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Semiconducting nanoparticles (SC NPs) play vital roles in several emerging technological
applications including optoelectronic devices, sensors and catalysts. Recent research
focusing on the single entity electrochemistry and photoelectrochemistry of SC NPs is a
fascinating field which has attained an increasing interest in recent years. The nano-impact
method provides a new avenue of studying electron transfer processes at single particle
level and enables the discoveries of intrinsic (photo) electrochemical activities of the SC
NPs. Herein, we review the recent research work on the electrochemistry and
photoelectrochemistry of single SC NPs via the nano-impact technique. The redox
reactions and electrocatalysis of single metal oxide semiconductor (MOS) NPs and
chalcogenide quantum dots (QDs) are first discussed. The photoelectrochemistry of
single SC NPs such as TiO2 and ZnO NPs is then summarized. The key findings and
challenges under each topic are highlighted and our perspectives on future research
directions are provided.
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INTRODUCTION

Semiconductor nanomaterials have attracted increasing interest due to their excellent physical and
chemical properties comparing with their bulk counterparts, such as continuous absorption bands,
narrow and intensive emission spectra, high chemical and photo-bleaching stability, processability
and surface functionality, which make them suitable candidates in single electron devices, sensors,
imaging devices, solar cells, nano-electronics, optoelectronic devices and memory devices (Itoh et al.,
1988; Wang and Herron, 1991; Bhargava et al., 1994; John and Singh, 1996; Singh and John, 1997).
Electrochemical and photo-electrochemical studies of semiconductor nanomaterials are important
for understanding the mechanism and kinetics of the relevant processes in their applications.
Macroscopic (ensemble) measurements are still predominantly used to infer the underlying
microscopic processes when investigating the (photo) electrochemistry of nanomaterials.
However, this is not always straightforward or fully representative. A large population of
nanoparticles may result in polydispersity, different particle orientations, the formation of the
likely agglomerated and irregular “mat” associated with the dropcast technique and other
phenomena that make the results difficult to interpret. A greater mechanistic understanding of
the electrochemical and photo-electrochemical reactivity of nanomaterials requires the development
of method for probing electron transfer events on single redox nanomaterials and individual catalytic
entities. One of these emerging methods is the “nano-impact” approach (or particle-electrode
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impacts) which is realising an entirely fresh way of studying
nanoparticles, their reactivity and catalytic properties,
transforming the science of nano-chemistry (Cheng and
Compton, 2014; Pumera, 2014; Rees, 2014; Sokolov et al.,
2017). The phenomenon of “nano-impact” method, due to
Brownian collisions of NPs with an electrode held at a suitable
potential, enables NPs to be individually electro-reduced or
oxidised, or mediate (catalyze) charge transfer processes which
are not viable on the microelectrode itself under the conditions of
study. This powerful electrochemical technique has found much
strength in giving insights into the fundamental study of
nanoparticles: not only the basic particle characterization (e.g.

sizing, concentration, chemical identity, agglomeration/
aggregation state, porosity) (Zhou et al., 2011; Stuart et al.,
2012; Tschulik et al., 2014; Jiao et al., 2017; Li et al., 2019),
but also in-depth understanding at single-particle levels for the
mechanisms and dynamics of (photo) electrochemical processes
of interest (Xiao and Bard, 2007; Bard et al., 2010; Fernando et al.,
2013; Li et al., 2016; Ma et al., 2018; Peng et al., 2018).

The stochastic electrochemistry “nano-impact”was born since
Lemay’s report in 2004, where the collision of single latex
microspheres on (ultramicroelectrode) UMEs was discussed
(Quinn et al., 2004). Research at early stage mainly include the
works by Quinn et al., 2004 and Xiao and Bard, 2007 on

TABLE 1 | Literature on single entity electrochemistry and photoelectrochemistry of semiconducting nanoparticles based on the nano-impact method.

Semiconducting
materials

Measurement
methodsa

Research topics References

ZnO LSV and CA (nano-
impact)

Electrochemical reduction Karunathilake et al.
(2020)

ZnO CV and CA (nano-
impact)

Photoelectrochemistry for water oxidation Ma et al. (2018)

ZnO LSV and CA (nano-
impact)

Electrochemical reduction Perera et al. (2015)

TiO2/IrOx CV and CA (nano-
impact)

Photoelectrochemistry for water oxidation Wang et al. (2020)

TiO2 CV and CA (nano-
impact)

Photoelectrochemistry for oxidizing I− Peng et al. (2018)

TiO2 CV and CA (nano-
impact)

Surface-bound electrochemical reduction (Alizarin Red S) Shimizu et al. (2017)

TiO2 CV and CA (nano-
impact)

Photoelectrochemistry for oxidizing the dye N719 Barakoti et al. (2016)

TiO2 CV and CA (nano-
impact)

Photoelectrochemistry for oxidizing MeOH Fernando et al. (2015)

TiO2 CV and CA (nano-
impact)

Photoelectrochemistry for oxidizing MeOH Fernando et al. (2013)

CuO CV and CA (nano-
impact)

Electrochemical reduction Zampardi et al. (2018)

IrOx CV and CA (nano-
impact)

Electrocatalysis toward H2O2 oxidation Zhou et al. (2017)

IrOX CV and CA (nano-
impact)

Electrocatalysis toward OER Kwon et al. (2010)

CeO2 CV and CA (nano-
impact)

Surface-bound electrochemical reduction (As3+) Karimi et al. (2019)

CeO2 CV and CA (nano-
impact)

Surface-bound electrochemical reduction (O2
−) Sardesai et al. (2013)

Fe2O3 CV and CA (nano-
impact)

Electrochemical reduction Shimizu et al. (2016a)

Fe2O3 CA (nano-impact) Electrochemical reduction of agglomerates Shimizu et al. (2016b)
Fe3O4 CA (nano-impact) Electrochemical reduction Tschulik et al. (2014)
Fe3O4 CV and CA (nano-

impact)
Electrochemical redox behavior Tschulik et al. (2013)

Co3O4 CV and CA (nano-
impact)

Electrocatalysis toward water oxidation Xie et al. (2020)

CoFe2O4 CV and CA (nano-
impact)

Electrocatalysis toward OER El Arrassi et al. (2019)

Al2O3 CV and CA (nano-
impact)

Surface-bound electrochemical oxidation (catechol, anthraquinone, chloranil and
poly(vinylferrocene))

Lin and Compton (2017)

Al2O3 CV and CA (nano-
impact)

Surface-bound electrochemical oxidation (catechol) Lin and Compton (2015)

CdSe QDs CV and CA (nano-
impact)

Electrochemical oxidation Alshalfouh et al. (2019)

MoS2 QDs CV and CA (nano-
impact)

Electrocatalysis toward HER Wang et al. (2021)

aNote that LSV is linear scan voltammetry, CV represents cyclic voltammetry and CA is chronoamperometry.
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insulating and metallic NPs. The motivation for studies of
semiconducting (SC) NPs starts from the interest in
investigating photoelectrochemical currents for energy
conversion in SC nanostructures. Since then, single entity
studies on the semiconducting materials such as metal oxides
and some quantum dots materials have been performed (Sardesai
et al., 2013; Tschulik, et al., 2013; Perera et al., 2015; Fernando
et al., 2015; Shimizu et al., 2017; Alshalfouh et al., 2019;
Karunathilake et al., 2020; Wang et al., 2021). The overarching
goal of studying single SC (photo) electrochemistry is to
understand the net (photo) electrochemistry catalytic process
at single particle level and to establish their instinct activity-
structure relationship. Moreover, the mechanistic investigation
on (photo) electrochemistry of individual NPs will contribute to
understand and ultimately control the charge transfer at
nanoscale. Even though several reports and reviews have
summarised single SC photo-electrochemistry (Peng et al.,
2018; Barakoti et al. (2016); Ma et al., 2018; Alpuche-Aviles
et al., 2019; Wang et al., 2019; Wang et al., 2020), their
electrochemical redox behavior and electro-catalytical activities
were not comprehensively included. Therefore, our distinct aim
of the mini review is to facilitate insight into both the
electrochemistry and photoelectrochemistry of single
semiconducting nanoparticles. A summarized data collection
containing the electrochemistry and photoelectrochemistry of
single entity semiconducting materials via nano-impact
approach is presented in Table 1.

SINGLE ENTITY ELECTROCHEMISTRY OF
SEMICONDUCTING NANOPARTICLES

Single Entity Electrochemistry of Metal
Oxides Nanoparticles
As an important type of semiconducting materials, metal oxide
semiconductors (MOS) attain great attention due to its
morphological versatility, chemical stability, physicochemical
interfacial properties and their ability to combine in composite
structures (Santos et al., 2016; Liu et al., 2017; Dong et al., 2017;
Zhang et al., 2020). The earliest electrochemical studies on MOS
usually focus on the average behavior via ensemble measurements at
a macroelectrode with a fewmilli-meters in diameter, some of which
involve the simultaneous collision of the suspended colloids with the
electrode surface (Dunn et al., 1981a; Dunn et al., 1981b; Kamat,
1985; Koelle et al., 1985; Gratzel and Frank, 1982) For example,
polarography and voltammetry of aqueous SnO2 and TiO2

suspensions was investigated by Heyrovsky et al., in 1995
(Heyrovsky et al., 1995a; Heyrovsky et al., 1995b). Even though
collision and adsorption of nanoparticles can take place on a
macroelectrode, exceedingly high frequencies of collision and
huge background signals associated with the large electrode area
make it challenging to individually resolve the collision events.When
a microelectrode is employed, both the collision frequency and
baseline noise are greatly reduced, thereby resulting in clear
resolution of single impact events. With the development of this

nano-impact technique, understanding the property and activity of
single MOS are attracting increasing interests. In recent years, the
electrochemical behavior of single MOS including IrOx, Fe2O3,
Fe3O4, CeO2, CuO, Co3O4, TiO2, ZnO and CoFe2O4 etc. has
been investigated via nano-impact method (Sardesai et al., 2013;
Tschulik and Compton, 2014; Shimizu et al., 2016a; Shimizu et al.,
2016b; Zhou et al., 2017; Zampardi, et al., 2018; Peng et al., 2018; Xie
et al., 2020; Karunathilake et al., 2020) The specific research topics
mainly involve two aspects: the electrochemical redox behavior and
electrocatalysis of single MOS, which is summarized and discussed
in the following paragraphs respectively. For a direct type of nano-
impact, the nanoparticles are usually fully oxidized (or reduced) so
that the electrolysis of the nanoparticles is quantitative. The charge
(Coulombs) obtained by integrating the current transients reflects
(via Faraday’s first Law) the number of atoms (or molecules) in the
nanoparticle thus giving its size. A large number of current spikes are
easily and rapidly measured so giving a particle size distribution. The
method is capable of sizing nanoparticles as small as 5 nm with
suitably sensitive home-built but inexpensive equipment (Batchelor-
McAuley et al., 2015). In addition to sizing nanoparticles the nano-
impact technique is able to simultaneously measure their
concentration via the frequency of the observed impacts (Stuart
et al., 2012). Furthermore, the potentials at which the current spikes
onset are clearly related to the chemical identity of the nanoparticles
and recent work has shown that it is able to measure the states of
agglomeration/aggregation of the particles (Tschulik et al., 2014) and
the porosity of the particles (Jiao et al., 2017). Currently, the direct
nano-impact studies onMOSmainly focus on the redox behavior of
the MOS themselves Fe3O4 (Tschulik and Compton, 2014), Fe2O3

(Shimizu et al., 2016a; Shimizu et al., 2016b), ZnO (Perera et al.,
2015; Karunathilake et al., 2020;Ma et al., 2018) andCuO (Zampardi
et al., 2018) and the MOS surface-bound with electroactive species
CeO2 (Karimi et al., 2019), TiO2 (Shimizu et al., 2017) and Al2O3

(Lin and Compton 2015, 2017).
Tschulik et al. conducted cathodic and anodic impact

experiments for Fe3O4 nanoparticles and opened two
independent routes to electrochemical sizing the particles
(Figure 1A) (Tschulik et al., 2013). Furthermore, individual
Fe3O4 NPs in the presence and absence of a magnetic field
was investigated and a significant magnetic field-induced
agglomeration of NPs is observed in a magnetic field. More
interestingly, dissolution of Fe3O4 NPs is found to be strongly
inhibited in amagnetic field; this is likely due to the magnetic field
gradient force trapping the produced Fe2+ ions near the NP
surface and hence hindering the mass-transport controlled NP
dissolution (Tschulik et al., 2014). Shimizu et al. (2016b) achieved
the electrochemical sizing for Fe2O3 NPs via conducting
reductive impact experiments. It is found that the first electron
transfer process is the rate determining step of the reductive
dissolution of nanoparticles, and the interfacial proton
concentration has strong effect on the overall process (Shimizu
et al., 2016a; Shimizu et al., 2016b). A following work
demonstrated the rapid and reversible agglomeration/dis-
agglomeration process of Fe2O3 NPs and opens a new way of
investigating the agglomeration equilibria of mineral
nanoparticles in aquatic media (Shimizu et al., 2016a; Shimizu
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et al., 2016b; Shimizu et al., 2016). Perera et al. investigated the
impact experiments of ZnO nanoparticles (NPs) and realised the
determination of the redox potential for the ZnO NPs. It is
observed that the formal potential is a strong function of NP size
(1/r) since smaller NPs are less stable compared to the larger ones
and hence relatively easier to be reduced. (Perera et al., 2015).
Further understanding on the reduction kinetics and mass
transport of ZnO single entities was reported by Karunathilake
et al. (Karunathilake et al., 2020). Recently, to understand the

environmental fate of CuO nanoparticles and further correctly
assess their toxicity, Zampardi et al. employed the nano-impact
method to investigate the electrochemical behavior of single
copper oxide nanoparticles in the presence of anionic species
(Cl− and NO3

−) commonly found in real water media. The
potentials of in-situ detecting the nanoparticles in real world
media is demonstrated (Zampardi et al., 2018).

In addition to the redox behavior of single MOS, the MOS
absorbed with active species have also been investigated at single

FIGURE 1 | (A) The nano-impact measurements of single Fe3O4 magnetite nanoparticles using both anodic particle coulometry (APC) and cathodic particle
coulometry (CPC) to independently get the size information of Fe3O4 nanoparticles (Tschulik et al., 2013). Copyright © 2013 Springer (B) Schematic illustration of single
IrOx NP collision event and the current enhanced by electrocatalytic water oxidation (Kwon et al., 2010). Copyright © 2010 American Chemical Society (C) (a) Scheme of
single MoS2 QD collision at the Ag UME surface; the reaction is switched on when the particle is in contact with the detection electrode. (b) Experimentally obtained
current transient applied by Ag UME (diameter 10 μm) held at −700 mV vs SHE. (c) Representative current profile observed in a single QD collision event indicated in (b).
Wang et al. (2021). Copyright © 2021 American Chemical Society.

Frontiers in Chemistry | www.frontiersin.org June 2021 | Volume 9 | Article 6883204

Mathuri et al. Single Semiconducting Nanoparticles

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


particle level. Based on the nano-impact method, Sardesai et al.
studied the reduction of surface bound oxygen species on single
CeO2 NPs and evaluated antioxidant activity of CeO2 NPs in a
simple, rapid and inexpensive approach (Sardesai et al., 2013).
Recently, the oxidation and reduction of As3+ loaded CeO2 NPs
was reported by using collision electrochemistry and the highest
spike frequency at pH 8 suggesting a maximum adsorption
capacity. The As concentration in solution was determined by
deriving from the measured charge and peak current, as well as
the spike frequency (Karimi et al., 2019). In addition, the nano-
impact is employed to probe the degree of cluster formation of
Alizarin Red S modified rutile (TiO2) nanoparticles based on the
reduction of the adsorbed dye molecules (Shimizu et al., 2017).
Lin and Compton reported the quantification of the adsorbed
catechol on single Al2O3 particles and the individual impact
spikes resulting from the catechol oxidation was modeled to
derive the charge diffusion coefficient across the particle
surface (Lin and Compton, 2015). Adsorption of more redox
active species including catechol, anthraquinone, chloranil and
poly(vinylferrocene) on alumina particles was also investigated
and their surface coverages and charge diffusion coefficients were
determined respectively (Lin and Compton, 2017).

The investigation on redox behavior of single MOS and their
absorption of redox active species discovers more accurate
physiochemical properties for both MOS and the adsorbed
redox species. As an alternative to the direct redox reaction of
the nanoparticles themselves, mediated (indirect) electron
transfer can also take place on the surface of impacting
nanoparticles. When catalytically active nanoparticles
stochastically collide with an inert microelectrode in a solution
of redox molecules, transient current increases may be observed
due to enhanced catalytic activity on nanoparticle surfaces. The
current response of these collisions may adopt one of two general
forms: a current spike or a current step, depending on a few
complex factors such as the residence time of the impacting
catalytic nanoparticles on the electrode surface and if the
deactivation time of nanoparticle. If the desorption or
deactivation of the nanoparticle is relatively slow compared to
the experimental time, a “step on” in the current-time response is
observed, otherwise a “spike” obtained. Some significant
applications of the mediated electron transfer for MOS have
been reported, examples cover IrOx, Fe2O3, Co3O4 and CoFe2O4

NPs. (Zhou et al., 2017; Kwon et al., 2010; Shimizu et al., 2016a,b;
Xie et al., 2020; El Arrassi et al., 2019). The initial studies on the
mediated impacts of MOS reported the enhanced current
transients from the electrocatalysis of individual impacting
IrOx NPs toward oxygen evolution reaction (OER). A current
decay rather than steady response was observed, and the obtained
current is found to be highly sensitive to the material and surface
state of the electrode used (Figure 1B) (Kwon et al., 2010).
Coupled with microscopic investigation, the current transients
from oxidation of hydrogen peroxide at single IrOx NP further
discovers the origins of deactivation of catalytic NPs and the
factors affecting the collision dynamics (Zhou et al., 2017).
Recently Xie et al. reported the water oxidation on single
Co3O4 nanoparticles, a mechanism involving hydrogen
peroxide as the initial oxidation product of electron transfer

and a following decomposition to form dioxygen was
proposed. Single particle electrocatalysis points out the rate-
determining step and the limiting kinetics of the reaction
(Xie et al., 2020). El Arrassi et al. investigated the OER on
single CoFe2O4 NPs and revealed that the current density at
single nanoparticle researches as high as several kA·m−2. The
analysis of the steady-state current further indicates that the
electrocatalytic activity is limited by the diffusion of produced
oxygen away from the particle, providing new insights into
intrinsic activities of the nanocatalysts (El Arrassi et al., 2019).

Overall, the single entity electrochemistry of MOS covering
the redox behavior and electrocatalysis of single MOS has been
investigated via the nano-impact technique. The latter has shown
the capability to reveal the fundamental physiochemical
properties of nanoparticles (sizing, concentration,
agglomeration/aggregation state), and to provide in-depth
understanding the mechanisms and dynamics of
electrochemical processes at nanoscale. However, more
investigation on the redox behavior of single MOS in
complicate aqueous media is required for finally realising the
in-situ electrochemical determination and analysis of solution
phase MOS in real world environment. Single entity
electrocatalysis should be extended to more metal oxide based
electro-catalysts for better understanding the underlying
mechanism and kinetics of the important reactions.

Single Entity Electrochemistry of
Semiconducting Quantum Dots
In addition to the MOS, semiconducting quantum dots (QDs),
especially chalcogenide QDs hold unique optical and electrical
properties such as narrow emission absorption and high
photo-stability, making them increasingly popular in recent
years in the applications of optoelectronic devices, catalysis
(Barakat et al., 2005), bio-labeling (Lin et al., 2007), lasers
(Supran et al., 2013), sensors (Cho et al., 2015), LEDs (Yang
et al., 2015) and photovoltaics (Yang et al., 2017). The research
on single entity electrochemistry of QDs starts very recently
with the report of CdSe/CdS QDs by Alshalfouh et al., 2019.
Together with fluorescence correlation spectroscopy (FCS),
electrochemical impact measurements was carried out to
understand the reactivity as well as dynamics of CdSe/CdS
QDs at a Pt microelectrode surface. The latter was around 1 μm
in diameter for matching the size of the optical observation
volume. Cyclic voltammetry was used to investigate the
oxidation of CdSe/CdS QDs with negatively charged shells.
Significantly, it is found that the electro-oxidized QDs are still
able to emit light although the emission lifetime decreases.
According to this report, different from the widely reported
metal NPs in single collision experiment, more collision events
are likely required for a small QD to have a complete anodic
decomposition (Alshalfouh et al., 2019). According to this
report, multiple collision events are required for a QD to have a
complete anodic decomposition. What’s more, the intrinsic
electrocatalytic activity of single MoS2 quantum dots (QDs)
toward HER is just reported by Wang et al. (Figure 1C) (Wang
et al., 2021). The current responses obtained at silver
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FIGURE 2 | (A) Illustration of the photoelectrochemical behavior of a single N719@TiO2 nanoparticle during a collision with a TiO2@Au UME in the presence of I−/I3−

redox electrolyte under visible light, thus generating spike like current transients. (B) Amperometric current–time curves of individual N719@TiO2 nanoparticles at
+600 mV vs. Ag/AgCl in the absence (a) and in the presence (b) of the I−/I3− redox couple in the electrolyte solution under illumination with a Xe lamp (λ > 450 nm). (c)
Expanded portions of the representative photocurrent traces. Histogram of the peak currents and duration time of individual transients. Peng et al. (2018).
Copyright © 2018 John Wiley and Sons (C) Light controlled NP collisions: Schematic representation of (A) in Situ Photosynthesis of Pt@TiO2 NPs (B) their catalytically
amplified collisions with the carbon UME and (C) Photoelectrochemically amplified collisions of IrOx NPs with a microscopic portions of the Nb doped n-type TiO2 (110)
Rutile single crystal surface facing the micropipette orifice Wang et al. (2020). Copyright © 2020 American Chemical Society.
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ultramicroelectrodes (UMEs) and carbon UMEs were
recorded respectively. Current “spikes” with much higher
current intensity is observed at Ag UMEs while “steps”
obtained at C UMEs, revealing the influence of the
substrate-MoS2 interface on HER activity. Very few reports
on electrochemistry of single QDs so far is likely due to the
following reasons: the small size of the QDs (a few nanometers
in diameter) increases the difficulties to be electrochemically
detected with the current low-noise potentiostats; the
semiconducting nature of the QDs make the electron
transfer process more complicate than the metal
nanoparticles; the surface chemistry of the QDs imposed
uncertainties to the collision process with the electrode
surface.

SINGLE ENTITY
PHOTOELECTROCHEMISTRY OF
SEMICONDUCTING NANOPARTICLES
Semiconductor photoelectrochemistry deals with solar energy
conversion to electricity or chemical fuels and focuses on the
photo-driven reactions at solid/liquid interfaces. To achieve
the practical energy conversion applications, the fundamentals
of SC nanomaterials such as charge carrier generation,
separation, transport, and especially interfacial charge
transfer at heterogeneous nanoscale interfaces need to be
clarified. Single entity photoelectrochemistry of colloidal
bared and sensitized TiO2, and ZnO NPs has been reported
so far (Fernando et al., 2013; Fernando et al., 2015; Barakoti
et al., 2016; Ma et al., 2018; Peng et al., 2018; Wang et al., 2020).
Fernando et al. employed the nano-impact method to detect
the stochastic photoelectrochemical currents of individual
anatase TiO2 nanoparticles. It is reported that the current
steps were not observed for NP suspension under illumination
in MeCN while the steps appeared in MeOH. This is due to that
NPs under illumination produce valence-band holes that
oxidize MeOH. They have also investigated the
photoelectrochemical behaviour of the NP with different
diameter and reported that the collisions resulting in a
current step could be smaller for the semiconductor NP
than the metal NPs (Fernando et al., 2013). Furthermore, it
has been demonstrated that the sensitivity of the detection can
be improved by using a dye (Fernando et al., 2015; Barakoti
et al., 2016; Shimizu et al., 2017; Ma et al., 2018; Peng et al.,
2018). Specifically, Barakoti et al. (2016) reported the study of
dye-sensitized nanoparticles and their agglomerates with
stochastic electrochemistry, and under illumination the
cathodic steps are observed because of the photo-oxidation
of the dye which injects electrons into the TiO2 NP and yields
the oxidized dye molecules at particle surface (Barakoti et al.,
2016). Peng et al. (2018) developed an ultrasensitive
photoelectrochemical method for detecting the photocurrent
from single SC nanoparticles by using micrometer-thick
nanoparticulate TiO2 filmed Au ultramicroelectrode (TiO2@
AuUME). The presence of di-tetrabutylammonium cis-
bis(isothiocyanato) bis(2,2′-bipyridyl-4,4′-dicarbox-ylato)

ruthenium(II) (N719) makes the TiO2 NPs collect more
photons and hence increases photoelectrochemical current.
They have reported that the electron transfer into the nano-
particulate TiO2 film will takes place when the individual
N719@TiO2 nanoparticles stochastically collide with TiO2@
AuUME (Figure 2A). Coupled with theoretical simulation, the
high-resolution photocurrent measurement provides the
quantification of electron transfer of single N719@TiO2

nanoparticle and the further estimation of the electron
diffusivity of TiO2@AuUME (Peng et al., 2018). The
developed protocol was further used to investigate the
photo-electrochemical behavior of single N719@ZnO entity
on an Au ultramicroelectrode with different TiO2 film
thicknesses (Ma et al., 2018). The photocatalytic properties
of N719 at single ZnO entity were quantified, and the influence
of the film thickness on the electron transport behavior was
estimated with the help of simulation. The latter is in
agreement with the experimental results, indicating the
successful quantification of single SC NPs
photoelectrochemistry. Wang et al. demonstrated the light
controlled single nanoparticle collision experiments for Pt@
TiO2 NPs with carbon UME and IrOx NPs with a Nb:TiO2

(110) rutile single crystal UME (Figure 2C). The Pt@TiO2 NPs
was in-situ electrochemically deposited and their collisions
with a carbon UME as the light guide were catalytically
amplified by the oxygen evolution reaction (OER). Current
blips due to the collision events was observed. In addition,
light-controlled collisions of IrOx NPs with a Nb:TiO2 (110)
rutile single crystal UME showed photoelectrocatalytic activity
of this semiconductor/cocatalyst system. The current spikes
can be used to indicate the activities of individual IrOx NPs.
Larger current spikes for IrOx NPs than the Pt NPs and Pt@
TiO2 NPs are associated with the higher electro-catalytical
activity of IrOx NPs toward OER (Wang et al., 2020). Overall,
the research on single SC photoelectrochemistry are still very
limited and only two types of MOS nanoparticles have been
investigated. The research objects are highly worthy to be
extended so that some general detection strategies could be
developed. In addition, more study on the photocurrent
behavior of single SC NPs with different properties is
required to better understand their intrinsic performance-
structure relationships.

CONCLUSION

In this mini review the recent research work on the
electrochemistry and photoelectrochemistry of single
semiconducting nanoparticles are summarized. The redox
reactions and electrocatalysis of single metal oxide
semiconductor NPs and quantum dots via the nano-impact
method are discussed. The technique enables both the
discoveries of the fundamental physiochemical properties
of nanoparticles, and in-depth understanding for the
mechanisms and dynamics of (photo) electrochemical
processes at single particle levels. However, currently the
nano-impact methodology faces some general challenges
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such as lack of deeper understanding on the dynamics of NPs
during the collision process and how different factors have
effect on it. For the SC NPs, the substrate-NPs interface plays
far more important roles in the electron transfer process due
to their semiconducting nature. The influencing factors likely
include the electrode materials, surface chemistry of NPs and
media composition, which are still poorly understood to date
and need to be carefully investigated and clarified in future.
Furthermore, the research on single SC NP
photoelectrochemistry is still at early stage and the
research objects are highly worthy to be extended so that
some general detection and analysis strategies could be
developed and the intrinsic (photo) electrochemical
activity-structure relationships for more SC NPs could be
revealed.
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