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Fullerene has attracted much attention in biomedical research due to its unique physical
and chemical properties. However, the hydrophobic nature of fullerene is limited to deploy
in the body, given that the biofluids are mainly water. In this study, a water-soluble
supramolecular nanoformulation based on a deep cavitand calixarene (SAC4A) and
fullerene is developed to overcome the hydrophobicity of fullerene and is used as a
potential photodynamic agent. SAC4A solubilizes fullerene very well with a simple grinding
method. The significantly increased water solubility of fullerene enables efficient activation
of reactive oxygen species. The host–guest strategy to solubilize fullerene can not only
provide a new method to achieve water solubility but also expand the biomedical
applications of fullerene.
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INTRODUCTION

Fullerene has been widely used in biomedical research, acting as an antimicrobial agent (Mashino et al.,
1999; Tsao et al., 2001), a human immunodeficiency virus protease inhibitor (Friedman et al., 1993), and
a photosensitizer to cleave DNA (Boutorine et al., 1995; Sharma et al., 2011). It can efficiently form long-
lived triplet excited states by visible-light irradiation and generate highly reactive oxygen species (ROS)
via an electron transfer Type I reaction, which generates superoxide anions (O2

−•) yielding hydroxyl
radicals, and/or an energy transfer Type II reaction, which generates singlet oxygen molecules (1O2)
(Yamakoshi et al., 2003). However, the hydrophobicity of fullerene limits its potential applications as
photosensitizer in biological fluids. Much effort has been focused on increasing fullerene water solubility
by grafting hydrophilic groups on fullerene (Rašović, 2016). Nevertheless, chemical modifications
usually lead to the unanticipated alternation of fullerene photophysical properties (Hamano et al., 1997;
Prat et al., 1999). Therefore, the solubilization of fullerene in a non-covalent approach emerges to be an
alternative approach (Zhang et al., 2014). Macrocyclic hosts have been engaged in solubilizing fullerene
in water [e.g., cyclodextrins (CD) and calixarenes] (Ikeda, 2013). Braun et al. investigated the solid–solid
mechanochemical reaction between fullerene and γ-CD by ball-milling their mixture. The concentration
of C60 in water was 1.5 × 10–4 M [(γ-CD) � 6.5 × 10–3 M] (Braun et al., 1994). Komatsu et al. examined
that the equimolar amounts of C60 and sulfonatocalix[8]arene were subjected to high-speed vibration
milling treatment, and the concentration of C60 was calculated to be 1.3 × 10–4 M (Komatsu et al., 1999).
These water-soluble fullerenes solubilized by macrocycles confirm the feasibility of the host–guest
strategy. Moreover, the complexation of fullerenes by macrocycles is an important way used to improve
their photoactivities (Antoku et al., 2019).

In this work, we synthesized sulfonated azocalix[4]arene (SAC4A), which possesses a deep
cavity that imparts strong binding to hydrophobic cargoes. Additionally, the -SO3

− functional
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groups endow calixarene with water solubility and also
provide anchoring points that supplement the cavity
binding to guests (Guo et al., 2014; Pan et al., 2017; Pan
et al., 2021; Pan et al., 2021). As expected, SAC4A solubilized
fullerene under the condition of a molar ratio of 1:1 by the
grinding method (Figure 1), which is a simpler method than
ball-milling or high-speed vibration milling treatment. We
further evaluated its ability to generate ROS under LED
irradiation, which is significant on account of its further
biomedical applications.

RESULTS AND DISCUSSION

Molecular Design of Macrocyclic Host
SAC4A and SAC4A-Solubilized Fullerene
Calixarene was employed as the macrocyclic host because of its
broad chemical design space (Böhmer, 1995). By making calix
[4]arene to directly react with 4-sulfobenzenediazonium

chloride, SAC4A was obtained with a high yield (Figure 2A
and Supplementary Figure S1) (Lu et al., 2005). Sulfocalix[n]
arenes (SCnAs, n � 4, 5, and 6) without deep cavity were
synthesized as controls (Figure 2A), referring to literatures
(Shinkai et al., 1987; Steed et al., 1995). The calixarene-
solubilized fullerenes (C60 and C70) were prepared by the
grinding method (for more details, see the Supplementary
Material). The concentrations of C60 and C70 in the
supernatant were determined by high-performance
liquid chromatography (Figure 2B). The concentration of
C60 by supramolecular complexation with SAC4A increased
to 6.45 × 10–4 M. The solubilization effect of SAC4A is
significantly higher than that of the control of SCnAs. It may
be observed that the cavity of SC4A is too small to accommodate
fullerene. Even if adding repetitive units to expand the cavity
latitudinally, the cavities of SC5A and SC6A are still too shallow
to encapsulate fullerene. On the other hand, the azobenzene
modification endows SAC4A with a deep cavity that is suitable
to include hydrophobic guests (Zhang et al., 2020). It is
suggested that calixarene is more effective in solubilizing
fullerene by extending the cavity longitudinally than
latitudinally.

FIGURE 1 | Schematic illustration of supramolecular nanoformulation
formed by the host–guest complexation between SAC4A and fullerene. The
encapsulation of fullerene with SAC4A gives rise to improved solubility and
efficiently activated ROS.

FIGURE 2 | (A) Molecular structures of SAC4A and SCnAs. (B) The
concentrations of C60 and C70 solubilized by calixarenes (1 mM for hosts).

FIGURE 3 | (A) The DLS data of the C60@SAC4A assembly in PBS
buffer (10 mM, pH � 7.4), at 25°C. (B) TEM image of the C60@SAC4A
assembly (scale bar, 10 nm).
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Size, Morphology, and Stability of C60@
SAC4A
Due to the best solubilizing effect, we selected the C60@SAC4A
system to representatively study its size and morphology.
Dynamic light scattering (DLS) was employed to identify the
size of the C60@SAC4A assembly (Guo et al., 2020), giving a
hydration diameter of 28 nm with a polydispersity index (PDI) of
0.135 (Figure 3A). The representative transmission electron
microscopy (TEM) image (Li et al., 2020) revealed that the
C60@SAC4A assembly possessed a spherical morphology with
an average size of 20 nm (Figure 3B), which was smaller than the
DLS result due to the dehydration that occurred during the TEM
sample preparation (Yang et al., 2020). C60@SAC4A forms water-
soluble nanoformulation rather than simple host–guest complex,
implying a potential passive targeting ability through enhanced
permeation and retention (EPR) effect when used in vivo (Gao
et al., 2018; Cai et al., 2021).

The stability of assembly is a fundamental factor. A DLS test
was performed to observe the particle size changes of C60@
SAC4A at different time points (Supplementary Figure S2).
The C60@SAC4A assembly shows no significant changes in
particle size within 7 days. These results proved that the
C60@SAC4A assembly is stable in time. SAC4A is expected
to be a supramolecular solubilizing agent to disperse fullerene
in water.

ROS Generation of C60@SAC4A
The identification and research of ROS are crucial for the further
development of photodynamic therapy based on fullerenes as
photosensitizers. In order to see if it was a potential
photodynamic agent, the ROS generation capacities of C60@
SAC4A were investigated by a commercial indicator, 2,7-
dichlorodihydrofluorescein (DCFH), that responds to general
types of ROS (Zhuang et al., 2020). Upon exposure to LED
irradiation, the nonemissive DCFH solution with C60@SAC4A
exhibits increased fluorescence intensity, accomplishing
approximately 35-fold enhancement within 1min, while those of
control groups under the same conditions are barely increased
(Figure 4A). Additionally, γ-cyclodextrin–solubilized C60 (C60@
γ-CD) was chosen as the positive control group, showing a little
fluorescence increase under LED irradiation, due to the reactivity of
C60 with O2 decreased when it was enclosed in the γ-CD cavity
(Priyadarsini et al., 1994). Another possible reason is that the amount
of cyclodextrin used for solubilization is much higher than that of
calixarene, resulting that the cyclodextrin limits the contact between
C60 andO2. Figure 4B showed the fluorescence response of DCFH to
ROS treatedwith C60@SAC4A of different concentrations, suggesting
that the peak intensity and the concentration of C60@SAC4A were
increased in a concentration-dependent manner.

FIGURE 4 | (A) Fluorescence response of DCFH to ROS treated with
C60@SAC4A (8 μM for C60), SAC4A (10 μM), and C60@γ-CD (8 μM for C60)
under LED irradiation for 1 min or no irradiation. (B) Fluorescence response of
DCFH to ROS treated with C60@SAC4A of different concentrations
under LED irradiation for 1 min.

FIGURE 5 | (A) EPR signals of DMPO (for Type I ROS detection) in the
presence of C60@SAC4A (80 μM for C60) with NADH (5 mM) irradiated for 0,
30, or 60 s. (B) EPR signals of TEMP (for Type II ROS detection) in the
presence of C60@SAC4A (80 μM for C60) irradiated for 0, 30, or 60 s.
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Electron paramagnetic resonance (EPR) spectroscopy is one
powerful method to identify short-lived ROS species (Zang
et al., 1998). 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was
used as a spin-trap agent to detect O2

−•. Figure 5A shows the
spectra obtained for DMPO/O2

−• adduct, indicative of the
generation of O2

−• from C60@SAC4A under light and
nicotinamide adenine dinucleotide (reduced, NADH, to
mimic the strong reducing environment) conditions, namely,
Type I ROS (Zhao et al., 2008). In the absence of either NADH
or C60, there were no appreciable O2

−• signals detected
(Supplementary Figure S3A), showing that electron transfer
processes induced by reducing agents are very significant for the
generation of O2

−• in aqueous systems (Yamakoshi et al., 2003).
For the detection of 1O2, the EPR method with 2,2,6,6-
tetramethyl-4-piperidone (TEMP) was employed. As shown
in Figure 5B, the resultant EPR spectra displayed a typical 1:
1:1 triplet signal, which is the characteristic resonance for
TEMP/1O2 adduct, whereas no signal was detected in the
control group containing SAC4A under the same condition
(Supplementary Figure S3B), indicative of its good ability of
Type II ROS (Yamakoshi et al., 2003). Based on the above
evidence, it is consequently reasonable to draw a conclusion that
C60@SAC4A followed both Type I and Type II pathways to
generate ROS species, indicating that C60@SAC4A can be a
promising candidate as a water-soluble supramolecular
photosensitizer.

CONCLUSION

In summary, SAC4A was synthesized and used to improve the
water solubility of fullerene by host–guest complexation.
Compared with SCnAs that are widely studied as classical
water-soluble calixarene derivatives, SAC4A possesses the
deeper cavity longitudinally and is more effective in
solubilizing fullerene. The supramolecular nanoformulation
C60@SAC4A generates ROS species effectively in both Type I

and Type II pathways, indicative of a potential photodynamic
agent. Calixarene is highly modifiable, and thus, a lot of water-
soluble derivatives could be obtained to solubilize hydrophobic
substances besides fullerenes. One important lesson from this
work is that vertical expansion of cavity emerges to be a more
powerful way than horizontal expansion to solubilize large
hydrophobic species on account of the cone shape of calixarene.
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