
Chiral Phosphoric Acid Promoted
Chiral 1H NMR Analysis of
Atropisomeric Quinolines
Junlin Wan, Jun Jiang and Juan Li*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China

An efficient enantioselective NMR analysis of atropisomeric quinolines in the promotion of
chiral phosphoric acid is described, in which a variety of racemic 4-aryl quinolines were
well-recognized with up to 0.17 ppm ΔΔδ value. Additionally, the optical purities of different
nonracemic substrates could be evaluated fast via NMR analysis with high accuracy.
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INTRODUCTION

Axial chirality is one of the important types of molecular asymmetry created from restriction of
carbon–carbon or carbon–nitrogen single-bond rotation. Since Christie and Kenner reported the
first detection of atropisomerism in 1922 (Christie and Kenner, 1922), axial chirality was found in a
lot of natural products and pharmaceutical compounds as exemplified by michellamines (Manfredi
et al., 1991; Bringmann et al., 1993) and vancomycin(Nicolaou et al., 1999). Besides, many chiral
ligands and catalysts, such as BINOL, BINAP, and phosphoric acids, have been developed based on
axially chiral biaryl scaffolds(Miyashita et al., 1980; Akutagawa, 1995; Kumobayashi et al., 2001;
Brunel, 2005; Brunel, 2007; Genet et al., 2014). It is well-known that the enantiopurities of chiral
ligands and catalysts are critical to their enantiocontrol, and atropisomers of bioactive molecules
always exhibit different pharmacodynamic and pharmacokinetic behavior both in vivo and in vitro
(Eichelbaum and Gross, 1996; Clayden et al., 2009). Thus, the development of efficient methods to
recognize and determine atropisomeric compounds becomes an interesting target and is always in
high demand. As key analysis methods, GC (Schurig and Nowotny, 1990), IR (Reetz et al., 1998),
HPLC (Han, 1997), circular dichroism (Ding et al., 1999; Nieto et al., 2008; Ghosn and Wolf, 2009;
Nieto et al., 2010), fluorescence spectroscopy (James et al., 1995; Mei andWolf, 2004; Pu, 2004; Zhao
et al., 2004; Tumambac and Wolf, 2005; Liu et al., 2009), electrophoresis technologies (Reetz et al.,
2000), and NMR spectroscopy have been efficiently employed in chiral determinations. Among these
classic technologies, NMR analysis affords an ideal platform to explore efficient chiral analysis
strategies because of its mild condition, easy operation, fast evaluation, high sample tolerance, etc.
Over the past few decades, a lot of chiral shift reagents (CSRs) (Frazer et al., 1971; Goering et al., 1971;
Yeh et al., 1986; Ghosh et al., 2004; Yang et al., 2005; Mori et al., 2013) or chiral solvating reagents
(CSAs) (Pirkle, 1966; Lancelot et al., 1969; Parker, 1991; Wenzel and Wilcox, 2003; Seco et al., 2004;
Lovely andWenzel, 2006; Ema et al., 2007; Wenzel, 2007; Iwaniuk andWolf, 2010; Moon et al., 2010;
Gualandi et al., 2011; Pham and Wenzel, 2011; Quinn et al., 2011; Wenzel and Chisholm, 2011; Ma
et al., 2012; Labuta et al., 2013; Zhou et al., 2015; Bian et al., 2016a; Akdeniz et al., 2016; Bian et al.,
2016b; Huang et al., 2016) were successfully designed and employed in chiral NMR analysis.
Encouraged by these achievements and our continuous efforts to study chiral interactions, we were
particularly interested in exploring a novel NMR-based chiral analysis method for our synthetic
targets: In 2017, we reported an enantioselective NMR analysis of indoloquinazoline alkaloid–type
tertiary alcohols with chiral phosphoric acid (CPA) (Akiyama et al., 2006; Akiyama, 2007; Akiyama
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FIGURE 1 | Chiral 1H NMR analysis of aryl quinolines with a chiral phosphoric acid.

TABLE 1 | Evaluating the chiral recognition abilities of chiral phosphoric acids (R)-C with 1a.a

Entry Chiral shift Deuterated ΔΔδ (ppm)

Reagent Solvents

1 (R)-C1 CD3OD 0.03
2 (R)-C2 CD3OD 0.01
3 (R)-C3 CD3OD 0
4 (R)-C4 CD3OD 0
5 (R)-C5 CD3OD 0.01
6 (R)-C6 CD3OD 0
7 (R)-C7 CD3OD 0
8 (R)-C8 CD3OD 0.02
9 (R)-C9 CD3OD 0.01
10 (R)-C1 CDCl3 nd
11 (R)-C1 DMSO-D6 0
12 (R)-C1 DMF-D7 0
12 (R)-C1 Acetone-D6 0.02
14 (R)-C1 CD3CN 0.01
15 (R)-C1 C6D6 0.1
16 (R)-C1 CD3OD

b 0.03
17 (R)-C1 CD3OD

c 0.02
18 (R)-C1 CD3OD

d 0.05

aUnless otherwise noted, all samples were prepared by mixing (R)-C (0.01 mmol) and the guests 2a (0.01 mmol) in CD3OD (0.5 ml) at 25°C.
b0.1 ml CDCl3 was added.
c0.5 equiv. of (R)-C1 was used.
d2 equiv. of (R)-C1 was used.
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TABLE 2 | Measurements of 1H chemical shift nonequivalences (DDd) of racemic aryl quinolinones.a

Entry Aryl quinolinone Spectra ΔΔδ (ppm)

1b 0.11

2 0.06

3b 0.17

4 0.02

5b 0.06

6b 0.17

7 0.06

8c 0.02

9 0.07

(Continued on following page)
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TABLE 2 | (Continued) Measurements of 1H chemical shift nonequivalences (DDd) of racemic aryl quinolinones.a

Entry Aryl quinolinone Spectra ΔΔδ (ppm)

10 0.04

11b 0.04

12 0.04

13 0.01

14 0.03

15 0.05

16 0.05

17 0.06

(Continued on following page)
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and Mori, 2015) promotion, in which a fast reaction condition
optimization of amino acid metal salt–catalyzed asymmetric aldol
reaction was also achieved (Liu et al., 2017); besides, a variety of
racemic 4-aryl quinazolinones, such as afloqualone and IC-
87114, were also well-recognized, and the optical purities of
different nonracemic substrates could be evaluated fast with
high accuracy (Wu et al., 2018). Encouraged by these results
and our recent research on the catalytic asymmetric construction
of atropisomeric quinolines, we wish to report an efficient chiral
recognition of quinoline atropisomers by chiral phosphoric acid:
In the presence of 1 equivalent of α-naphthyl phosphoric acid, a

variety of racemic quinolines were well-recognized with up to
0.17 ppm ΔΔδ value; additionally, the corresponding analysis
system can also be employed in the accurate determination of
enantioselectivities of axial chiral quinolines.

RESULTS AND DISCUSSION

As shown in Figure 1, the methyl peak on the benzyl position of
racemic 1-(6-chloro-4-(2-fluorophenyl)-2-methylquinolin-3-yl)
ethan-1-one 1a is unimodal on 1H NMR spectrum in the

FIGURE 2 | (A) Selected regions of the 1H NMR spectra of nonracemic aryl quinolinone samples (varied ee values) with (R)-C1 in 0.5 ml CD3OD and 0.1 ml CDCl3;
(B) linear correlation between ee values determined by HPLC and NMR ee values, R2 � correlation coefficient.

TABLE 2 | (Continued) Measurements of 1H chemical shift nonequivalences (DDd) of racemic aryl quinolinones.a

Entry Aryl quinolinone Spectra ΔΔδ (ppm)

18b 0.07

aUnless otherwise noted, all samples were prepared by mixing (R)-C1 (0.01 mmol) and the guests 2 (0.01 mmol) in CD3OD (0.5 ml) and CDCl3 (0.1 ml) at 25°C.
b0.5 ml C6D6 was used.
c2 equiv. of (R)-C1 was used.
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absence of chiral phosphoric acid. Generally, the addition of 1
equivalent of chiral phosphoric acid brought obvious chemical
shift nonequivalences of this methyl peak of 1a, suggesting the
strong chiral interaction between chiral phosphoric acids and 4-
aryl quinoline. It was shown that the substituents on phosphoric
acids had obvious influence on the recognition. For example, 3,3’-
α-naphthyl–substituted phosphoric acid C1 afforded a baseline
resolution and the largest chemical shift nonequivalence
(ΔΔδ � 0.03) of a methyl H signal of 1a in CD3OD at 25°S,
while 3,3’-phenyl–substituted phosphoric acid C7 failed to
differentiate atropisomers of 1a. Besides, deuterated solvents
also played an important role in chiral recognition. As shown
in Table 1, chemical shift nonequivalence of methyl H of 1a’s
atropisomers was observed when CPA C1 and 1a were combined
in CD2Cl2, acetone-D6, CD3CN, and C6D6, while highly polar
solvent, such as DMF-D7 and DMSO-D6, seemed to break the
interaction between the chiral sensor and analyte, resulting in no
differentiation of atropisomers. Besides, different peaks
overlapped together when CDCl3 was employed as solvent.
Significantly, C6D6 enabled the best chiral recognition of up to
ΔΔδ 0.1 ppm, albeit with poor solubility of CPA and quinoline
analytes. Considering the fact that CPA and quinoline mixture
dissolve well in CDCl3, binary solvents of CD3OD and CDCl3
(5/1) were chosen as analysis media in the purpose of balancing
solubility and recognition, offering eminent solubility and
baseline resolution (entry 16). Additionally, the amount of 1a
also influenced differentiation; for example, baseline resolution
was not achieved when a 0.5 equivalent of chiral phosphoric acid
C1 was used, while increasing the amount of C1 to 2 equivalent
resulted in larger chemical shift nonequivalence (ΔΔδ � 0.05).
Finally, under the balance of atom economy and recognition, 1
equivalent of (R)-C1 was employed as a chiral sensor
(entry 17).

Under optimized conditions, a series of 4-aryl quinoline guests
were tested. First, the influence of substituents on quinoline (ring
1) was evaluated. It was shown that different electron-
withdrawing groups on ring 1 were fit well under standard
conditions, providing baseline resolutions and 0.02–0.17 ppm
ΔΔδ values, respectively (Table 2, entries 1–5). Besides,
different R3 groups on quinoline such as acetyl, ethyl formate,
methyl formate and trifluoroacetyl were also tested, all of which
led to clear recognition of atropisomers with up to 0.07 ppm ΔΔδ
values. Subsequently, different 4-aryl groups (ring 2) were also
studied. As shown in Table 2, a variety of electron-withdrawing
or electron-donating groups on ring 2 were well-tolerated, and
substituents with either moderate or bulky size on the 2’-position
of ring 2 all resulted in clear baseline resolution with good
chemical shift nonequivalences. Noticeably, when 1-{4-[(1,1’-
biphenyl)-2-yl]-2-methylquinolin-3-yl} ethan-1-one 1g was
employed as analyte, the largest chemical shift nonequivalence
of 0.17 ppm ΔΔδ was obtained. Interestingly, when 1k-1n were
employed as guests, obvious split peaks on α-H of oxygen were
observed. It is also worth noting that nitro-substituted substrates
1b and 1g also afforded good differentiation results (chemical

shift nonequivalence of 0.11 and 0.17 ppm ΔΔδ, respectively),
possibly due to the steric hindrance effect of nitro group.

With this optimal recognition condition, the possibility of
our methodology in the enantiomeric determination of
various nonracemic 1j samples was explored. As shown in
Figure 2, 1j samples with different enantiopurities was
combined with 1 equivalent of CPA C1 and then
monitored by NMR. It was revealed that the optical
purities of 2a could be accurately obtained by integrating
the corresponding H signals of the methyl group of 1j, which
were very close to the exact results measured by HPLC.
Compared with those data obtained from chiral HPLC
analysis, an excellent linear relationship of a correlation
coefficient R2 0.9996 and up to 0.03% absolute error was
obtained.

CONCLUSION

In conclusion, an efficient phosphoric acid–promoted chiral
recognition of atropisomeric quinolines via NMR analysis
was successfully developed. With this method, atropisomers
of various quinolines were well-discriminated with base
resolution; besides, the optical purities of different
nonracemic quinoline 1j could be evaluated fast with high
accuracy. This method broadens the chiral analysis ability of
chiral phosphoric acids, which encourages us to further
explore the interaction of chiral acids with different analytes.
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