 7A), it could be noticed that the
composite synthesized using the ammonia-treated GO
contains more densely packed silver nanostructures having a
similar size to those of the one synthesized with pristine GO. Such
an observation can be rationalized by the easier adsorption of
silver ions on the ammonia-treated GO, leading to the formation
of a more densely packed layer of silver nanostructures.

The casting of the ammonia solution after the synthesis causes
less clear differences, as can be seen when comparing pictures of
AgNPs@rGO (Figure 4B) and AgNPs@rGO + NH3 (Figure 7B).
On the contrary, the drop-casting of the KOH solution on
AgNPs@rGO causes a change of the morphology. The rGO
planes seem more flexible, and part of them covers the silver
nanoparticles in a loose manner.

To get more information about the structure on the molecular
level, we studied the infrared spectra of the composites. Figure 8
shows the typical spectra of the composites. The AgNPs@rGO
and AgNPs@rGO/NH3 show very similar spectra, indicating that
the conditioning of GO in ammonia before the synthesis of the
composite has a negligible effect on the surface composition of
GO in the final product.

On the contrary, adding the ammonia solution after the
synthesis implies changes in the infrared spectra. The bands at
1,060, 1,380, and 1,585 cm−1 become noticeably broader. These
bands involve contributions from the C–OH and COO− groups;
therefore, changes of their bandwidth suggest that the ammonia
solution changes the interaction between the oxygen functional
groups and the silver nanoparticles. The diminishing of the band
due to COOH implies an increase of the dissociated COO−

groups, and the counter ions are possibly NH4
+ ions. The

characteristic bands of NH4
+ typically occur at

1,400 cm−1—the N–H bending mode—and around
3,300 cm−1—the N–H stretching mode. Due to the strong
bands of COO− and OH groups, these bands are difficult to
discern.

Dropping the KOH solution on AgNPs@rGO causes even
more noticeable changes in the infrared spectra. The band at
1,730 cm−1 due to COOH disappears, indicating complete
dissociation of the COOH surface groups. The bands at 1,060,
1,380, and 1,585 cm−1 are very broad like in the case of the
ammonia-treated composite. Unlike in the case of ammonia, the
band near 1,600 cm−1 shows two components, suggesting that

FIGURE 8 | Infrared spectra of AgNPs@rGO (A); AgNPs@rGO/NH3 (B);
AgNPs@rGO + NH3 (C); and AgNPs@rGO + KOH (D).

FIGURE 9 | Raman spectra of AgNPs@rGO (A); AgNPs@rGO/NH3 (B);
AgNPs@rGO + NH3 (C); and AgNPs@rGO + KOH (D).
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there might be two types of COO−, which have different
molecular surroundings, for example, interacting with silver
atoms and not interacting. The band at 1,060 cm−1 gets a new
component as well, which is located at 1,110 cm−1, suggesting that
the surroundings of C–OH groups also change upon the addition
of KOH.

Raman spectra of AgNPs@rGO composites treated with basic
solutions are shown in Figure 9. In case of the AgNPs@rGO,
AgNPs@rGO/NH3, and AgNPs@rGO + NH3 composites, there
are only minor shifts in the G and D band positions, and the ID/IG
ratios do not differ much from each other, although for composites
treated with ammonia, the slightly lower ratio valuesmay indicate a
partial recovery of sp2 hybridized carbon lattice. Major changes
occur after treatment with KOH solution. The ID/IG ratio increases
from 0.98 to 1.25, indicating the formation of new defects after the
treatment with KOH. A significant decrease of the G band position
toward the lower Raman shift (1,577 cm−1 compared to 1,598 cm−1

for the pristine composite) and the overall broadening of both G
and D bands can be caused by the considerable influence of KOH
on the oxygen content in the composite (Kudin et al., 2008;
Claramunt et al., 2015). Red-shift of the G band is usually
observed along with diminishing content of oxygen surface
groups, while the broadening of bands might be the result of
the formation of new oxygen species that give a contribution to the
general widening of the bands as indicated by infrared spectra.

Plasmonic Absorption and SERS Enhancement
To verify whether the structural changes observed in the infrared
spectra influence the plasmonic properties of the composites, the
UV–Vis absorption spectra were studied. Figure 10 shows the
typical spectra in the range of silver plasmonic absorption. The
spectra of AgNPs@rGO, AgNPs@rGO + NH3, and AgNPs@rGO/
NH3 show only minute differences in the position of the maximum of
absorption, being, respectively, 464, 470, and 462 nm. The plasmonic
band of AgNPs@rGO +KOH is split into two components at 458 and
485 nm. The plasmon band is sensitive to the changes in the vicinity of

nanoparticles; therefore, the slight shifts and the split of the plasmonic
band suggest changes in the interaction between silver nanoparticles
and rGO. The UV–Vis results correlate well with the infrared spectra.

The SERS properties of the composites treated with ammonia
or KOH were tested using PATP as a probe. Figure 11 compares
SERS spectra obtained at the concentration of PATP equal
to10−6 M. For all supports, the spectra show bands typical for
DMAB, so all composites catalyze the transformation from PATP
to DMAB. The SERS efficiency of the supports can be ordered as
follows: AgNPs@rGO, AgNPs@rGO + NH3, AgNPs@rGO/NH3,
and AgNPs@rGO + KOH. The high enhancement observed for
the composite treated with KOH correlates with the shift of the
plasmon absorption band.

The differences between the three other composites probably
result from the adsorption of ammonium ions on GO, which
contributes to the SERS enhancement by the dipole contribution
(Wang et al., 2020).

Summary and Discussion of the NH3 and KOH
Influence on SERS
The SERS efficiency of the studied hybrid materials can be placed
in an order: AgNPs@rGO < AgNPs@rGO + NH3 < AgNPs@
rGO/NH3 < AgNPs@rGO + KOH.

The differences can be rationalized based on infrared, Raman,
UV/VIS, and SEM characteristics of the studied materials. The
treatment of AgNPs@rGO with ammonia after the synthesis
(producing AgNPs@rGO + NH3) does influence the infrared
spectra, causing the diminishing of the COOH bands and the
broadening of the bands due to the COO− and C–OH groups.
More negatively charged COO− groups imply the probable
bonding of NH4

+ ions as counter ions. The bands of NH4
+

ions are visible in the infrared spectrum of AgNPs@rGO +
NH3. The other techniques (Raman, UV/VIS, and SEM) do
not show significant differences between AgNPs@rGO and

FIGURE 10 | UV–Vis spectra of AgNPs@rGO (A); AgNPs@rGO + NH3

(B); AgNPs@rGO/NH3 (C); and AgNPs@rGO + KOH (D).

FIGURE 11 | SERS spectra of PATP (10−6M) adsorbed on AgNPs@rGO
(A); AgNPs@rGO + NH3 (B); AgNPs@rGO/NH3 (C); and AgNPs@rGO +
KOH (D).
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AgNPs@rGO + NH3. The differences between these two
materials are thus only the presence of COO− and NH4

+ ions.
We suppose that ions may contribute to the SERS enhancement
via the dipole mechanism (Wang et al., 2020). Such enhancement
could explain why AgNPs@rGO + NH3 enhances the SERS
spectra better than AgNPs@rGO.

Unlike AgNPs@rGO + NH3, AgNPs@rGO/NH3 shows similar
infrared spectrum to AgNPs@rGO (Figures 8A,B). Such similarity
suggests that the molecular structure of the two composites is the
same, and it is not responsible for different SERS properties. The
difference is visible in SEM images. The AgNPs@rGO/NH3 contains
more densely packed silver structures than AgNPs@rGO. The silver
particles have similar sizes and shapes. The similar size and shape of
the silver particles is consistent with the similarity of the UV–Vis
spectra (Figures 10A,B). The higher load of AgNPs makes the
average distance between the silver particles smaller, which
contributes to the stronger coupling between them (Nam et al., 2016).

The potassium hydroxide exerts the biggest influence on
AgNPs@rGO. The changes are visible in infrared, Raman, and
UV–Vis spectra and SEM images. The COOH band visible in the
AgNPs@rGO infrared spectrum disappears in the AgNPs@rGO
+ KOH spectrum, indicating the dissociation of carboxylic
groups. The potassium ions are probably attached to the
COO− groups for charge compensation. Ionic species on the
surface contribute to the SERS enhancements via the dipole
mechanism like in the case of AgNPs@rGO + NH3. Changes
visible in the UV–Vis spectra also suggest that the
electromagnetic part of the enhancement is changed. The band
becomes asymmetric with a discernible new component. The
increased UV–Vis absorption at the longer wavelength side
probably contributes to the increased SERS enhancement
because the absorption fits better to the excitation laser line.

CONCLUSION

The concentration of ascorbic acid used for the synthesis of
AgNPs@rGO nanohybrids has a significant impact on the

obtained composite, including the shape and the amount of
silver nanostructures formed on the GO layers. Simple
treatment of the AgNPs@rGO composite with ammonia or
potassium hydroxide solution causes changes in the shape of
the plasmonic absorption band in the UV–Vis range and their
SERS properties. The SERS efficiency of the studied hybrid
materials can be placed in an order: AgNPs@rGO < AgNPs@
rGO + NH3 < AgNPs@rGO/NH3 < AgNPs@rGO + KOH.
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