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A novel and efficient C3-H vinylation reaction with quinoxalin-2(1H)-one as the substrate,

in the presence of alkenes, under metal-free conditions, is reported herein. The reaction

leads to the formation of new carbon–carbon bonds that exhibit moderate to good

reactivities. The vinylation of quinoxalin-2(1H)-ones, in the presence of alkenes, is

an attractive process that can be potentially utilized to produce biologically active

3-vinylated quinoxalin-2(1H)-ones.
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INTRODUCTION

For Recent years have seen, the emergence of cross-dehydrocoupling (CDC) reaction, between two
different molecules, as a prominent research topic (Girard et al., 2014; Huang et al., 2019; Mane
et al., 2019; Liu et al., 2020; Xu et al., 2020). These reactions exploit the C-H bonds of various
substrates, during the dehydrogenation coupling reactions under oxidizing reaction conditions,
to form C-C bonds (Niu et al., 2015; Cheng et al., 2017; Yuan et al., 2018; Xie et al., 2020). The
cross-dehydrocoupling reactions provide shorter synthetic routes and new research ideas for the
direct and efficient synthesis of complex organic materials from simple raw materials. High atom
efficiency can also be achieved (Scheuermann, 2010; Moon et al., 2012; Jiang et al., 2014; Parvatkar
et al., 2019).

Quinoxalin-2(1H)-ones are important nitrogen-containing fused heterocycles, that form the
core structure of numerous biologically active compounds. The biological activity of quinoxalin-
2(1H)-one is significantly affected by the substituents present in the core structure of the molecule.
The 3-functional quinoxalin-2(1H)-ones have been widely studied because they exhibit excellent
biological activities (they possess. anti-angiogenic, anti-tumor, and anti-inflammatory properties,
among others) (Willardsen et al., 2004; Khattab et al., 2015).

The Armido Studer’ group through a visible-light-initiated to synthesize α-perfluoroalkyl-
β-heteroarylation of various alkenes with perfluoroalkyl iodides and quinoxalin-2(1H)-ones
(Scheme 1A) (Zheng and Studer, 2019). The Dipankar Koley’ group explored a strategy to
synthesize α-sulfono-β-heteroaryl scaffolds using alkenes with aryl sulfinic acids and quinoxalin-
2(1H)-ones (Scheme 1B) (Sekhar Dutta et al., 2019). Afterwards, Pengfei Zhang’ group
reported a hypervalent Iodine(III)-promoted rapid cascade reaction of quinoxalinones with
unactivated alkenes and TMSN3 (Scheme 1C) (Shen et al., 2019). Recently, Wei Wei’ group
synthesize 3-trifluoroalkylated quinoxalin-2(1H)-ones via K2S2O8-mediated unactivated alkenes
with quinoxalin-2(1H)-ones and CF3SO2Na (Scheme 1D) (Meng et al., 2020). To the best of
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SCHEME 1 | Synthesis of C3 alkyl/vinyl substituted quinoxalin-2(1H)-ones.

our knowledge, the CDC reaction has not been utilized yet
to synthesize quinoxalin-2(1H)-one derivatives bearing alkene
substituents at the C3 position.

Herein, we report the C-H functionalization of quinoxalin-
2(1H)-one, in the presence of alkenes, for the direct synthesis
of 3-vinylated quinoxalin-2(1H)-ones. In the absence of
metal/ligand, the reaction was oxidized with ammonium
persulfate [(NH4)2S2O8] to obtain the target products
(Scheme 1E).

RESULTS AND DISCUSSION

When the reaction was carried out with 1-methylquinoxalin-
2(1H)-one 1a and styrene 2a as the-substrates, in the presence
of PIFA (oxidant), in DMSO, the desired product was not
obtained. Different oxidants, such as PhI(OAc)2, TBHP, TBDP,
(NH4)2S2O8 and K2S2O8 were screened for the reaction.
(NH4)2S2O8 proved to be the best oxidizing agent, and the final
compound was obtained in 45% yield when (NH4)2S2O8 was
used for oxidation (Table 1, entries 2–6). The target compound
was not obtained when the reaction was carried out in the
absence of the oxidant (Table 1, entry 7). The reaction was carried
out in different solvents such as toluene, EtOAc, acetone, H2O,
DMF, and CH3CN to determine the optimal reaction solvent

(Table 1, entries 8–13). The reactions did not proceed smoothly
when these solvents were used as the reaction solvents, and
the desired products were obtained in significantly low yields.
Following this, the effects of different additives, such as CuBr
and CuSO4, on the product yields were investigated. It was
observed that, in the presence of these additives, the products
were produced in significantly low yields (Table 1, entries 14, 15).
The reaction condition was also optimized with respect to bases
to obtain better yields of the products (Table 1, entries 16–20).
The experiments revealed that Cs2CO3 was the most effective in
promoting the reactions. Significantly low product yields were
obtained when other bases (such as TEA, K2CO3, NaOH, and
NaH) were used to drive the reactions. Following this, the effect
of temperature on the product yields was also investigated. When
the reaction was carried out at higher or lower temperatures, a
decrease in the yield of 3a was observed (Table 1, entries 21–23).
Thus, the reaction conditions were optimized and the maximum
yield of the product was obtained when the reaction was carried
out in DMSO (0.1M) with 1a (0.25 mmol) and 2a (0.75 mmol) as
the substrates, in the presence of (NH4)2S2O8 as the oxidant (1
mmol) and Cs2CO3 (0.75 mmol) as the base, under atmospheric
conditions at 80◦C for 10 h.

After determining the optimal reaction conditions, we focused
on expanding the scope of the reaction. We used various
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TABLE 1 | Screening of reaction conditionsa.

Entry Oxidant(equiv.) Additives Solvent Yield(%)[b]

1 PIFA DMSO 0

2 PhI(OAc)2 DMSO 0

3 TBHP DMSO 0

4 TBDP DMSO 0

5 (NH4)2S2O8 DMSO 45

6 K2S2O8 DMSO 42

7 – DMSO 0

8 (NH4)2S2O8 Toluene 0

9 (NH4)2S2O8 EtOAc Trace

10 (NH4)2S2O8 Acetone Trace

11 (NH4)2S2O8 H2O n.d.

12 (NH4)2S2O8 DMF 10

13 (NH4)2S2O8 CH3CN 0

14 (NH4)2S2O8 CuBr DMSO 33

15 (NH4)2S2O8 CuSO4 DMSO 35

16 (NH4)2S2O8 TEA DMSO 30

17 (NH4)2S2O8 K2CO3 DMSO 56

18 (NH4)2S2O8 Cs2CO3 DMSO 65

19 (NH4)2S2O8 NaOH DMSO 11

20 (NH4)2S2O8 NaH DMSO Trace

21c (NH4)2S2O8 Cs2CO3 DMSO 42

22d (NH4)2S2O8 Cs2CO3 DMSO 50

23e (NH4)2S2O8 Cs2CO3 DMSO 0

aReaction conditions: 1a (0.25 mmol), 2a (0.75 mmol), Oxidant (1 mmol), base (0.75 mmol), and solvent at 80◦C for 10 h under air. b Isolated yield. c100◦C. d60◦C. e25◦C.

substituted aryl olefins as the substrates to carry out the reactions
under the optimal reaction conditions (Scheme 2). The results
showed that good functional group tolerance could be achieved
under the optimized reaction conditions. A series of olefins
bearing electron-withdrawing (4-F, 4-Cl, 4-Br, 3-F, 3-Br, and
2-Br) and electron-donating [4-C(CH3)3, 4- Me, and 4-Ph]
substituents, with groups attached to the phenyl ring, proved
to be good substrates for this reaction. The corresponding 3-
vinylated quinoxalin-2(1H)-ones were produced in moderate
yields (3b–3p). The product yields decreased when substrates
bearing electron donating groups were used for carrying out the
reactions. The product yield was dictated by the strength of the
electron donating groups. We also observed that the reaction
proceeded smoothly when a strong electron-withdrawing group
(4-CF3) was present on the phenyl ring. The corresponding
product (3l) was obtained in 41% yield. We replaced different
heterocyclic rings and investigated the effect of such a change
on the yields of the products. The target product 3m was
obtained when the ring of choice was naphthalene. Subsequently,
we also investigated the influence of quinoxalin-2(1H)-ones,

bearing different substituents, on the applicability of the reaction
(Scheme 2). The results revealed that the applicability of the
method was extensive. The reactions were carried out with
derivatives of quinoxalin-2(1H)-one derivatives with different
N-substituted groups, such as N-ethyl, N-pentyl, N-vinyl, N-
ethynyl, N-esteryl, N-(2-oxo-2-phenylethyl), and N-[2-oxo-2-
(4-nitrophenyl)], could generate target compounds 3m–3s in
moderate to good yields. The reactions progressed smoothly
when the reactions were carried out with the quinoxalin-2(1H)-
benzene ring, bearing halogen atoms at different positions, and
the desired products in moderate yields (3t–3v). It is worth
mentioning that the corresponding target compound 3w was
obtained in 51% yield, even when a relatively strong electron-
withdrawing group was present on the benzene ring. The target
compound 3x was obtained in 50% yield, when the unsubstituted
quinoxalin-2(1H)-one was used as the substrate. Regrettably,
when replacing styrene with methyl acrylate and allylbenzene,
the corresponding product 3y and 3z were not obtained.
Surprisingly, by replacing the substrate with quinoxaline, the
corresponding product 3A can be obtained in 41% yield.
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SCHEME 2 | Coupling Reaction of Quinoxalin-2(1H)-ones and Alkenes. Reaction conditions: 1a (0.25 mmol), 2a (0.75 mmol), Oxidant (1 mmol), base (0.75 mmol),

and solvent at 80◦C for 10 h under air.

SCHEME 3 | Large scale experiment: 1a (7.0 mmol), 2a (21.0 mmol), (NH4)2S2O8(19.6 mmol), Cs2CO3 (10.3 mmol) in 20mL of DMSO, 80◦C, 24 h. Product 3a was

isolated in 52% yield.
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SCHEME 4 | Controlled experiments.

Encouraged by this reaction and sustainable synthesis,
we conducted scale-up experiments to investigate the
synthetic utility of the reaction. When 7.0 mmol of 1-
methylquinoxalin-2(1H)-one 1a was treated with 21.0 mmol
styrene (2a), the corresponding product 3a was obtained
with a yield of 52%, although an extended reaction time was
required (Scheme 3).

Control reactions were carried out to investigate the reaction
mechanism. The introduction of a radical inhibitor (TEMPO or
BHT) into the model reaction mixture, significantly inhibited

the progress of the reaction. The corresponding 3-vinylated
quinoxalin-2(1H)-ones was not obtained (Scheme 4, Equations
1, 2). This, indicated that the reaction proceeded through a
radical mechanism. The reaction proceeded smoothly in the
presence of deuterated styrene, producing the corresponding
target compound (Scheme 4, Equation 3), which indicated that
the hydrogen of the terminal double bond in the substrate was
not involved in the reaction process. If styrene was replaced
with β-methylstyrene, the target product couldn’t be obtained
under standard conditions, and it was probably due to the spatial
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SCHEME 5 | Proposed mechanism.

site resistance that the reaction did not proceed (Scheme 4,
Equation 4). When the amount of TMPEO was reduced, the
captured intermediate structure was detected by liquid-phase
mass spectrometry, indicating that the reaction mechanism may
have gone through this process (Scheme 4, Equation 5).

We proposed the possible reaction mechanism based on these
observations and the results presented in literature reports (Bag
andMaiti, 2016; Gupta et al., 2017; Fu et al., 2018; Toonchue et al.,
2018; Wei et al., 2018; Jin et al., 2019; Sekhar Dutta et al., 2019;
Shen et al., 2019; Xie et al., 2019a,b; Zheng and Studer, 2019;
Meng et al., 2020; Shi and Wei, 2020; Xie et al., 2020; Ali et al.,
2021) (Scheme 5). Initially, alkene 2 reacts with sulfate radical
anion (generated in situ) to generate the alkyl radical A. The
addition of alkyl radical A to quinoxalin-2(1H)-one 1 produces
the nitrogen radical B. The intermediate radical B generates
free radical C under heating conditions. The bisulfate anion is
released during the process. Single-electron transfer (SET), in the
presence of S2O

2−
8 , produces the nitrogen cation intermediate D

from the radical C. Finally, the intermediate D is deprotonated
under base conditions to produce the final product 3.

CONCLUSION

In summary, we have reported a simple and efficient C3-H
vinylation reaction with quinoxalin-2(1H)-one as the substrate,
in the presence of alkenes and absence of metals. A series
of 3-vinylated quinoxalin-2(1H)-ones with potential biological
activities can be obtained when the reactions are carried out in

the presence of (NH4)2S2O8. Further research to determine the
applicability of the synthetic procedure is presently underway in
our laboratory.
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