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For wide applications of the lacZ gene in cellular/molecular biology, small animal
investigations, and clinical assessments, the improvement of noninvasive imaging
approaches to precisely assay gene expression has garnered much attention. In this
study, we investigate a novel molecular platform in which alizarin 2-O-β-D-
galactopyranoside AZ-1 acts as a lacZ gene/β-gal responsive 1H-MRI probe to induce
significant 1H-MRI contrast changes in relaxation times T1 and T2 in situ as a concerted
effect for the discovery of β-gal activity with the exposure of Fe3+. We also demonstrate the
capability of this strategy for detecting β-gal activity with lacZ-transfected human MCF7
breast and PC3 prostate cancer cells by reaction-enhanced 1H-MRI T1 and T2 relaxation
mapping.

Keywords: β-galactosidase detection, responsive Fe-based 1H-MRI agent, T1 and T2 relaxation mapping, in vitro
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INTRODUCTION

Due to various advantages such as stability, high turnover rate, and ease of conjugation, the lacZ
gene-encoding β-galactosidase (β-gal) has been broadly used in cellular/molecular biology, small
animal studies, clinical trials with assays of clonal insertion, transcriptional activation, and protein
expression and interaction (Kruger et al., 1999; Haberkorn et al., 2005; Razgulin et al., 2011; Yang
et al., 2019). Moreover, overexpressed β-gal has been identified as a vital enzyme biomarker related to
cell senescence and cancer progression (Chatterjee et al., 1979; Alam et al., 1990; Dimri et al., 1995;
Paradis et al., 2001; Pacheco-Rivera et al., 2016; Lozano-Torres et al., 2017; Sharma and Leblanc,
2017; Kim et al., 2018; Wang et al., 2019; Li et al., 2020b; Gao et al., 2020; Qiu et al., 2020). Thus, β-gal
activity detection has been exploited with diverse techniques including colorimetric assays (James
et al., 2000; Browne et al., 2010; Zeng et al., 2012; Yeung et al., 2013; Chen et al., 2016; Hu Q. et al.,
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2017), fluorescence (Tung et al., 2004; Urano et al., 2005;
Josserand et al., 2007; Kamiya et al., 2007; Feng et al., 2009;
Koide et al., 2009; Kamiya et al., 2011; Oushiki et al., 2012; Han
et al., 2013; Sakabe et al., 2013; Lee et al., 2014; Asanuma et al.,
2015; Peng et al., 2015; Zeng et al., 2015; Doura et al., 2016; Gu
et al., 2016; Zhang C. et al., 2016; Zhang X. X. et al., 2016; Huang J.
et al., 2017; Hu Q. et al., 2017; Jiang et al., 2017; Kim et al., 2017;
Nakamura et al., 2017; Wei et al., 2017; Zhang et al., 2017; Tang
et al., 2017; Chen et al., 2018; Ito et al., 2018; Liu et al., 2018; Yang
et al., 2018; Chen et al., 2019; Fu et al., 2019; Gu et al., 2019; Jiang
et al., 2019; Kong et al., 2019; Lee et al., 2019; Shi et al., 2019; Singh
et al., 2019; Zhang et al., 2019a; Zhang X. et al., 2019; Zhao et al.,
2019; Li et al., 2020a; Li Y. et al., 2020; Li Z. et al., 2020; Pang et al.,
2020; Wu et al., 2020; Zhu et al., 2020), chemiluminescence
(Wehrman et al., 2006; Liu and Mason, 2010; Broome et al.,
2015; Green et al., 2017; Huang Y. et al., 2017; Wang et al., 2017;
Gorai and Maitra, 2018; Hananya and Shabat, 2019; Lozano-
Torres et al., 2019; Zhang et al., 2019b), positron emission
tomography or single-photon emission computed tomography
(Celen et al., 2008; Van Dort et al., 2008; Rempel et al., 2017),
magnetic resonance imaging (MRI) (Louie et al., 2000; Chang
et al., 2007; Hanaoka et al., 2008; Cui et al., 2010; Bengtsson et al.,
2010; Arena et al., 2011; Yu et al., 2012a; Gulaka et al., 2013; Li
et al., 2013; Heffern et al., 2014; Burke et al., 2015; Hingorani et al.,
2015; Fernández-Cuervo et al., 2016; Hu J. et al., 2017; Li and
Meade, 2019; Xu et al., 2019; Lilley et al., 2020), and 19F-MRS/
MRI approaches (Yu et al., 2005; Kodibagkar et al., 2006; Yu et al.,
2006; Yu and Mason, 2006; Liu et al., 2007; Yu et al., 2008a; Yu
et al., 2008b; Mizukami et al., 2011; Yu et al., 2012b; Yu et al.,
2013; Yu et al., 2017). In particular, 1H-MRI molecular imaging
approaches for visualization of β-gal activity attract much more
attention because 1H-MRI is noninvasive and capable of soft
tissue delineation with a high lateral and depth resolution
(Terreno et al., 2010; Haris et al., 2015; Wahsner et al., 2019).

β-Galactosidase prompts the hydrolysis of β-D-galactopyranoside
by cleavage of its β-anomeric C-O linkage between β-D-
galactopyranose and aglycone; the hydrolysis reactivity of β-D-
galactopyranosides to β-gal is completely dependent upon the
aglycone structure. However, the structure activity relationship of
the aglycones in β-D-galactopyranosides vs. β-gal is not yet clear
(Juers et al., 2012; Duo et al., 2017). Therefore, further exploration is
still highly needed to discover effective β-gal substrates for functional
molecular imaging probes. We believe that the traditional
histopathological methods of assaying β-gal activity might be the
fruitful resources for developing novel imaging agents for the
assessment of lacZ gene expression. In reviewing the
histopathological literature, we noticed that the well-established
β-gal substrate alizarin 2-O-β-D-galactopyranoside AZ-1
(Figure 1) is readily hydrolyzed by β-gal to release aglycone
alizarin, which chelates with ferric iron Fe3+ to form an intense
dark violet Fe complex (James et al., 2000). By comparison of the
structural characteristics of the Fe3+–alizarin complex with Fe3+-
based 1H-MRI contrast agents (Davies et al., 1996; Richardson et al.,
1999; Schwert et al., 2002; Schwert et al., 2005; Haas and Franz, 2009;
Yu et al., 2012a; Yu et al., 2012b; Gulaka et al., 2013; Li et al., 2013; Yu
et al., 2013; Kuznik and Wyskocka, 2016), we speculated that the
Fe3+–alizarin complex could function as an Fe3+-based 1H-MRI
contrast agent. If so, the well-established β-gal substrate AZ-1 could
work as a lacZ gene or β-gal 1H-MRI reporter. Upon delivery and
cleavage at lacZ-transfected or β-gal–overexpressed tumor cells with
the presence of Fe3+, the paramagnetic Fe complex could be
spontaneously formed in situ and specifically produced the 1H
MRI contrast effect while localizing and accumulating 1H-MRI
signals at the β-gal activity site. Figure 1 depicts the Fe3+–alizarin
complex generated in situ for the 1H-MRI detection of β-gal activity.
We now demonstrate the use of exploiting AZ-1 to assess β-gal
activity in vitro with lacZ-transfected human MCF7 breast and PC3
prostate cancer cells by 1H MRI T1 and T2 relaxation mapping.

FIGURE 1 | The proposed mechanism of an in situ generated stable Fe3+–alizarin complex for 1H MRI detection of β-gal activity.
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RESULTS AND DISCUSSION

Verification of the Fe3+–Alizarin Complex as
an 1H-MRI Contrast Agent
Alizarin is 1,2-dihydroxy-9,10-anthraquinone with a tricyclic
aromatic planar structure and chelates with Fe3+ to form a
thermodynamically stable octahedral Fe3+–alizarin (1:3)
complex at physiological pH conditions with the stability
constant logβ � 32.21 (Das et al., 1995; Das et al., 2002). To
explore the MRI signal–enhancing capability of the Fe3+–alizarin
complex, the spin–lattice relaxation time T1 and spin–spin
relaxation time T2 of the Fe3+–alizarin complex were measured
with a 4.7 T MR scanner using a saturation recovery spin echo
sequence and multi-spin echo sequence with varying repetition
times (TRs) and echo times (TEs), respectively. The images were
acquired using a 3-cm diameter solenoid coil (home-built) with
4 × 4 cut section of a 96-well plate containing the different
concentrations of alizarin and ferric ammonium citrate (FAC)
mixed solutions in 1:1 (V/V’) DMSO/PBS (0.1 M, pH � 7.4) at
37°C. Figure 2 displays the significant changes as expected on the
T1 and T2 maps and relaxation time values of the Fe3+–alizarin
complex at T1 � 254 ± 3, 131 ± 3, and 92 ± 8 ms, and T2 � 106 ± 1,

59 ± 1, and 48 ± 1 ms, corresponding to the concentrations of
alizarin at 2.5, 6.0, and 9.0 mM, respectively. The comparison
with the control FAC of T1 � 389 ± 6 ms and T2 � 143 ± 1 ms
showed that the Fe3+–alizarin complex formed in situ resulted in
substantial signal enhancement on either T1- or T2-weighted
1H-MRI, confirming the Fe3+–alizarin complex generated in
situ to function as an 1H-MRI contrast agent. Notably, the
significantly different T1 and T2 values of the Fe3+–alizarin
complex suggested the potential to combine T1 and T2 data
for additional information of imaging evaluation and detection
reliability, specifically where there is possibility for
misinterpretation in tissue heterogeneity (Zhou et al., 2017).

Alizarin β-D-Galactopyranoside Synthesis
After the Fe3+–alizarin complex was shown to be an 1H-MRI
contrast agent, we therefore began the β-D-galactopyranosylation
with alizarin at the phenolic hydroxyl groups. Previously, James
et al. (2000) reported a modified method for the synthesis of AZ-
1, involving the reaction of alizarin potassium salt with
acetobromo-α-D-galactose via the nucleophilic substitution
procedure followed by deacetylation mediated by the aqueous
NaOH solution, but the yield was low (14%). We observed that

FIGURE 2 | The 1H-MRI of an Fe3+–alizarin complex. MRI acquisition parameters: 1H-MRI, 200 MHz, matrix size: 128 × 128, FOV: 40 mm × 40 mm, slice
thickness: 2 mm; receiver bandwidth: 20 kHz, T1-map: saturation recovery spin-echo sequence, TR � 200, 400, 600, 800, 1,000, 2000, 3,000, and 6,000 ms,
respectively, TE � 15 ms; T2-map: multi-echo SE sequence, TE � 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, and 160 ms, respectively, TR �
2000 ms. (A) Control, FAC (15.0 mM); (B) alizarin (2.5 mM), FAC (15.0 mM); (C) alizarin (6.0 mM) and FAC (15.0 mM); (D) alizarin (9.0 mM), FAC (15.0 mM) in 1:1
(V/V′), and DMSO/PBS (0.1 M, pH � 7.4) at 37°C in 4 h.
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the phenolic hydroxyl groups at 1,2-positions of alizarin have
excellent site-reaction selectivity due to the various electronic
deficiency/sterically hindered effects (Mahal et al., 2011) and
apparently different pKa values: pKa(2-OH) � 5.98 ± 0.05,
whereas pKa(1-OH) � 9.88 ± 0.05 (Das et al., 1995; Das et al.,
2002), which suggested that the phase-transfer catalysis method
at pH � 8-9 could provide regio- and stereoselective synthesis of
AZ-1, as exploited previously for β-gal 19F-MRS/MRI reporters
(Yu et al., 2005; Kodibagkar et al., 2006; Yu et al., 2006; Yu and
Mason, 2006; Liu et al., 2007; Yu et al., 2008a; Yu et al., 2008b; Yu
et al., 2012b; Yu et al., 2013; Yu et al., 2017). To the well-stirred
solution of alizarin in CH2Cl2-H2O (pH 8–9) using
tetrabutylammonium bromide (TBAB) as a catalyst at 50°C, an
equimolar amount of 2, 3, 4, and 6-tetra-O-acetyl-
α-D-galactopyranosyl bromide was dropped under N2

atmosphere for around 1 h; alizarin 2-O-2′, 3′, 4′, and 6′-
tetra-O-acetyl-β-D-galactopyranoside AZ-M1 was isolated
purely at the yield of 78%. The NOESY correlation between
anomeric H-1′ and H-3 in AZ-M1 (Supporting Information,
Supplementary Figure S7) showed that β-D-
galactopyranosylation took place at the 2-hydroxyl group of
alizarin as predicted. The following deacetylation with NH3/
MeOH from 0°C to room temperature produced AZ-1 at
91% yield.

The prerequisite for molecular MRI of intracellular targets is
that the contrast agents must be effectively taken up by cells in vivo,
which requires contrast agents to be sufficiently soluble and
capable of entering cells. Carbohydrate-associated prodrugs in
clinical applications have widely demonstrated the improved
aqueous solubility and permeability, leading to better selectivity
and efficacy for diagnosis and therapy (Dwek, 1996; Bertozzi and
Kiessling, 2001; Hudak and Bertozzi, 2014; Fernández-Tejada et al.,
2015). We hence thought about introducing an additional β-D-
galactopyranosyl unit to form alizarin 1,2-di-O-β-D-
galactopyranoside AZ-2. Similarly, a drop of 2.2 equivalent 2, 3,
4, and 6-tetra-O-acetyl-α-D-galactopyranosyl bromide CH2Cl2
solution into alizarin in CH2Cl2-H2O (pH 10–11) employing
TBAB as a catalyst at 55°C under N2 atmosphere afforded

alizarin 1,2-di-O-2′, 3′, 4′, 6′-tetra-O-acetyl-
β-D-galactopyranoside AZ-M2 at 62% yield. Deacetylation
accomplished the target molecule alizarin 1,2-di-O-β-D-
galactopyranoside AZ-2 with 94% yield. Figure 3 illustrates the
structures of AZ-1/AZ-M1 and AZ-2/AZ-M2. As expected, the
free di-β-D-galactopyranoside AZ-2 is soluble in PBS (0.1M, pH �
7.4) at the concentration of 15mM;meanwhile, the freemono-β-D-
galactopyranoside AZ-1 unlikely requires the addition of DMSO
for the same concentration. The structures of AZ-M1/AZ-1 and
AZ-M2/AZ-2 were confirmed by NMR and HRMS data. The
molecular/quasimolecular ions ofAZ-M1 andAZ-1, as well asAZ-
M2 and AZ-2, showed the introduction of one and two
galactopyranosyl units to AZ-M1/AZ-1 and AZ-M2/AZ-2,
respectively, in which the β-D-galactopyranoside configuration
was determined by 1H/13C NMR data of the anomeric protons
at δH-1′ � δH-1′′ � 4.90–5.30 ppm and their coupling constants
J1′,2′ � J1′′,2′′�8.0 Hz while maintaining the corresponding
anomeric C-1′/C-1′′ at δC-1′ � δC-1′′ � 99.5–104.0 ppm in
accordance (Supporting Information, Supplementary Figures
S4–S13), which are in agreement with the typical characteristics
for the identification of the anomeric β-D-configuration
(Yu et al., 2005; Yu et al., 2006; Yu and Mason, 2006; Kodibagkar
et al., 2006; Liu et al., 2007; Yu et al., 2008a; Yu et al., 2008b; Yu et al.,
2012b; Yu et al., 2013; Yu et al., 2017).

β-Gal Reactivity
AZ-1 has been identified as a highly sensitive substrate for the
demonstration of β-gal in a range of Gram-negative bacteria
under incubation at 37°C in air for 18 h (James et al., 2000).
However, none of the existing data have shown the kinetics of
AZ-1 vs. β-gal, which is crucial for further in vivo imaging
applications. The absorption spectra of AZ-1 and AZ-2
solutions in 1:1 (V/V′) DMSO/PBS (0.1 M, pH � 7.4) with
and without β-gal (E801A) at 20–22°C indicated that upon
reactions of AZ-1 and AZ-2 with β-gal, a new absorption
around 520 nm, corresponding to the in situ released alizarin
mono-/dianions, appeared and increased gradually. Hence, the
absorbance measurements at 520 nm following the enzymatic

FIGURE 3 | The structures of alizarin mono β-D-galactopyranosides AZ-M1/AZ-1, and alizarin di-β-D-galactopyranosides AZ-M2/AZ-2.
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FIGURE 4 | The kinetic hydrolysis time courses of alizarin β-D-galactopyranosides AZ-1 (■) and AZ-2 (C) with β-gal. Absorbance measurements at λ � 520 nm
following the addition of β-gal (E801A, 3 units) to solutions of AZ-1, AZ-2 each (5.0 mM) in 1:1 (V/V′) DMSO/PBS (0.1 M, pH � 7.4) at 20–22°C in different time points;
The time courses of alizarin β-D-galactopyranosides AZ-1 (□) and AZ-2 (○) each (5.0 mM) in 1:1 (V/V′) DMSO/PBS (0.1 M, pH � 7.4) at 20–22°C in different time points
without β-gal (E801A).

FIGURE 5 | 1H-MRI detection of β-gal activity. 1H-MRI acquisition: using the same parameters as in Figure 2, (A) alizarin 2-O-β-D-galactopyranoside AZ-1
(9.0 mM) and FAC (15.0 mM); (B) alizarin 2-O-β-D-galactopyranoside AZ-1 (4.0 mM), FAC (15.0 mM), and β-gal (E801A, 5 units); (C) alizarin 2-O-
β-D-galactopyranoside AZ-1 (6.0 mM), FAC (15.0 mM), and β-gal (E801A, 5 units); (D) alizarin 2-O-β-D-galactopyranoside AZ-1 (9.0 mM), FAC (15.0 mM), and β-gal
(E801A, 5 units) in 1:1 (V/V′) DMSO/PBS (0.1 M, pH � 7.4) at 37°C in 4 h.
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reaction of AZ-1 and AZ-2 with β-gal (E801A) at 20–22°C in
different time points showed that both AZ-1 and AZ-2 are very
reactive to β-gal (E801A) with varying hydrolytic rates at ν(AZ-1) �
93.3 and ν(AZ-2) � 133.3 μM/min/unit, respectively (Figure 4).
Also, the absorption spectra of AZ-1 and AZ-2 by reaction with
other enzymes α-galactosidase (Sigma G7163) and
β-glucuronidase (Sigma G8295) at 20–22°C; showed that both
AZ-1 and AZ-2 remained essentially stable over the period of
60 min, verifying their specificity for reaction to β-gal.
1H-MRI Detection of β-Gal Activity
The T1 and T2 maps and relaxation time values were measured
with a 4 × 4 cut section of 96-well plate containing various
concentrations of AZ-1 and AZ-2 (4.0–9.0 mM) together with a
fixed concentration of FAC (15.0 mM), respectively, in 1:1 (V/V′)
DMSO/PBS (0.1 M, pH � 7.4) with or without β-gal (E801A). In
the AZ-1/FAC solution at 37°C in 4 h in the absence of β-gal,
relaxation times were determined to be T1 � 368 ± 6 and T2 �
134 ± 1 ms. In comparison, in the presence of β-gal (E801A,
5 units) in the mixture solution of AZ-1 and FAC at 37°C in 4 h,
pronounced shortening in relaxation times T1 and T2 caused by
the Fe3+–alizarin complex generated in situ was observed at T1 �
138 ± 3, 115 ± 4, and 84 ± 5 ms, whereas T2 � 74 ± 1, 54 ± 1, and

44 ± 5 ms, correlating with the increasing concentrations of AZ-1
from 4.0, 6.0 and 9.0 mM, respectively (Figure 5). However, the
much more soluble and reactive AZ-2, exhibiting significant
advantages for in vivo 1H-MRI applications, produced very
unexpected results under similar procedures at the same
conditions. In the absence of β-gal at 37°C in 4 h, the AZ-2/
FAC solution, as the control, yielded surprisingly reduced T1 �
230 ± 11 and T2 � 98 ± 1 ms (Figure 6). However, in the presence
of β-gal (E801A, 5 units), the mixture solutions of AZ-2/FAC
gave rise to an insignificant decrease in T1 � 220 ± 7, 198 ± 11, and
177 ± 5 ms and T2 � 95 ± 1, 78 ± 2, and 72 ± 1 ms (AZ-2
concentrations at 4.0, 6.0, and 9.0 mM, respectively, Figure 6),
indicating the much less Fe3+–alizarin complex formed in situ
during the β-gal hydrolysis. Comparing the interactions between
AZ-1/AZ-2 and Fe3+ with their relaxivities to FAC, we attributed
that the larger differences of AZ-2/FAC to FAC solution (T1:
230 ± 11 vs. 389 ± 6 ms and T2: 98 ± 1 vs. 143 ± 1 ms;
alternatively, ΔR1 � 1.78 s−1 and ΔR2 � 3.21 s−1) than AZ-1/
FAC solution (T1: 368 ± 6 vs. 389 ± 6 ms, T2: 134 ± 1 vs. 143 ±
1 ms; alternatively, ΔR1 � 0.15 s−1, ΔR2 � 0.47 s−1) were risen
from the formation of the much stronger and more stable
molecular tweezer complex AZ-2/Fe3+ due to the adjacent
3′,4′,6′-OH and 3″,4″,6″-OH located at the same side of 1,2-

FIGURE 6 | 1H-MRI detection of β-gal activity. 1H-MRI acquisition: using the same parameters as in Figure 2, (A) alizarin 1,2-di-O-β-D-galactopyranoside AZ-2
(9.0 mM) and FAC (15.0 mM); (B) alizarin 1,2-di-O-β-D-galactopyranoside AZ-2 (4.0 mM), FAC (15.0 mM), and β-gal (E801A, 5 units); (C) alizarin 1,2-di-O-β-
D-galactopyranoside AZ-2 (6.0 mM), FAC (15.0 mM), and β-gal (E801A, 5 units); (D) alizarin 1,2-di-O-β-D-galactopyranoside AZ-2 (9.0 mM), FAC (15.0 mM), and β-gal
(E801A, 5 units) in 1:1 (V/V′) DMSO/PBS (0.1 M, pH � 7.4) at 37°C in 4 h.
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di-O-β-D-galactopyranosyl rings in the favored configuration for
chelation of Fe3+ (Supplementary Figure S3 in the Supporting
Information) (Davies et al., 1996; Richardson et al., 1999; Schwert
et al., 2002; Schwert et al., 2005; Haas and Franz, 2009; Coskuner
et al., 2011; Kuznik and Wyskocka, 2016) which thus

simultaneously hindered the reaction with β-gal (E801A) and
slowed down the release of alizarin as well as the in situ
generation of the Fe3+–alizarin complex. These were confirmed
by mixing solutions of AZ-2 and β-gal (E801A) first for
hydrolysis, and then followed by adding FAC for

FIGURE 7 |MCF7-lacZ transfection. (A)Western blot: protein extracts from two transfected MCF7-lacZ cell lines (lanes 2,4), together with MCF7-WT cells (lanes
1,3,5) showing intense bands for β-gal activity in MCF7-lacZ cells and none in MCF7-WT cells; (B) MCF7-WT/MCF7-lacZ cells staining by X-gal and S-gal: deep blue
(X-gal) and black (S-gal) staining confirming the intense lacZ expression in MCF7-lacZ cells with essentially no β-gal activity in MCF7-WT cells. Regional magnification
×100; (C) β-Gal assay for activity quantification in MCF7-lacZ cells: 1.0 unit corresponding to the hydrolysis of 1.0 μmol/minO-nitrophenyl β-D-galactopyranoside,
β-gal activity was increasingly associated with the number of MCF7-lacZ cells.

FIGURE 8 | In vitro 1H-MRI detection of lacZ gene expression in PC3-lacZ cells. 1H-MRI acquisition: 1H-MRI, 400 MHz, matrix size: 256 × 128, FOV: 48 mm ×
24 mm, gradient echo imaging: TE � multiple values 3–30 ms, TR � 100 ms, flip angle � 10° (A) T2* maps: A mixture of alizarin 2-O-β-D-galactopyranosides AZ-1
(10.0 mM) and FAC (10.0 mM) with 5 × 105 PC3-WT or PC3-lacZ cells was placed in the interlayer between 1% low-gelling temperature agarose in a 10-mmNMR tube,
and then incubated for 4 h at 37°C under 5% CO2/air with 95% humidity, T2*(AZ-1/PC3-WT/FAC) � 96 ± 23 ms (top row) and T2*(AZ-1/PC3-lacZ/FAC) � 26 ± 14 ms
(bottom row), respectively; (B) relative signal intensity changes at different echo times (TEs) from (A), essentially no signal loss with PC3-WT cells (C) but a significant
signal loss with PC3-lacZ cells (■); (C) PC3-WT/PC3-lacZ cells staining by X-gal, S-gal, and AZ-1: deep blue (X-gal), black (S-gal), and dark violet (AZ-1) staining
confirming an intense lacZ expression in PC3-lacZ cells with essentially no β-gal activity in PC3-WT cells. Regional magnification ×100; (D) cytotoxicity: PC3-WT/PC3-
lacZ cells viability vs. AZ-1 in various concentrations in 1:1 (V/V′) DMSO/PBS (0.1 M, pH � 7.4) at 37°C under 5% CO2/air with 95% humidity for 72 h, PC3-WT cells (in
blue), and PC3-lacZ cells (in red)).
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complexation at 37°C in 2 h for each step with the same
concentrations as in Figure 6. A significant decrease in
relaxation times T1 and T2 was seen at T1 � 133 ± 1, 110 ± 2,
and 78 ± 2 ms and T2 � 73 ± 2, 51 ± 3, and 41 ± 1 ms, which were
very close to expectations based on AZ-1/FAC T1 and T2 data as
shown in Figure 5.

In Vitro 1H-MRI Detection of lacZ
Transfection in Human Tumor Cells
The recombinant vector phCMVlacZ has been successfully created
and used to stably transfect human prostate cancer PC3-lacZ cells
from PC3-wild-type (WT) cells (Liu et al., 2007). Accordingly,
human breast cancer MCF7-lacZ cells were stably transfected from
MCF7 wild-type (WT) cells: the β-gal activity and quantification in
MCF7-lacZ cells were verified on the basis of Western blot, X-gal
and S-gal staining, and the β-gal assay (Figure 7).

Given AZ-2 showed much better aqueous solubility and
reactivity to β-gal, the stabilized molecular tweezer complexation
AZ-2/Fe3+ obstructed its implementation spreading to effective
1H-MRI assessment of β-gal. So, AZ-1 with a significant signal

loss either on T1 or T2 upon β-gal hydrolysis was prompted for the
further in vitro 1H-MRI evaluation. As an initial demonstration for
in vitro 1H-MRI detection of β-gal with lacZ-transfected human
cancer cells, we first acquired T2* maps on pair mixtures of AZ-1
(10.0 mM) with PC3-WT cells (5 × 105) and PC3-lacZ cells (5 ×
105), respectively, in the presence of FAC (10.0 mM) layered
between agarose after incubation 4 h at 37°C under 5% CO2/air
with 95% humidity. Significant differences confined within the
layers were observed between PC3-WT and PC3-lacZ cells at
different echo times (Figure 8A), in which there was essentially
no signal loss with PC3-WT cells but a remarkable signal decrease
with PC3-lacZ cells upon increasing echo times (TEs) (Figure 8B).
The relaxation time T2* was determined to be T2*(AZ-1/PC3/FAC) �
96 ± 23ms in PC3-WT cells, while T2*(AZ-1/PC3-lacZ/FAC) � 26 ±
14 ms in PC3-lacZ cells. Again, the β-gal activity was verified
based on X-gal, S-gal, and AZ-1 staining (dark violet)
(Figure 8C), with each staining method consistently showing
intense lacZ expression in PC3-lacZ cells with essentially no
β-gal activity in PC3-WT cells.

The cytotoxicity of AZ-1 was studied with PC3-WT and PC3-
lacZ cells in PBS (0.1 M, pH � 7.4) incubated 72 h at 37°C under

FIGURE 9 | In vitro 1H-MRI detection of the lacZ gene expression in MCF7-lacZ cells. 1H-MRI acquisition: using the same parameters as in Figure 2. T1 and T2
Maps: Solution of alizarin 2-O-β-D-galactopyranoside AZ-1 (10.0 mM) and FAC (10.0 mM) in 1:1 (V/V′) DMSO/PBS (0.1 M, pH � 7.4) after incubation 4 h at 37°C under
5% CO2/air with 95% humidity with (A)MCF7-WT cells [5 × 105, T1(AZ-1/MCF7-WT/FAC) � 223 ± 11 ms, T2(AZ-1/MCF7-WT/FAC) � 97 ± 12 ms]; (B)MCF7-lacZ cells [5 × 105,
T1(AZ-1/MCF7-lacZ/FAC) � 75 ± 7 ms, and T2(AZ-1/MCF7-lacZ/FAC) � 45 ± 9 ms]; (C)MCF7-WT/MCF7-lacZ cells staining byAZ-1: dark violet staining confirming intense
lacZ expression in MCF7-lacZ cells with essentially no β-gal activity in MCF7-WT cells. Regional magnification ×100; (D)Cytotoxicity: MCF7-WT/MCF7-lacZ cells viability
vs. AZ-1 in various concentrations in 1:1 (V/V′) DMSO/PBS (0.1 M, pH � 7.4) at 37°C under 5%CO2/air with 95% humidity for 72 h, MCF7-WT cells (in blue), and MCF7-
lacZ cells (in red).
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5% CO2/air with 95% humidity. Cell viability assays showed that
neither AZ-1 nor alizarin showed toxicity to PC3 cells, for AZ-1
viability exceeded 96% for both PC3-WT and PC3-lacZ cells at all
concentrations tested (Figure 8D).

Furthermore, in vitro 1H-MRI acquisition of AZ-1 (10.0 mM)
with PC3-WT cells (5 × 105) and PC3-lacZ cells (5 × 105) in the
presence of FAC (10.0 mM) was performed in a 1:1 (V/V′)
DMSO/PBS (0.1 M, pH � 7.4) solution. A pronounced signal
decrease in the relaxation time T1 was observed between PC3-WT
(T1(AZ-1/PC3-WT/FAC) � 245 ± 9 ms) and PC3-lacZ cells (T1(AZ-1/
PC3-lacZ/FAC) � 82 ± 7 ms) after incubation 4 h at 37°C under 5%
CO2/air with 95% humidity.

Similarly, after incubation of AZ-1 (10.0 mM) with MC7-WT
cells (5 × 105) andMC7-lacZ cells (5 × 105), respectively, in the same
conditions as the previous study, the relaxation times were observed
to be T1(AZ-1/MCF7-WT/FAC) � 223 ± 11ms and T2(AZ-1/MCF7-WT/FAC)

� 97 ± 12ms in MC7-WT cells, whereas T1(AZ-1/MCF7-lacZ/FAC) �
75 ± 7ms and T2(AZ-1/MCF7-lacZ/FAC) � 45 ± 9ms made for MC7-
lacZ cells (Figures 9A,B), the T1 and T2 values are shown as bars
adjacent to T1 and T2 maps; both illustrated significant differences
after the reaction with β-gal at ΔR1 � 8.85 s−1 and ΔR2 � 11.91 s−1.
Staining by X-gal, S-gal, and AZ-1 (dark violet) (Figure 9C) all
displayed an intense lacZ expression in MC7-lacZ cells but with
essentially no β-gal activity in MC7-WT cells. Cell viability assays
indicated that both AZ-1 and the released aglycone alizarin have no
toxicity to MC7 cells upon the viability above 95% to MC7-WT and
MC7-lacZ cells at all concentrations tested for 72 h (Figure 9D).

Currently, a Gd-based contrast agent–enhanced 1H-MRI has
been widely applied for medical diagnosis, offering a noninvasive
way to generate anatomical and physiological information while
maintaining high spatial and temporal resolution (Terreno et al.,
2010; Haris et al., 2015; Wahsner et al., 2019). An Fe-based 1H
MRI contrast agent, different from the Gd3+-based 1H MRI
contrast agent with very strong relaxivity, exhibited much
shorter relaxation times because of the formation of Fe
complexes with the complete coordination of Fe3+, eliminating
the possibility of inner-sphere to directly coordinate water,
leaving outer-sphere and second-sphere coordination water
molecules as the only pathways for relaxation (Davies et al.,
1996; Richardson et al., 1999; Schwert et al., 2002; Schwert et al.,
2005; Haas and Franz, 2009; Kuznik and Wyskocka, 2016).
However, an Fe-based contrast agent enhanced 1H-MRI has
now become a viable alternative because Fe3+ is extensively
present in the tissues of the human body and is involved in
transport, storage, compartmentalization, and excretion
mechanisms, while Gd3+ is not naturally present in human
biochemistry (Beutler, 2004; Weber et al., 2006; Kaplan and
Kaplan, 2009; Theil and Goss, 2009). Particularly, cancer cells
need a significant amount of Fe3+ for rapid replication, so
endogenously abundant Fe3+ in tumors has been recognized as
a molecular target for chemotherapeutic treatments through
depleting cancer cellular Fe3+ to disrupt cancer cell
proliferation and inhibit tumor growth (Fe3+-chelation
therapy) (Buss et al., 2003; Richardson, 2005). In this study,
we introduced exogenous Fe3+ with the ultimate goal of
developing this approach to hunt the elevated Fe3+ level in
tumors for the 1H-MRI signal generation. Indeed, alizarin has

a very high thermodynamic stability constant logβ � 32.21 (Das
et al., 1995; Das et al., 2002), indicating its capability of capturing
Fe3+ from tumor to produce the Fe3+–alizarin complex in situ
while simultaneously generating the 1H-MRI signal enhancement
(Richardson et al., 1999; Davies et al., 1996; Schwert et al., 2002;
Schwert et al., 2005; Haas and Franz, 2009; Kuznik and
Wyskocka, 2016). Moreover, alizarin has been known to
inhibit human cytomegalovirus replication, HIV-1 RT-
associated RDDP, and integrase activities (Esposito et al.,
2011). Furthermore, alizarin is the core part of
anthraquinones, which constitute numerous antitumor drugs
widely applied in the treatment of various neoplasms such as
Adriamycin and daunorubicin, and their coordination with Fe3+

was shown to diminish cardiotoxicity while improving the
antitumor activity in chemotherapy and maintain sound
radiosensitizing properties in radiotherapy (Lown, 1993;
Nowak and Tarasiuk, 2012; Malik and Müller, 2016).
Therefore, this novel molecular platform also indicates the
potential for cancer therapy and imaging by utilizing the β-gal
responsive turn on pathway to selectively deplete tumor Fe3+,
resulting in cancer cell cycle arrest and apoptosis while generating
1H-MRI contrast enhancement, thereby providing insight into
the lacZ gene expression, development, location, and magnitude.

CONCLUSION

In this study, we present a novel responsive molecular platform
for β-gal activity detection using 1H-MRI, in which the 1H-MRI
signal enhancement is specifically generated, localized, and
accumulated in situ at the β-gal activity site. In conjunction
with this design, we have successfully produced and
characterized alizarin 2-O-β-D-galactopyranoside AZ-1 and
alizarin 1,2-di-O-β-D-galactopyranoside AZ-2. We have also
demonstrated the feasibility of using AZ-1 by spontaneous in
situ formation of paramagnetic Fe3+–alizarin complex to assess
the β-gal activity in solution with Fe3+ ions existence by 1H-MRI
T1 and T2/T2* relaxation mapping. 1H-MRI clearly showed the
significant differences in both T1 and T2 at WT vs. lacZ gene
expressing cells in culture after incubation with AZ-1, signifying
the potential of integrating T1 and T2 data together to gain the
additional certainty in imaging evaluation and detection
reliability of β-gal activity.

EXPERIMENTAL

General Methods
NMR spectra were recorded on a Varian Unity INOVA 400
spectrometer (400 MHz for 1H, 100 MHz for 13C). 1H and 13C
chemical shifts are referenced to TMS as an internal standard
with CDCl3, or DMSO-d6 as solvents, and chemical shifts are
given in ppm. All compounds were characterized by NMR at
25°C. Mass spectra were obtained by positive and negative ESI-
MS using a Micromass Q-TOF hybrid quadrupole/time-of-flight
instrument (Micromass UK Ltd.). Absorption spectra were taken
on a UV-2700 UV-Vis Shimadzu spectrophotometer.
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Solutions in organic solvents were dried with anhydrous
sodium sulfate and concentrated in vacuo below 45°C. 2, 3, 4,
6-Tetra-O-acetyl-α-D-galactopyranosyl bromide was purchased
from the Sigma Chemical Company. β-Gal (E801A) was
purchased from the Promega (Madison, WI, United States),
and enzymatic reactions were performed at 37°C in the PBS
solution (0.1 M, pH � 7.4). Column chromatography was
performed on silica gel (200–300 mesh), and silica gel GF254
used for analytical TLC was purchased from the Aldrich
Chemical Company. The detection was affected by spraying
the plates with 5% ethanolic H2SO4 (followed by heating at
110°C for 10 min) or by direct UV illumination of the plate.
The purity of the final products was determined by HPLC
with ≥95%.

Alizarin 2-O-29, 39, 49,
69-Tetra-O-Acetyl-β-D-Galactopyranoside
AZ-M1
A solution of 2, 3, 4, 6-tetra-O-acetyl-α-D-galactopyranosyl
bromide (1.23 g, 3.0 mmol) in CH2Cl2 (15 ml) was added
dropwise to a vigorously stirred CH2Cl2-H2O biphasic mixture
(pH 8–9) of alizarin (0.72 g, 3.0 mmol) and tetrabutylammonium
bromide (TBAB) (322 mg, 1.0 mmol) in CH2Cl2-H2O (30 ml, 1:
1 V/V′) around 1 h at 50°C under N2 atmosphere, with stirring
continued for an additional 4–5 h until TLC showed that the
reaction was completed. The product was extracted with CH2Cl2
(4 × 30 ml) and subsequently washed (H2O), dried (Na2SO4), and
evaporated under reduced pressure to give a syrup, which was
purified by column chromatography on silica gel to give alizarin
2-O-2′, 3′, 4′, 6′-tetra-O-acetyl-β-D-galactopyranoside AZ-M1.

Alizarin 1,2-Di-O-29, 39, 49,
69-Tetra-O-Acetyl-β-D-Galactopyranoside
AZ-M2
A solution of 2, 3, 4, 6-tetra-O-acetyl-α-D-galactopyranosyl
bromide (2.71 g, 6.6 mmol) in CH2Cl2 (30 ml) was added
dropwise to a vigorously stirred CH2Cl2-H2O biphasic mixture
(pH 10–11) of alizarin (0.72 g, 3.0 mmol) and TBAB (322 mg,
1.0 mmol) in CH2Cl2-H2O (30 ml, 1:1 V/V′) around 1 h at 55°C
under N2 atmosphere, with stirring continued for an additional
4–5 h until TLC showed that the reaction was completed. The
product was extracted with CH2Cl2 (4 × 40 ml) and subsequently
washed (H2O), dried (Na2SO4), and evaporated under reduced
pressure to give a syrup, which was purified by column
chromatography on silica gel to give alizarin 1,2-di-O-2′, 3′,
4′, 6′-tetra-O-acetyl-β-D-galactopyranoside AZ-M2.

Alizarin 2-O-β-D-Galactopyranoside AZ-1
and Alizarin
1,2-Di-O-β-D-Galactopyranoside AZ-2
General procedure: A solution of alizarin 2-O-2′, 3′, 4′, 6′-tetra-
O-acetyl-β-D-galactopyranoside AZ-M1 or alizarin 1,2-di-O-2′,
3′, 4′, 6′-tetra-O-acetyl-β-D-galactopyranoside AZ-M2 (1.30 g)

in anhydrous MeOH (120 ml) containing 0.5 M NH3 was
vigorously stirred from 0°C to room temperature overnight
until TLC showed that the reaction was complete and then
evaporated to dryness in vacuo. Chromatography of the crude
syrup on silica gel with ethyl acetate-methanol afforded the
corresponding alizarin 2-O-β-D-galactopyranoside AZ-1 and
alizarin 1,2-di-O-β-D-galactopyranoside AZ-2 in high yields.

MRI
MRI studies were performed using a 4.7T horizontal bore magnet
or a 9.4T vertical bore magnet equipped with a Varian INOVA
Unity system (Palo Alto, CA, United States). T1 and T2 (or T2*)
maps were acquired using a spin echo (or gradient echo) sequence
with varying repetition times (TRs) or echo times (TEs),
respectively. The raw data were acquired using a centric
k-space reordering scheme, followed by the phase encoding
steps with higher phase encoding gradient amplitudes. Data
acquisition parameters of the FLASH readout were TR/TE/Flip
angle � 10 ms/5 ms/10°. The standard multi-echo
Carr–Purcell–Meiboom–Gill pulse sequence was used for
measuring T2 from a single echo train. The T2 and T2* maps
were obtained on a voxel-by-voxel basis using a nonlinear least-
squares fit equationM �M0e

−TE/T2 from the images taken at each
echo time. Images were reconstructed and analyzed by using
MatLab (MathWorks, Natick, MA).

lacZ Transfection in Human Tumor Cells
The E. coli lacZ gene (from pSV-β-gal vector, Promega,
Madison, WI, United States) was inserted into a high
expression human cytomegalovirus (CMV) immediate early
enhancer/promoter vector phCMV (Gene Therapy Systems,
San Diego, CA, United States), producing a recombinant
vector phCMV/lacZ. This was used to transfect wild-type
MCF7 (human breast cancer) and PC3 (human prostate
cancer) cells (ATCC, Manassas, VA, United States) using
GenePORTER2 (Gene Therapy Systems, Genlantis, Inc., San
Diego, CA, United States). The highest β-gal expressing colony
was selected using the antibiotic G418 disulfate (800 μg/ml,
Research Products International Corp, Mt Prospect, IL,
United States), and G418 (200 μg/ml) was also included for
routine culture. The cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM, Mediatech Inc.,
Herndon, VA, United States) containing 10% fetal bovine
serum (FBS, 0.1 M, pH � 7.4, Atlanta Biologicals, Inc.,
Lawrenceville, GA, United States) with 100 units/mL of
penicillin and 100 units/mL streptomycin, and cultured in a
humidified 5% CO2 incubator at 37°C. The β-gal activity of
lacZ-transfected tumor cells was measured using a β-Gal Assay
Kit with o-nitrophenyl-β-D-galactopyranoside (Promega,
Madison, WI, United States) and confirmed by X-gal or
S-gal staining. Cells were fixed in PBS plus 0.5%
glutaraldehyde (5 min) and rinsed in PBS prior to staining.
Staining was performed using standard procedures for 2 h at
37°C in PBS plus 1 mg/ml X-gal (Sigma, St. Louis, MO,
United States), 1 mM MgCl2, 5 mM K3Fe(CN)6, and 5 mM
K4Fe(CN)6 or with 1.5 mg/mL S-gal (Sigma, St. Louis, MO,
United States) and 2.5 mg/ml FAC.
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Western Blot
The protein extracted from the wild-type and lacZ-expressing
MCF7 and PC3 cancer cells was quantified using the Bradford
method by a protein assay (Bio-Rad, Hercules, CA,
United States). Protein (30 μg) was added to each well,
separated by 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis, and transferred to a polyvinylidene fluoride
membrane. A primary monoclonal anti–β-gal antibody
(Promega, Madison, WI, United States) and anti-actin
antibody (Sigma, St. Louis, MO, United States) were used as
probes at a dilution of 1:5,000, with the reacting protein
detected using a horseradish peroxidase–conjugated
secondary antibody and ECL detection (Amersham,
Piscataway, NJ, United States).

Cytotoxicity
The cytotoxicity for the free β-D-galactopyranoside AZ-1 and the
released aglycone alizarine was assessed in both wild-type and
lacZ- expressing MCF7 and PC3 cells using a colorimetric
CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay
(MTS) (Promega, Madison, WI, United States). Assays were
performed in triplicate using 24-well plates seeded with
103 cells per well in 500 μL of RPMI-1640 without phenol red
and supplemented with 10% FCS and 2 mM glutamine (Urano
et al., 2005; Kamiya et al., 2007).
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