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Topological invariants are the significant invariants that are used to study the
physicochemical and thermodynamic characteristics of chemical compounds.
Recently, a new bond additive invariant named the Mostar invariant has been
introduced. For any connected graph H, the edge Mostar invariant is described as
Moe(H) � ∑

gx∈E(H)
∣∣∣mH(g) −mH(x)∣∣∣, where mH(g)(ormH(x)) is the number of edges of

H lying closer to vertex g (or x) than to vertex x (or g). A graph having at most one common
vertex between any two cycles is called a cactus graph. In this study, we compute the
greatest edge Mostar invariant for cacti graphs with a fixed number of cycles and n
vertices. Moreover, we calculate the sharp upper bound of the edge Mostar invariant for
cacti graphs in C(n, s), where s is the number of cycles.
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1 INTRODUCTION

LetH � (V(H), E(H)) be a simple, undirected, and connected graph with the vertex set V(H) and
the edge set E(H). The degree of g ∈ V(H), represented as degH(g), is described as the number of
edges directly linked with g. The neighbors of a vertex g inH is the set of all of its adjacent vertices in
H. For g, x ∈ V(H), the number of edges in the shortest path between two vertices g and x is called
the distance between them and is expressed as dH(g, x). A pendent vertex p in H is a vertex with
degree one, and an edge having one pendent vertex as one of its end vertices is called a pendent edge.
The set of all pendent vertices ofH is represented as PH, and the set of all pendent vertices adjacent to
a fix vertex g is represented as PH(g). An edge inH is presented as a cut edge if, by deleting that edge,
the graph is converted into exactly two components. Let Pn, Cn, and Sn be used for the representation
of the path, the cycle, and the star with order n.

In the fields of chemical sciences, mathematical chemistry, chemical graph theory, and
pharmaceutical science, topological invariants are of significant importance because of their
definitional use. The physicochemical properties of chemical structures can be forecasted by
using topological invariants. A numerical value related to biological activity, chemical reactivity,
and physical properties of chemical structures is known as a topological invariant. Topological
invariants are mainly separated into different manners like degree, distance, eccentricity, and
spectrum. A distance-based invariant is a topological invariant based on the distance between
the vertices or edges of a given graph. The Wiener invariant (Wiener, 1947) is the most significant
oldest topological invariant that belongs to distance-based invariants, and the Harary invariant
(Mihalić and Trinajstić, 1992) and the Balaban invariant (Zhou and Trinajstić, 2008) also belong to
distance-based invariants. Degree-based invariants are another well-studied group of invariants. The
first degree-based invariant was introduced as the Randić invariant (Randic, 1975). A rich theory of
distance- and degree-based invariants is mentioned in (Li and Shi, 2008; Gutman, 2013; Knor et al.,
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2014; Knor et al., 2015). The recently introducedMostar invariant
(Došlić et al., 2018) belongs to bound additive invariants as they
capture the relevant properties of a graph by summing up the
contributions of individual edges (Vukičević and Gašperov, 2010;
Vukičević, 2011). Peripherality is one such property that could be
of interest. An edge is a peripheral edge if there are many more
vertices closer to one of its end vertices than to the other one. In
short, for an edge gx inH, the greatest value of absolute difference
of the cardinality of vertices closer to g than to x, presented by
nH(g), and the cardinality of vertices closer to x than to g, denoted
by nH(x), indicates a peripheral position of gx in H. The Mostar
invariant of a graph H is defined as follows:

Mov(H) � ∑
e�gx∈E(H)

∣∣∣∣nH(g) − nH(x)
∣∣∣∣, (1)

and this represents a global measure of peripherality of a graphH.
Došlić et al. (2018) determined the Mostar invariant of the
benzenoid system. Tratnik proved that the Mostar invariant of
the weighted graph can be deduced in the form of the Mostar
invariant of quotient graphs (Tratnik, 2019). Arockiaraj et al.
(2019) introduced the edge Mostar invariant as follows:

Moe(H) � ∑
e�gx∈E(H)

∣∣∣∣mH(g) −mH(x)
∣∣∣∣, (2)

wheremH(g)(ormH(x)) is the cardinality of edges closer to g (or
x) than to x (or g).Akhter et al. (2021) computed the Mostar
indices for the molecular graphs of SiO2 layer structures and the
melem chain with the help of the cut method. Liu et al. (2020)
found the extremal values of the edge Mostar invariant of cacti
graphs. Imran et al. (2020) found the edge Mostar invariant of
chemical structures and nanostructures using graph operations.
Arockiaraj et al. (2020) calculated the weighted Mostar indices of
molecular peripheral shapes with applications in graphene,
graphyne, and graphdiyne nanoribbons. Liu et al. (2020)
determined the maximum edge Mostar index of cacti graphs
with the following given conditions.

Theorem 1.1. Let G ∈ C(n, s) be a connected graph:

• if n≥ 10 and n< 4s, then Moe(G)≤ 2n2 − 8n + (24 − 4n)s
with equality if and only if G � Gn(3, 3, 3, . . . 3︸				︷︷				︸

4s−n
, 4, 4, 4 . . . 4︸				︷︷				︸

n−3s
),

• if n≥ 10 and n≥ 4s, then Moe(G)≤ n2 − n − 12s with
equality if and only if G � Gn(4, 4, . . . 4),

• if n � 9, then Moe(G)7 � 72 − 12s with equality if and only
if G � G9, and

• if n< 9, then Moe(G)≤ n2 − n − (n + 3)s with equality if and
only if G � Gn(3, 3, 3, . . . 3).
Liu et al. (2020) determined the second maximum edge
Mostar index of cacti graphs with the following given
conditions.

Theorem 1.2. Let G ∈ C(n, s)\C0(n, s) with n≥ 10
and n≥ 4s> 0:

• Moe(G)≤ 89 − 12s forn � 10with equality if and only
if G � G(3, 4, 4, 4 . . . 4︸				︷︷				︸

s−1
),

• Moe(G)≤ 108 − 12s for n � 11 with equality if and only
if G � G(3, 4, 4, 4 . . . 4︸				︷︷				︸

s−1
), and

• Moe(G)≤ n2 − n − 12s − 2 with equality if and only
if G � G1(n, s).

For more results related to Mostar and edge Mostar invariants,
see (Hayat and Zhou, 2019a; Akhter, 2019; Tepeh, 2019; Akhter
et al., 2020; Dehgardi and Azari, 2020; Deng and Li, 2020;
Ghorbani et al., 2020; Huang et al., 2020; Deng and Li, 2021a;
Deng and Li, 2021b).

A connected graph is a cactus if all its blocks are either edges or
cycles, that is, any two of its cycles have at most one common
vertex. Until now, many results in chemistry and graph theory
related to the cacti have been acquired. The first three smallest
Gutman invariants among the cacti have been determined by
Chen (2016). Using the Zagreb invariants, Li et al. (2012) found
the upper and lower bounds of the cacti. The bounds of the
Harary invariant related to cacti have been found by Wang and
Kang (2013). The extremal cacti having the greatest hyper-
Wiener invariant have been characterized by Wang and Tan
(2015). The extremal graphs with the greatest and smallest vertex
PI invariants among all cacti with a fixed number of vertices have
been determined by Wang et al. (2016). The sharp upper bound
of the Mostar invariant for cacti of order n with s cycles has been
given by Hayat and Zhou (2019b), and they also found the
greatest Mostar invariant for all n-vertex cacti. For more
results related to cacti graphs, see (Liu et al., 2016; Wang and
Wei, 2016; Wang, 2017).

Motivated by the results of chemical invariants and their
applications, it may be interesting to characterize the cacti

FIGURE 1 | Graph Ĉ(n, s), for n≥3s + 2, s≥2 and for n≥9, s � 1.
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with the greatest and smallest edge Mostar invariants for some
fixed parameters. In this study, we consider the cacti with a fixed
number of cycles and find the greatest edge Mostar invariant for
all the n-vertex cacti. In the end, we give a sharp upper bound of
the edge Mostar invariant for these cacti.

2 MAIN RESULTS

LetC(n) be the set of all cacti graphs of order n≥ 2 andC(n, s) be
the set of all cacti graphs of order n≥ 2 with the number of cycles
s. Let Ĉ(n, s) ∈ C(n, s) be the n-vertex cactus, for n≥ 3s + 2, s≥ 2
and for n≥ 9, s � 1, consisting of s number of C4 and n − 3s − 1
pendent edges such that every c4 and pendent edge has exactly
one vertex in common (see Figure 1).

In this section, we derive the greatest value of cacti graphs for
the edge Mostar invariant. First of all, some basic lemmas are
proved so that the main result can be proved easily.

Proposition 2.1. (Imran et al., 2020) The edge Mostar
invariant of a path Pn and a cycle Cn with n vertices is

Moe(Pn) � [(n−1)22 ] and Moe(Cn) � 0, respectively.

In Lemma 2.1, we establish a graph G2 by converting a cut

edge uv into a pendent edge uw in G1, such that the new graph
G2 has a greater edge Mostar invariant.

Lemma 2.1: Consider two connected graphs H1 and H2 such
that they are connected to each other by an edge uv, where
u ∈ V(H1) and v ∈ V(H2), and acquired the graph G1. Now,
we construct the graph G2 by deleting the cut edge uv and attaching
a pendent edge uw at vertex u in G1 (see Figure 2).
Then Moe(G1)<Moe(G2).

Proof: Let H1 and H2 be the subgraphs of G1, as shown
in Figure 2. By the construction of G2, the number of
closer edges of the end vertices of a fixed edge of H1 and H2

in G1 remains the same in G2, respectively. Therefore,
for an edge gx ∈ E(Hl), where l ∈ {1, 2}, we have the
following:

mG1(g) � mG2(g), mG1(x) � mG2(x) (3)

For the cut edge uv in G1 and the pendent edge uw in G2, we have
the following:

mG1(u) � |E(H1)|, mG1(v) � |E(H2)|,
mG2(u) � |E(H1)| + |E(H2)|, mG2(w) � 0. (4)

Using the definition of the edge Mostar invariant and
substituting the values from Eqs 3, 4 , we acquire the
following:

Moe(G1)−Moe(G2) �
∣∣∣∣mG1(u)−mG1(v)

∣∣∣∣+∑
l�1

2 ∑
gx∈E(Hl )

∣∣∣∣mG1(g)−mG1(x)
∣∣∣∣− ∣∣∣∣mG2(u)−mG2(w)

∣∣∣∣
−∑

l�1

2 ∑
gx∈E(Hl )

∣∣∣∣mG2(g)−mG2(x)
∣∣∣∣

� ||E(H1)| + |E(H2)|| +∑
l�1

2 ∑
gx∈E(Hl )

∣∣∣∣mG1(g)−mG1(x)
∣∣∣∣− ||E(H2)| − |E(H1)||

−∑
l�1

2 ∑
gx∈E(Hl )

∣∣∣∣mG1(g)−mG1(x)
∣∣∣∣

� ‖E(H1)| − |E(H2)‖− ‖E(H1)| + |E(H2)‖.

There are two cases:

1. if |E(H1)|> |E(H2)|, then we get |E(H1)| − |E(H2)| − |E(H1)|−
|E(H2)| � −2|E(H2)|<0, and

2. if |E(H1)|< |E(H2)|, then we get − |E(H1)| + |E(H2)| −
|E(H1)| − |E(H2)| � −2|E(H1)|< 0.
In either case, we acquire Moe(G1) −Moe(G2)< 0.
This completes the proof. ∎
Next, we establish a new G2 graph from G1 by moving all
pendent edges, all C4 cycles, and all C3 cycles from different
vertices of a fixed cycle Cs to a unique vertex, such that the new
graph has a larger edge Mostar invariant.

Lemma 2.2: Let G be a cyclic graph constructed by attaching ri,
for ri ≥ 0, number of pendent vertices, ti, for ti ≥ 0, number of C4

cycles and mi, for mi ≥ 0, number of C3 cycles, at the vertices vi, for
1≤ i≤ s − 1, of Cs, where s≥ 3. Consider a graph H having a
common vertex v ∈ V(H) with G and present it by G1. We
construct G2 from G1 by removing all the pendent vertices, C4’s,
and C3’s of G and attaching them at v (see Figure 3). Then, we
have Moe(G1)<Moe(G2).

Proof: Suppose that the vertices of Cs are
v0(� v), v1, v2, . . . , vs−1 and there are ri number of pendent
edges, ti number of C4 cycles, and mi number of C3 cycles
rooted at vi, for 1≤ i≤ s − 1, in G1. By the construction of G2,
the number of closer edges of the end vertices of a fixed edge ofH
in G1 remains the same in G2. Therefore, for any edge
u1u2 ∈ E(H), we have the following:

mG1(u1) � mG2(u1), mG1(u2) � mG2(u2). (5)

For the pendent edges viu rooted on vi, for 1≤ i≤ s − 1 and
u ∈ P(G), in G1, we have the following:

mG1(vi) � |E(H)| + |E(G)| − 1,mG1(u) � 0 � mG2(u)mG2(v � v0)
� |E(H)| + |E(G)| − 1.

(6)
For every C4 cycle rooted on a fixed vertex vi, for 1≤ i≤ s − 1,
the edge set is {w0w1,w1w2,w2w3,w3w0}, and then, there are the
following cases:

FIGURE 2 | Graphs G1 and G2 of Lemma 2.1.
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1. For wiwi+1, i � 0, 1, we have mG1(wi) � |E(H)| + |E(G)| − 3 �
mG2(wi) and mG1(wi+1) � 1 � mG2(wi+1).

2. For w2w3, we have mG1(w3) � |E(H)| + |E(G)| − 3 � mG2(w3)
and mG1(w2) � 1 � mG2(w2).

3. For w0w3, we have mG1(w0) � |E(H)| + |E(G)| − 3 � mG2(w0)
and mG1(w3) � 1 � mG2(w3).

For every C3 cycle rooted on a fixed vertex vi, for 1≤ i≤ s − 1, the
edge set is {g0g1, g1g2, g2g3, g3g0}, and then, there are the
following cases:

1. For g0g1, we have mG1(g0) � |E(H)| + |E(G)| − 2 � mG2(g0)
and mG1(g1) � 1 � mG2(g1).

2. For g1g2, we have mG1(g3) � mG1(g2) and mG2(g3) � mG2(g2).
3. For g0g2, we have mG1(g0) � |E(H)| + |E(G)| − 2 � mG2(g0)

and mG1(g2) � 1 � mG2(g2).
Suppose Cs is an even cycle; then there are the following
cases:

1. For v0v1, we have mG1(v0) � |E(H)| + s
2 − 1 + ∑s−1

p�s
2+1
(rp + tp +

mp) and mG1(v1) � s
2 − 1 + ∑s2

p�1
(rp + tp +mp).

2. For vivi+1, where 1≤ i≤ s
2 − 1, we have mG1(vi) � |E(H)| + s

2−
1 + ∑s−1

p�s
2+i+1

(rp + tp +mp) + ∑i
p�1

(rp + tp +mp)

and mG1(vi+1) � s
2 − 1 + ∑s2+i

p�i+1
(rp + tp +mp).

3. For vivi+1, where s
2≤ i≤ s − 2, we have mG1(vi) � s

2 − 1 +
∑i

p�i−(s
2−1)
(rp + tp +mp) and mG1(vi+1) � |E(H)| + s

2 − 1+

∑s−1
p�i+1

(rp + tp +mp) + ∑i−s
2

p�1
(rp + tp +mp).

4. For v0vs−1, we have mG1(v0) � |E(H)| + s
2 − 1 + ∑s2−1

p�1
(rp + tp +

mp) and mG1(vs−1) � s
2 − 1 + ∑s−1

p�s
2

(rp + tp +mp).
5. For vivi+1, where 0≤ i≤ s

2 − 1, we have mG2(vi) � |E(H)| + s
2 −

1 + ∑s−1
p�1

(rp + tp +mp) and mG2(vi+1) � s
2 − 1.

6. For vivi+1, where s
2≤ i≤ s − 2, we have mG2(vi) � s

2 − 1 and

mG2(vi+1) � |E(H)| + s
2 − 1 + ∑s−1

p�1
(rp + tp +mp).

7. For v0vs−1, we have mG2(v0) � |E(H)| + s
2−1+ ∑s−1

p�1
(rp + tp +mp)

and mG2(vs−1) � s
2−1 .

Substituting the values from Eqs 5, 6 and the information from all
the cases above in the definition of the edge Mostar invariant, we
acquire the following:

Moe(G1) −Moe(G2) � ∑
u1u2∈E(H)

∣∣∣∣mG1(u1) −mG1(u2)
∣∣∣∣+ ∑

vi u∈E(G),u∈PG(vi )

∣∣∣∣mG1(vi)−mG1(u)
∣∣∣∣

+∑3
i�0

∑
wiwi+1∈E(C4 )

∣∣∣∣mG1(wi)−mG1(wi+1)
∣∣∣∣+ ∣∣∣∣mG1(w0) −mG1(w3)

∣∣∣∣
+∑2

i�0
∑

gi gi+1∈E(C3 )

∣∣∣∣mG1(gi)−mG1(gi+1)∣∣∣∣+ ∣∣∣∣mG1(g0)−mG1(g2)∣∣∣∣+∑s−2
i�0

mG1(vi)
∣∣∣∣

−mG1(vi+1)| +
∣∣∣∣mG1(v0)−mG1(vs−1)

∣∣∣∣− ∑
u1u2∈E(H)

∣∣∣∣mG2(u1)−mG2(u2)
∣∣∣∣

− ∑
vu∈E(G),u∈PG(vi )

∣∣∣∣mG2(u)−mG2(v)
∣∣∣∣−∑3

i�0
∑

wiwi+1∈E(C4 )

∣∣∣∣mG2(wi) −mG2(wi+1)
∣∣∣∣

− ∣∣∣∣mG2(w0)−mG2(w3)
∣∣∣∣−∑2

i�0
∑

gi gi+1∈E(C3 )

∣∣∣∣mG2(gi)−mG2(gi+1)∣∣∣∣− |mG2(g0)
−mG2(g2)| −∑s−2

i�0

∣∣∣∣mG2(vi)−mG2(vi+1)
∣∣∣∣− ∣∣∣∣mG2(v0)−mG2(vs−1)

∣∣∣∣
� ∑

u1u2∈E(H)

∣∣∣∣mH1(u1)−mH1(u2)
∣∣∣∣+ r||E(H)| + |E(G)| −1| +4t||E(H)| + |E(G)|−4|+2m ||E(H)| + |E(G)| −3|

+
∣∣∣∣∣∣∣∣∣∣|E(H)|+ s

2
−1

+ ∑s−1
p�
s
2
+ i+1

(rp + tp +mp)+ s
2
−1− s

2
+1− ∑

s
2
+ i

p�i+1
(rp + tp +mp)

∣∣∣∣∣∣∣∣∣∣+∑s−2
i�
s
2

∣∣∣∣∣∣∣∣∣∣ ∑i
p�i−(s

2
−1)

(rp + tp +mp)

+ s
2
−1− s

2
+1− ∑s−1

p�i+1
(rp + tp +mp)− |E(H)| −∑i

p�1
(rp + tp +mp)

∣∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∣|E(H)|+ s

2
−1.

+ ∑s−1
p�
s
2
+1

(rp + tp +mp)− s
2
+1−∑

s
2

p�1
(rp + tp +mp)

∣∣∣∣∣∣∣∣∣∣− ∑
u1u2∈E(H)

∣∣∣∣mH1(u1)−mH1(u2)
∣∣∣∣− r||E(H)|

+ |E(G)|−1|−4t||E(H)|+ |E(G)| −4| −2m ||E(H)| + |E(G)|−3| − ∑
s
2
−1

i�0
|E(H)|+ s

2
−1+∑s−1

p�1

∣∣∣∣∣∣∣∣∣∣
(rp + tp +mp)− s

2
+1

∣∣∣∣∣∣∣∣∣∣−∑s−2
i�
s
2

∣∣∣∣∣∣∣∣∣∣+
s
2
−1− |E(H)|− s

2
+1−∑s−1

p�1
(rp + tp +mp)

∣∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣∣|E(H)|+ s

2
−1+∑s−1

p�1
(rp + tp +mp)

− s
2
+1

∣∣∣∣∣∣∣∣∣∣ ≤ |E(H)|+∑s−1
p�1

(rp + tp +mp)+ ∑
s
2
−1

i�1
⎛⎝|E(H)| +∑s−1

p�1
(rp + tp +mp)⎞⎠+∑s−2

i�
s
2

⎛⎝|E(H)| +∑s−1
p�1

(rp + tp +mp)⎞⎠

+ |E(H)|+∑s−1
p�1

(rp + tp +mp)− ∑
s
2
−1

i�0
⎛⎝|E(H)| +∑s−1

p�1
(rp + tp +mp)⎞⎠−∑s−2

i�
s
2

⎛⎝|E(H)| +∑s−1
p�1

(rp + tp +mp)⎞⎠

−⎛⎝|E(H)| +∑s−1
p�1

(rp + tp +mp)⎞⎠≤ |E(H)| + r+ t +m+∑s−2
i�1
(|E(H)| + r+ t+m) −∑s−2

i�0
(|E(H)|+ r+ t+m)

≤ |E(H)|+ r+ t+m+(s−2)(|E(H)| + r+ t +m) −(s−1)(|E(H)|+ r+ t+m)≤0.

The proof for an odd cycle Cs is similar to that above; therefore,
we omit it here.This completes the proof. ∎

FIGURE 3 | Graphs G1 and G2 of Lemma 2.2.
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In Lemma 2.3, we establish a new graph G2 from a given graph
G1 by replacing Cq with C4 and attaching q−4 pendent edges in
G1 such that the new graph has a greater edge Mostar
invariant.

Lemma 2.3: Consider a graph H having a common vertex
v ∈ V(H) with Cq such that degH(v)≥ 3 and q≥ 5, and denote it
as G1. Let G2 be the graph acquired fromG1 by replacing Cq with C4

and attaching q − 4 pendent edges at v ∈ V(H) (see Figure 4).
Then, we have Moe(G1)≤Moe(G2).

Proof: Let H be a subgraph of G1 and the vertices of Cq be
v0(� v), v1, v2, . . . , vq−1, as shown in Figure 4. By the construction
of G2, the number of closer edges of the end vertices of a fixed edge
of H in G1 remains the same in G2. Therefore, for any edge
u1u2 ∈ E(H), we have the following:

mG1(u1) � mG2(u1), mG1(u2) � mG2(u2). (7)

Suppose q is even; then there are three cases:

1. For vivi+1, where 0≤ i≤ q
2 − 1, we havemG1(vi) � |E(H)| + q

2 − 1
and mG1(vi+1) � q

2 − 1.
2. For vivi+1, where q

2≤ i≤ q − 2, we have mG1(vi) � q
2 − 1 and

mG1(vi+1) � |E(H)| + q
2 − 1.

3. For v0vq−1, we have mG1(v0) � |E(H)| + q
2 − 1 and mG1(vq−1) �

q
2 − 1.
Suppose q is odd; then there are three cases:

1. For vivi+1, where 0≤ i≤ q
2 − 1, we have mG1(vi) � |E(H)| + q−1

2
and mG1(vi+1) � q−1

2 .
2. For vivi+1, where q

2≤ i≤ q − 2, we have mG1(vi) � q−1
2 and

mG1(vi+1) � |E(H)| + q−1
2 .

3. For v0vq−1, we have mG1(v0) � |E(H)| + q−1
2 and mG1(vq−1) �

q−1
2 .
In G2, for any pendent edge vvi, where 4≤ i≤ q − 1, rooted at v,
we have the following:

mG2(v) �
∣∣∣∣E(H)∣∣∣∣ + q − 1, mG2(vi) � 0. (8)

For v0v1, v1v2, v2v3, v3v0 in G2, there are the following cases:

1. For vivi+1, i � 0, 1, we have mG2(vi) � |E(H)| + q − 3 and
mG2(vi+1) � 1.

2. For v2v3, we have mG2(v3) � |E(H)| + q − 3 and mG2(v2) � 1.
3. For v0v3, we have mG2(v0) �

∣∣∣∣E(H)∣∣∣∣ + q − 3 and mG2(v3) � 1.

Case 1: When q is even, using the definition of the edge Mostar
invariant and substituting the values from Eqs 7, 8 and the cases
above, we get the following:

Moe(G1) −Moe(G2) � ∑
u1u2∈E(H)

∣∣∣∣mG1(u1) −mG1(u2)
∣∣∣∣ +∑q−2

i�0

∣∣∣∣mG1(vi) −mG1(vi+1)
∣∣∣∣ + |mG1(v0)

− mG1(vq−1)| − ∑
u1u2∈E(H)

∣∣∣∣mG2(u1) −mG2(u2)
∣∣∣∣ −∑q−1

i�4

∣∣∣∣mG2(v) −mG2(vi)
∣∣∣∣

− ∣∣∣∣mG2(v0) −mG2(v1)
∣∣∣∣ − ∣∣∣∣mG2(v1) −mG2(v2)

∣∣∣∣ − ∣∣∣∣mG2(v2) −mG2(v3)
∣∣∣∣ − ∣∣∣∣mG2(v3) −mG2(v0)

∣∣∣∣
� ∑

u1u2∈E(H)

∣∣∣∣mG1(u1) −mG1(u2)
∣∣∣∣ +∑

q
2−1

i�0

∣∣∣∣∣∣∣|E(H)| + q
2
− 1 − (q

2
− 1)∣∣∣∣∣∣∣

+∑q−2
i�q2

∣∣∣∣∣∣∣q2 − 1 − (|E(H)| + q
2
− 1)∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣|E(H)| + q
2
− 1 − (q

2
− 1)∣∣∣∣∣∣∣

− ∑
u1u2∈E(H)

|mG2(u1) −mG2(u2)| −∑q−1
i�4

∣∣∣∣|E(H)| + q − 1 − 0)∣∣∣∣ − 4
∣∣∣∣|E(H)| + q − 3 − 1

∣∣∣∣
� ∑

u1u2∈E(H)

∣∣∣∣mG1(u1) −mG1(u2)
∣∣∣∣ +∑

q
2−1

i�0
|E(H)| +∑q−2

i�q2
|E(H)| + |E(H)|

− ∑
u1u2∈E(H)

∣∣∣∣mG1(u1) −mG1(u2)
∣∣∣∣ −∑q−1

i�4

∣∣∣∣|E(H)| + q − 1
∣∣∣∣ − 4

∣∣∣∣|E(H)| + q − 4
∣∣∣∣≤ q|E(H)|

−(q − 4)|E(H)| − (q − 4)q + (q − 4) − 4|E(H)| − 4q + 16≤ − q2 + q + 12< 0.

Case 2: When q is odd, using the definition of the edge Mostar
invariant and substituting the values from Eqs 7, 8 and the cases
above, we get the following:

Moe(G1) −Moe(G2) � ∑
u1u2∈E(H)

∣∣∣∣mG1(u1) −mG1(u2)
∣∣∣∣ +∑q−2

i�0

∣∣∣∣mG1(vi) −mG1(vi+1)
∣∣∣∣ + |mG1(v0)

−mG1(vq−1)| − ∑
u1u2∈E(H)

∣∣∣∣mG2(u1) −mG2(u2)
∣∣∣∣ −∑q−1

i�4

∣∣∣∣mG2(v) −mG2(vi)
∣∣∣∣ − ∣∣∣∣mG2(v0) −mG2(v1)

∣∣∣∣
− ∣∣∣∣mG2(v1) −mG2(v2)

∣∣∣∣ − ∣∣∣∣mG2(v2) −mG2(v3)
∣∣∣∣ − ∣∣∣∣mG2(v3) −mG2(v0)

∣∣∣∣,
Moe(G1)−Moe(G2) � ∑

u1u2∈E(H)

∣∣∣∣mG1(u1)−mG1(u2)
∣∣∣∣+∑

q
2−1

i�0

∣∣∣∣∣∣∣|E(H)| +q−1
2

−(q−1
2

)∣∣∣∣∣∣∣
+∑q−2

i�q2

∣∣∣∣∣∣∣q−12 −(|E(H)| +q−1
2

)∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣|E(H)| +q−1

2
−(q−1

2
)∣∣∣∣∣∣∣

− ∑
u1u2∈E(H)

∣∣∣∣mG2(u1)−mG2(u2)
∣∣∣∣−∑q−1

i�4

∣∣∣∣|E(H)| +q−1−0)∣∣∣∣−4∣∣∣∣|E(H)| +q−3−1∣∣∣∣
� ∑

u1u2∈E(H)

∣∣∣∣mG1(u1)−mG1(u2)
∣∣∣∣+∑

q
2−1

i�0
|E(H)| +∑q−2

i�q2
|E(H)| + |E(H)|

− ∑
u1u2∈E(H)

∣∣∣∣mG1(u1)−mG1(u2)
∣∣∣∣−∑q−1

i�4

∣∣∣∣|E(H)| +q−1∣∣∣∣−4∣∣∣∣|E(H)| +q−4∣∣∣∣≤q|E(H)|
− (q−4)|E(H)| −(q−4)q+(q−4)−4|E(H)| −4q+16≤ −q2 +q+12<0.

This completes the proof. ∎
Lemma 2.4: Consider a graph H having a common vertex

v ∈ V(H) with C3 and at least one pendent edge vu, and this
graph is presented as G1. Let G2 be the graph obtained from G1 by
replacing C3 and vu with C4 (see Figure 5). Then, we
have Moe(G1)<Moe(G2).

Proof: By the construction of G2, the number of closer edges
of the end vertices of a fixed edge of H in G1 remains the same
in G2. Therefore, for any edge u1u2 ∈ E(H), we have the
following:

FIGURE 4 | Graphs G1 and G2 of Lemma 2.3.
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mG1(u1) � mG2(u1), mG1(u2) � mG2(u2). (9)

There are the following cases in G1:

1. For pendent edge uv ∈ E(G1), we have mG1(v) � |E(H)| + 3
and mG1(u) � 0.

2. For vu1 ∈ E(C3), we havemG1(v) � |E(H)| + 2 andmG1(u1) � 1.
3. For vu2 ∈ E(C3), we havemG1(v) � |E(H)| + 2 andmG1(u2) � 1.
4. For u1u2 ∈ E(C3), we have mG1(u1) � mG1(u2).

By the construction of G2, we have the following:

1. For uv ∈ E(C4), we havemG2(u) � 1 andmG1(v) � |E(H)| + 1.
2. For vu1 ∈ E(C4), we havemG2(v) � |E(H)| + 1 andmG2(u1) � 1.
3. For u1u2 ∈ E(C4), we have mG2(u1) � |E(H)| + 1 and

mG2(u2) � 1.
4. Foru2u ∈ E(C4),wehavemG2(u2) � 1 andmG2(u) � |E(H)| + 1.

Using the definition of the edge Mostar invariant
and substituting the values from cases, we get the
following:

Moe(G1)−Moe(G2)� ∑
u1u2∈E(H)

∣∣∣∣mG1(u1)−mG1(u2)
∣∣∣∣+∑q−2

i�0

∣∣∣∣mG1(vi)−mG1(vi+1)
∣∣∣∣

+|mG1(v0)−mG1(vq−1)|− ∑
u1u2∈E(H)

∣∣∣∣mG2(u1)−mG2(u2)
∣∣∣∣

−∑q−1
i�4

∣∣∣∣mG2(v)−mG2(vi)
∣∣∣∣−∣∣∣∣mG2(v0)−mG2(v1)

∣∣∣∣
−∣∣∣∣mG2(v1)−mG2(v2)

∣∣∣∣−∣∣∣∣mG2(v2)−mG2(v3)
∣∣∣∣−∣∣∣∣mG2(v3)−mG2(v0)

∣∣∣∣,
Moe(G1) −Moe(G2) � ∑

u1u2∈E(H)
∣∣∣∣mG1(u1) −mG1(u2)

∣∣∣∣ +∑
q
2−1

i�0

∣∣∣∣∣∣∣|E(H)| + q − 1
2

− (q − 1
2

)∣∣∣∣∣∣∣
+∑q−2

i�q2

∣∣∣∣∣∣∣q − 1
2

− (|E(H)| + q − 1
2

)∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣|E(H)| + q − 1

2
− (q − 1

2
)∣∣∣∣∣∣∣

− ∑
u1u2∈E(H)

∣∣∣∣mG2(u1) −mG2(u2)
∣∣∣∣ −∑q−1

i�4

∣∣∣∣|E(H)| + q − 1 − 0)∣∣∣∣
−4∣∣∣∣|E(H)| + q − 3 − 1

∣∣∣∣ � ∑
u1u2∈E(H)

∣∣∣∣mG1(u1) −mG1(u2)
∣∣∣∣

+∑
q
2−1

i�0
|E(H)| +∑q−2

i�q2
|E(H)| + |E(H)| − ∑

u1u2∈E(H)

∣∣∣∣mG1(u1) −mG1(u2)
∣∣∣∣

−∑q−1
i�4

∣∣∣∣|E(H)| + q − 1
∣∣∣∣ − 4

∣∣∣∣|E(H)| + q − 4
∣∣∣∣≤ q|E(H)|

−(q − 4)|E(H)| − (q − 4)q + (q − 4) − 4|E(H)|
−4q + 16≤ − q2 + q + 12< 0.

This completes the proof. ∎

Theorem 2.1: Among all the cacti graphs in C(n, s), the
cactus Ĉ(n, s), for n≥ 3s + 2, s≥ 2 and for n≥ 9, s � 1, shown in
Figure 1 has the largest edge Mostar invariant. Thus, for any
cactus G ∈ C(n, s), we have Moe(G)≤Moe(~C(n, s)).

Proof: Let G ∈ C(n, s) be a cactus graph where s≥ 0 and
n≥ 2. If Gm~C(n, s) and G has a cut edge, then repeatedly

applying Lemma 2.1, we get a sequence of new cacti
graphs G1,G2, . . . ,Gb, where Gb is a cactus without any cut
edge, such that Moe(G)<Moe(G1)<Moe(G2)</<Moe(Gb).
Now, if Gbm~C(n, s) and Gb have a cyclic subgraph
G’ that is constructed by attaching ri, for ri ≥ 0, number
of pendent vertices, ti, for ti ≥ 0, number of C4 cycles and mi,
for mi ≥ 0, number of C3 cycles, at the vertices vi, for 1≤ i≤ s − 1,
of Cs, where s≥ 3, then by applying Lemma 2.2
repeatedly, we acquire a sequence of cacti graphs
Gb,Gb1,Gb2, . . . ,Gbk satisfying Moe(Gb)<Moe(Gb1)
<Moe(Gb2)</<Moe(Gbk), where Gbk is a cactus graph such
that every vertex of cycles of Gbk has degree 2 except
common vertices. If Gbkm~C(n, s) and Gbk have a cycle Cq, for
q≥ 5, then by applying Lemma 2.3 repeatedly, we acquire a
sequence of cacti graphs Gbk,Gbk1

,Gbk2
, . . . ,Gbkc satisfying

Moe(Gbk)<Moe(Gbk1
)<Moe(Gbk2

)< . . . <Moe(Gbkc), where
Gbkc � ~C(n, s). If Gbkc has a triangle C3 and at least one pendent
edge vw, then by using Lemma 2.4, we construct a cactus graph Gbkc

′
with a cycle C4 and get the greatest Mostar invariant and then
Moe(Gbkc).

This completes the proof. ∎
By Theorem 2.1 and simple calculation, we have the following

results:
Corollary 2.1. Let G ∈ C(n, s) be a cactus graph with n≥ 2 and

number of cycles s; then we have the following:

Moe(G)≤
⎧⎪⎨⎪⎩

n2 − 3n + 2, if s � 0 and n≥ 2,
n2 − n − 12, if s � 1 and n≥ 9,

n2 + (2s − 3)n + s2 − 15s + 2, if s≥ 2 and n≥ 3s + 2,

equality holds if G � ~C(n, s).

3 CONCLUSION

The ongoing direction of numerical coding of the
fundamental chemical structures with topological
descriptors has been substantiated as completely victorious.
This approach substantiates the contrast, quarry, renewal,
interpretation, and swift troupe of chemical structures
within enormous particularities. Eventually, topological
descriptors can lead to productive measures for quantitative
structure–activity relationships (QSARs) and quantitative
structure–property relationships (QSPRs), which are
imitations that identify chemical structures with chemical
reactivity, physical properties, or biological activity. The
edge Mostar index is a newly proposed quantity; it has
not been used in physicochemical or biological research.

FIGURE 5 | Graphs G1. and G2 of Lemma 2.4.
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Recently, a work (Imran et al., 2020) has been completed in
this direction for chemical structures and nanostructures
using graph operations. The authors have found the edge
Mostar indices of nanostructures. Motivated by these
results, we have studied the maximum edge Mostar
invariant of the n-vertex cacti graphs with a fixed number
of cycles in this study. For this, we have proved some lemmas
in which we use the transformation of graphs and some
calculations. In future, we want to find the largest and
smallest edge Mostar invariants of the n-vertex cacti
graphs with some fixed parameters other than the number
of cycles.
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Knor, M., Škrekovski, R., and Tepeh, A. (2015). Mathematical Aspects of Wiener
index. arXiv preprint arXiv:1510.00800.
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