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Editorial on the Research Topic

Advances in Density Functional Theory and Beyond for Computational Chemistry

The rapid development of modern computational chemistry has led to a growing need to understand
the microscopic mechanisms determining the properties of molecular and solid materials at an
atomic level. The interactions between atoms and electrons are governed by the laws of quantum
mechanics; hence, accurate and efficient computational methods for solving the quantum-
mechanical equations are needed. The Kohn-Sham density functional theory (DFT) Hohenberg
and Kohn (1964), Kohn and Sham (1965) marks a decisive breakthrough in these efforts, and in the
past few decades DFT has made an unparalleled impact on a variety of interesting and challenging
problems in computational chemistry. The real forte of DFT is its favourable price and performance
ratio as compared with electron-correlated wave-function-basedmethods, such as theMøller–Plesset
perturbation theory Binkley and Pople (1975) or coupled cluster theory Čížek (1966). Thus, large-
scale molecular and solid systems can be studied by DFT with sufficient accuracy, thereby expanding
the predictive power inherent in electronic structure theory. As a result, DFT is now by far the most
widely used electronic structure method. Although 50 years have passed since the formulation of the
Kohn-Sham DFT, many open questions remain, including the mathematical issues in solving the
Kohn-Sham equations, the developments of more accurate and efficient density functionals, and
applying the DFT calculations to solve more scientific problems. This research topic focuses on
covering recent advances within the framework of DFT.

Computational chemistry methods have become increasingly important in recent years, as
manifested by their rapidly extending applications in a large number of diverse fields, such as
computations of molecular structures and properties, the design of pharmaceutical drugs and novel
materials, etc. In part as a result of this general trend, the size of the systems which can be
computationally studied has also increased, generating even further needs for large-scale
applications. This is because larger molecular systems show interesting phenomena and have
important implications in modern biochemistry, biotechnology, and nanotechnology. Thus, it is
of great importance to apply and further develop computational methods which provide physically
sound models for large molecules at a reasonable computational cost. A representative approach is
the linear scaling technique Goedecker (1999), which owns a computational cost that scales linearly
O(N) with the size of the system. The linear-scaling DFT is an area of active research in
computational chemistry, with the performances improve steadily over the years, especially on
parallel high-performance machines. Historically, linear-scaling implementations were restricted to
basic ground state energy and electron density calculations, but this has also improved in recent years
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with geometry optimizations and molecular dynamics (MD)
becoming available. Moreover, recent developments of
machine learning algorithms enable the large-scale MD
simulations with ab initio accuracy, and has been applied to a
variety of applications Jia et al. (2020). This research topic aims to
report the state-of-the-art computational methods in several of
the important questions related to the family of linear scaling
methods.

A deep understanding of the excitations in molecules and
solids are of fundamentally importance in many technological
applications. There is already a rich set of theoretical and
simulation methods for excited-state calculations, such as the
GW plus Bethe-Salpeter equation Hedin (1965), time-dependent
density functional theory (TDDFT) Runge and Gross (1984) and
many-body coupled cluster (CC) theory Čížek (1966).
Unfortunately, these post-Hartree-Fock and excited state
methods for electronic excitations are all subject to
computational bottlenecks, which are far more severe than
those affecting the standard calculations of the ground-state
energy, not only because of the system size, but also because
the large number of excited states that need to be considered. A
major difficulty for treating excited complex systems arises from
the different nature of the various competing excited electronic
states. For example, the localized neutral and delocalized charge
transfer excitons, as a result of the relatively large length scale.
Therefore, this research topic also aims to cover developments of
novel electronic structure algorithms and scalable computational
methods for excited states of complex systems.

The past several decades have witnessed tremendous strides in
the capabilities of computational chemistry simulations, driven in
large part by the extensive parallelism offered by powerful
computer clusters and scalable programming methods on high
performance computing (HPC) Hu et al. (2021), Kowalski et al.
(2021). However, such massively parallel simulations increasingly
require more advanced algorithms to achieve satisfactory
performance across the vastly diverse ecosystem of modern
heterogeneous computer systems. The design of efficient
parallel codes proves to be difficult: the diversity of involved
data structures and algorithms, as well as the frequently occurring
inherent sequential control propose enormous challenges to
efficiently use of a large number of processors. This research
topic also focuses on the developments of more effective
computational methods by use of high performance parallel
computing.

This editorial sums up the contents of our Research Topic
“Advances in Density Functional Theory and Beyond for
Computational Chemistry” and a total of nine original
research contributions have been included in this article
collection, involving linear-scaling density functional theory,
multiple scattering theory, ab initio molecular dynamics, deep
potential model, hybrid and double-hybrid functional theory,
second-order Møller–Plesset perturbation theory, coupled cluster
theory and high performance computing.

Linear-scaling DFT Goedecker (1999) is an efficient method to
yield the structural and electronic properties of molecules,
semiconductors, and insulators to avoid the high cubic-scaling
cost in conventional DFT calculations. Luo et al. described an

efficient parallel implementation of linear-scaling density matrix
trace correcting purification algorithm Niklasson (2002) to solve
the Kohn–Sham equations with numerical atomic orbitals in the
HONPAS Qin et al. (2015) package. The authors have performed
large-scale DFT calculations on boron nitrogen nanotubes
containing tens of thousands of atoms, which can scale up to
hundreds of processing cores on modern heterogeneous
supercomputers.

The Korringa–Kohn–Rostoker Green’s function method
Korringa (1947), Kohn and Rostoker (1954), also known as
multiple scattering theory (MST) Lloyd and Smith (1972),
provides equivalent information as solving the Kohn-Sham
equation by employing the single-particle Green’s function
Economou (2006). Cao et al. investigated a reduced scaling
full-potential DFT method based on the multiple scattering
theory code MuST Rusanu et al. (2011). A significant
advantage of the MST method is the reduced scaling in the
calculations of metallic systems. The MST method shows the
potential to simulate more complicated materials on massively
parallel supercomputers and provides a reliable and accessible
way to large-scale first-principle simulations of metals and alloys.

AIMD (ab initio molecular dynamics) has been extensively
employed to explore the dynamical information of electronic
systems. However, it remains extremely challenging to reliably
predict electronic properties of systems with a radical nature
using first-principles DFT calculations due to the presence of the
static correlation. To address this challenge, Li and Chai proposed
TAO-DFT (thermally-assisted-occupation density functional
theory) with AIMD to explore the dynamical properties of
nanosystems with a radical nature at finite temperatures. A
variety properties of n-acenes (n � 2–8) at 300 K are presented
including the instantaneous/average radical nature and infrared
spectra of n-acenes containing n linearly fused benzene rings
(n � 2–8).

Predicting crystal structure has been a challenging problem,
which requires a reliable energy calculation engine and an
efficient global search algorithm. Machine learning based
inter-atomic potential energy surface models such as the deep
potentials Jia et al. (2020) owns the DFT accuracy and the speed
of empirical force fields and can be used as an energy calculator.
Wang et al. employed the deep potential model to predict the
intermetallic compound of the aluminum–magnesium system,
and found six meta-stable phases with negative or nearly zero
formation energy. The authors proposed a relatively robust
structure screening criterion that selects potentially stable
structures from the Deep Potential-based convex hull and
performs DFT refinement. By using this criterion, the
computational cost needed to construct the convex hull with
ab initio accuracy can be dramatically reduced.

Accurate prediction of quasiparticle and excitation energies
has been very challenging for ground-state density functional
methods since the commonly adopted density functional
approximations suffer from the delocalization error. Yang
et al. propsed a new method which presumed a quantitative
correspondence between the quasiparticle energies and the
generalized Kohn–Sham orbital energies. Furthermore, the
authors employed a previously developed global scaling
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correction approach to achieve substantially improved prediction
of molecular quasiparticle and excitation energies.

Interpretation of spectroscopic experiments is challenging
because the results are affected by the interplay of stereo-
electronic, dynamic and environmental effects. The work of
Barone et al. showed that the last-generation hybrid and
double-hybrid functionals Biczysko et al. (2010), which are
described by partially augmented double- and triple-zeta basis
sets, provided unprecedented accuracy for medium-size semi-
rigid molecules under the framework of the second order
vibrational perturbation theory.

The second-order Møller–Plesset perturbation theory (MP2)
Binkley and Pople (1975) is a post-Hartree–Fock approach to
taking the electron correlation effect into account. Despite its
simple form, the MP2 method captures around 90% of the
correlation energy Bartlett and Stanton (1994), but the O(N5)
computational scaling of the original (canonical) MP2 method
has limited the application of the MP2 method in large systems.
Shang and Yang implemented the canonical and Laplace-
transformed algorithms to calculate the MP2 perturbation
theory for the total energy and the band gap of periodic
systems under periodic boundary conditions in HONPAS Qin
et al. (2015) code with numerical atomic orbitals. The MP2
correction energy and band gaps presented in the work are in
excellent agreement with the results of the canonical MP2
formulation. Moreover, the authors studied the binding-energy
curves for the two stacked transpolyacetylene chains and
demonstrated that the new method well describe the
correlation energy and the long-range van derWaals interactions.

The coupled cluster (CC) theory Čížek (1966) has become one
of the most accurate ab initio methods to yield the electronic
structure information. Yang et al. presented a Newton Krylov
method Knoll and Keyes (2004) for solving the coupled cluster
equation. This new method used a Krylov subspace iterative
method, such as the Generalized Minimum Residual (GMRES)
method Saad and Schultz (1986), to compute the Newton
correction to the approximate coupled cluster amplitude.

Numerical results demonstrate the effectiveness and robustness
of the Newton Krylov method not only for standard CCSD
calculations but also for tailed CCSD calculations where the
information for external correction is obtained from a density
matrix renormalization group (DMRG) calculation Schollwöck
(2005).

Williams-Young et al. proposed a three-level parallelism
scheme for the distributed numerical integration of the
exchange-correlation potential in the Gaussian basis set
discretization of the Kohn–Sham equations on large
computing clusters consisting of multiple graphics processing
units (GPU) per compute node. They demonstrated that the
performance and scalability of the implementation of the
purposed method in the NWChemEx Kowalski et al. (2021)
software package by comparing to the existing scalable CPU
exchange-correlation integration in NWChem. The results show
that the speedups are between 10× and 100× as compared to the
analogous CPU implementation in NWChem.

The above article collection demonstrates that the DFT
methods have broad impacts on a variety of subjects in
computational chemistry and related disciplines. In
conjunction with high-performance computation and
machine-learning techniques, the DFT framework undergoes
another round of fast developments. It can be expected that
more accurate DFT approaches with more efficient algorithms
will be available in the near future.
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