Skip to main content

ORIGINAL RESEARCH article

Front. Chem., 06 September 2021
Sec. Solid State Chemistry
Volume 9 - 2021 | https://doi.org/10.3389/fchem.2021.713368

Pyrochlore-Supergroup Minerals Nomenclature: An Update

  • Instituto de Geociências – Universidade de São Paulo, São Paulo, Brazil

The general formula of the pyrochlore-supergroup minerals is A2B2X6Y. The mineral names are composed of two prefixes and one root name (identical to the name of the group). The first prefix refers to the dominant anion (or cation or H2O or vacancy) of the dominant valence at the Y-site. The second prefix refers to the dominant cation of the dominant valence [or H2O or vacancy] at the A-site. Thirty-one pyrochlore-supergroup mineral species are currently distributed into four groups [pyrochlore (B = Nb, X = O), microlite (B = Ta, X = O), roméite (B = Sb5+, X = O), and elsmoreite (B = W, X = O)] and two unassigned members [hydrokenoralstonite (B = Al, X = F) and fluornatrocoulsellite (B = Mg, X = F)]. However, when the new nomenclature system of this supergroup was introduced (2010) only seven mineral species, namely, oxycalciopyrochlore, hydropyrochlore, hydroxykenomicrolite, oxystannomicrolite, oxystibiomicrolite, hydroxycalcioroméite, and hydrokenoelsmoreite, were valid. The seven species belong to the cubic crystal system and space group Fd3¯m and O is predominant in the X structural site. The 24 new mineral species described between 2010 and 2021 are cesiokenopyrochlore, fluorcalciopyrochlore, fluornatropyrochlore, hydrokenopyrochlore, hydroxycalciopyrochlore, hydroxynatropyrochlore, hydroxykenopyrochlore, hydroxymanganopyrochlore, hydroxyplumbopyrochlore, fluorcalciomicrolite, fluornatromicrolite, hydrokenomicrolite, hydroxycalciomicrolite, kenoplumbomicrolite, oxynatromicrolite, oxycalciomicrolite, oxybismutomicrolite, fluorcalcioroméite, hydroxyferroroméite, oxycalcioroméite, oxyplumboroméite, fluornatrocoulsellite, hydrokenoralstonite, and hydroxykenoelsmoreite. Among the new species, hydroxycalciomicrolite belongs to a different space group of the cubic system, i.e., P4232. There are also some mineral species that crystallize in the trigonal system. Hydrokenoelsmoreite occurs as 3C (Fd3¯m) and 6R (R3¯) polytypes. Hydrokenomicrolite occurs as 3C (Fd3¯m) and 3R (R3¯m) polytypes, of which the latter corresponds to the discredited “parabariomicrolite.” Fluornatrocoulsellite crystallizes as 3R (R3¯m) polytype. Surely there are several new pyrochlore-supergroup minerals to be described.

Introduction

The nomenclature system currently valid for the pyrochlore supergroup was introduced by Atencio et al. (2010) to replace the one authored by Hogarth (1977). Subsequently, clarifications (Christy and Atencio, 2013), remarks (Hogarth, 2013), a response to the remarks (Atencio, 2013), and a paper on the incorporation of two minerals already known to the supergroup (Atencio et al., 2017) were published. When the new nomenclature system of this supergroup was introduced (Atencio et al., 2010), only seven mineral species, namely, oxycalciopyrochlore, hydropyrochlore, hydroxykenomicrolite, oxystannomicrolite, oxystibiomicrolite, hydroxycalcioroméite, and hydrokenoelsmoreite, were valid. Between 2010 and 2021, 24 new mineral species were described. The following text describes the nomenclature of pyrochlore-supergroup minerals. The nomenclature system has been updated to include the pyrochlore-supergroup minerals discovered in recent years, whose available information might be difficult for an interested reader to find. The representative minerals from each group are discussed in detail. All known minerals of the supergroup are listed in one place, so this text can be regarded as a kind of a digest of all natural species. There are two aims in compiling this data. The first is to enable a reader to identify both the chemical composition and source of a given mineral and the second is to enable the reader to identify the primary data associated with the mineral.

Crystallography, Chemistry, and the Nomenclature Scheme

The general formula of the pyrochlore-supergroup minerals is A2B2X6Y. In this formula, A typically is a large [8]-coordinated cation with a radius of ∼1.0 Å or a vacancy (□) but can also be H2O. For structural reasons, A can be subdivided into constituents without lone-pair electrons (e.g., Na, Ca), which occupy 16 d in Fd3¯m, and stereoactive cations (e.g., Sb3+), which occupy less symmetrical positions displaced slightly from 16d, e.g., 96 g. For the purpose of this nomenclature, no subdivision is made. The A-site therefore may host Na, Ca, Ag, Mn, Sr, Ba, Fe2+, Pb2+, Sn2+, Sb3+, Bi3+, Y, Ce (and other REE), Sc, U, Th, □, or H2O. B is a [6]-coordinated cation (site 16c), typically of high field-strength. This site thus may contain Ta, Nb, Ti4+, Sb5+, W, but also V5+, Sn4+, Zr, Hf, Fe3+, Mg, Al, and Si. X typically is O but can include subordinate OH and F (site 48f). Y typically is an anion but can also be a vacancy, H2O, or a very large (>>1.0 Å) monovalent cation (site 8b). Examples are OH, F, O, □, H2O, K, Cs, and Rb. Displacements to 96g, 32e, and 192i positions were also located. See the basis for formula calculation in Atencio et al. (2010). Synthetic pyrochlores have a much more variable chemical composition than natural examples (Subramanian et al., 1983).

The mineral names are composed of two prefixes and one root name (identical to the name of the group). The first prefix refers to the dominant anion (or cation or H2O or □) of the dominant valence at the Y-site. The second prefix refers to the dominant cation of the dominant valence [or H2O or □] at the A-site. Where the first and second prefixes are equal, then only one prefix is applied (“hydropyrochlore,” not “hydrohydropyrochlore”). The mineral groups are given in Table 1.

TABLE 1
www.frontiersin.org

TABLE 1. Mineral groups of the pyrochlore supergroup.

As a mineral group consists of two or more minerals (Mills et al., 2009), ralstonite and coulsellite cannot really be considered, for now, as mineral groups. Hydrokenoralstonite and fluornatrocoulsellite should be designated as unassigned members of the pyrochlore supergroup, because there is no other member to allow a group to be established.

Currently, there is no valid betafite-group mineral.

The seven species valid in 2010 belong to the cubic crystal system and space group Fd3¯m. Among the new species, hydroxycalciomicrolite belongs to a different space group of the cubic system, i.e., P4232. There are also some mineral species that crystallize in the trigonal system. Hydrokenoelsmoreite occurs as 3C (Fd3¯m) and 6R (R3¯) polytypes. Hydrokenomicrolite occurs as 3C (Fd3¯m) and 3R (R3¯m) polytypes, of which the latter corresponds to the discredited “parabariomicrolite.” Fluornatrocoulsellite crystallizes as 3R (R3¯m) polytype. The symmetry is lowered due to ordering on either A sites or B sites (Ercit et al., 1986; Rouse et al., 1998; Atencio, 2016; Mills et al., 2016; Andrade et al., 2017; Mills et al., 2017). The pyrochlore structure (Figure 1) is an essential building block for other minerals and mineral groups, such as alunite (Goreaud and Raveau, 1980) or pittongite (Grey et al., 2006).

FIGURE 1
www.frontiersin.org

FIGURE 1. Pyrochlore crystal structure drawn using VESTA 3 (Momma and Izumi, 2011).

The Groups and Species

Table 2 shows the species of the pyrochlore supergroup, except hydrokenoralstonite and fluornatrocoulsellite.

TABLE 2
www.frontiersin.org

TABLE 2. Mineral species of the pyrochlore (P), microlite (M), roméite (R), elsmoreite (E), and betafite (B) groups. Blue: already valid in 2010; red: expected in 2010 and described later; brown: expected in 2010 but not yet described; green: not foreseen in 2010 but described later.

Following that, simplified formulae are given for the pyrochlore species. Note that subordinate components at the A, B, X, or Y sites have no nomenclatural significance and any of these could be replaced by “#”, indicating an unspecified heterovalent species required for charge balance.

Pyrochlore Group

Oxycalciopyrochlore (Atencio et al., 2010), Ca2Nb2O6O, Fd3¯m, a 10.356(2) Å, V 1110.6 (7) Å3, first described by Černý et al. (1979) as “stibiobetafite.” The IMA number was not quoted in the original description of “stibiobetafite.” Type locality: Věžná I pegmatite, Věžná, Žďár nad Sázavou District, Vysočina Region, Czech Republic.

Hydropyrochlore (Atencio et al., 2010), (H2O, #)2Nb2O6(H2O), Fd3¯m, a 10.580 Å, V 1184.29 Å3, first described by van Wambeke (1978) as “kalipyrochlore.” The IMA number was not quoted in the original description of “kalipyrochlore.” Type locality: Lueshe Mine, Bwito, Rutshuru Territory, North Kivu, DR Congo.

Cesiokenopyrochlore (Agakhanov et al., 2021), (□, #)2Nb2O6Cs, Fd3¯m, a 10.444(1) Å, V 1139.5(2) Å3. IMA number: 2016-104. Type locality: Tetezantsio pegmatites, Tetezantsio-Andoabatokely Pegmatite Field, Andrembesoa, Betafo, Vakinankaratra, Madagascar.

Fluorcalciopyrochlore (Li et al., 2016), (Ca, #)2Nb2O6F, Fd3¯m, a 10.4164(9) Å, V 1130.19 Å3. IMA number: 2013-055. Type locality: Bayan Obo deposit (Bayun-Obo deposit; Baiyunebo deposit), Bayan Obo, Bayan Obo mining district, Baotou City (Baotou Prefecture), Inner Mongolia, China.

Fluornatropyrochlore (Jingwu et al., 2015), (Na, #)2Nb2O6F, Fd3¯m, a 10. 5,053(10) Å, V 1159.4 Å3. IMA number: 2013-056. Type locality: Boziguoer intrusion, Baicheng Co. (Bay Co.), Akesu Prefecture (Aksu Prefecture; Aqsu Prefecture), Xinjiang, China.

Hydrokenopyrochlore (Biagioni et al., 2018), (□, #)2Nb2O6(H2O), Fd3¯m, a 10.4887(8) Å, V 1153.9 Å3. IMA number: 2017-005. Type locality: Antandrokomby pegmatite, Manandona Valley, Sahatsiho Ambohimanjaka, Ambositra, Amoron’i Mania, Madagascar.

Hydroxycalciopyrochlore (Yang et al., 2014), (Ca, #)2Nb2O6(OH), Fd3¯m, a 10.381(4) Å, V 1118.7 Å3. IMA number: 2011-026. Type locality: Maoniuping Mine, Mianning County, Liangshan Yi, Sichuan, China.

Hydroxynatropyrochlore (Ivanyuk et al., 2019), (Na, #)2Nb2O6(OH), Fd3¯m, a 10.3276(5) Å, V 1101.5 Å3. IMA number: 2017-074. Type locality: Phoscorite-carbonatite pipe, Kovdor Massif, Murmansk Oblast, Russia.

Hydroxykenopyrochlore (Miyawaki et al., 2017, pending publication), (□, #)2Nb2O6 (OH), Fd3¯m, a 10.590(5) Å, V 1187.65 Å3. IMA number: 2017-030a. Type locality: Araxá mine, Araxá complex, Barreiro, Araxá, Minas Gerais, Brazil.

Hydroxymanganopyrochlore (Chukanov et al., 2013), (Mn2+, #)2Nb2O6 (OH), Fd3¯m, a 10.2523(2) Å, V 1077.62 Å3. IMA number: 2012-005. Type locality: In den Dellen quarries, Mendig, Mendig, Mayen-Koblenz District, Rhineland-Palatinate, Germany.

Hydroxyplumbopyrochlore (Li et al., 2020), (Pb, #)2Nb2O6 (OH), Fd3¯m, a 10.558 (2) Å, V 1176.91 Å3. IMA number: 2018-145. Type locality: Jabal Sayid mine (Jabal Sayid Cu-Zn deposit), Medina Region, Saudi Arabia.

“Fluorstrontiopyrochlore” (Atencio et al., 2010), (Sr, #)2Nb2O6F, a possible new species, analysis published (Franchini et al., 2005). Occurrence: Jasimampa prospect, Ojo de Agua Department, Santiago del Estero Province, Argentina.

“Fluorkenopyrochlore” (Atencio et al., 2010), (□, #)2Nb2O6F, a possible new species, analyses published (Kartashov et al., 1998; Schmitt et al., 2002). Occurrences: Khaldzan Buragtag massif, Myangad District, Khovd Province, Mongolia; Amis Complex, Brandberg Complex, Brandberg Area, Dâures Constituency, Erongo Region, Greenland.

“Oxynatropyrochlore” (Atencio et al., 2010), (Na, #)2Nb2O6O, a possible new species, analyses published (Hogarth and Horne 1989; Knudsen 1989; Chukanov et al., 1999). Occurrences: Locality 2, Ndale Area, Fort Portal, Kabarole, Western Region, Uganda; Qaqqaarsuk, Maniitsoq, Maniitsoq Island, Qeqqata, Greenland; Mika pegmatite, Rangkul' Highlands, Gorno-Badakhshan, Tajikistan.

“Oxyplumbopyrochlore” (Atencio et al., 2010), Pb2Nb2O6O, a possible new species, analysis published (Voloshin and Pakhomovskiy, 1986). Occurrence: Kola Peninsula, Murmansk Oblast, Russia.

“Oxyyttropyrochlore-(Y)” (Atencio et al., 2010), (Y, #)2Nb2O6O, a possible new species, analysis published (Tindle and Breaks, 1998). Occurrence: Separation Rapids Lithium Project (Separation Lake area), Kenora District, Ontario, Canada.

“Kenoplumbopyrochlore” (Atencio et al., 2010), (Pb, #)2 Nb2O6□, a possible new species, analysis published (Voloshin and Pakhomovskiy, 1986). Occurrence: Ploskaya Mt, Western Keivy Massif, Keivy Mountains, Lovozersky District, Murmansk Oblast, Russia.

Microlite Group

Hydroxykenomicrolite (Atencio et al., 2010), (□, #)2Ta2O6 (OH), Fd3¯m, a 10.526 (5) Å, V 1166.244 Å3, first described by Voloshin et al. (1981) as “cesstibtantite.” The IMA number was not quoted in the original description of “cesstibtantite.” Type locality: Vasin-Myl’k Mt, Voron’i Tundry, Murmansk Oblast, Russia.

Oxystannomicrolite (Atencio et al., 2010), Sn2Ta2O6O, Fd3¯m, a 10.470 Å, V 1147.73 Å3, first described by Vorma and Siivola (1967) as “sukulaite.” The IMA number was not quoted in the original description of “sukulaite.” Type locality: Sukula Pegmatites, Tammela, Tavastia Proper, Finland.

Oxystibiomicrolite (Atencio et al., 2010), (Sb3+, #)2Ta2O6O, Fd3¯m, a 10.455(2) Å, V 1142.80 Å3, first described by Groat et al. (1987) as “stibiomicrolite.” The IMA number was not quoted in the original description of “stibiomicrolite.” Type locality: Varuträsk, Skellefteå, Västerbotten County, Sweden.

Fluorcalciomicrolite (Andrade et al., 2013a), (Ca2+, #)2 Ta2O6F, Fd3¯m, a 10.4191 (6) Å, V 1131.07 Å3. IMA number: 2012-036. Type locality: Volta Grande mine (Mibra mine), Nazareno, Minas Gerais, Brazil.

Fluornatromicrolite (Witzke et al., 2011), (Na, #)2 Ta2O6F, Fd3¯m, a 10.4451 (2) Å, V 1139.56 Å3. IMA number: 1998-018. Type locality: Quixaba pegmatite, Quixaba, Frei Martinho, Paraíba, Brazil.

Hydrokenomicrolite (Andrade et al., 2013b; Atencio, 2016), (□, #)2Ta2O6 (H2O). Hydrokenomicrolite-3C polytype: Cubic, Fd3¯m, a 10.454(1) Å. V 1142.5 (2) Å3. Hydrokenomicrolite-3R polytype: Trigonal, R3¯m, a 7.4290(6), c 18.505 (2) Å, V 884.5 (1) Å3. IMA Numbers: hydrokenomicrolite (hydrokenomicrolite-3C) 2011-103; “parabariomicrolite” (hydrokenomicrolite-3R): 84-3. Type localities: Hydrokenomicrolite-3C (described as hydrokenomicrolite by Andrade et al., 2013b), Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Hydrokenomicrolite-3R (formerly described as “parabariomicrolite” by Ercit et al., 1986), Alto do Giz pegmatite, Equador Co., Rio Grande do Norte, Brazil.

Hydroxycalciomicrolite (Andrade et al., 2017), (Ca2+, #)2 Ta2O6(OH), P4232, a 10.4205(8) Å V 1131.53 Å3. The first pyrochlore-supergroup mineral with long range ordering of Ca and □ on the A sites, that invokes reduction of symmetry. IMA number: 2013-073. Type locality: Volta Grande mine (Mibra mine), Nazareno, Minas Gerais, Brazil.

Kenoplumbomicrolite (Atencio et al., 2018), (Pb, #)2 Ta2O6□, P4232, a 10.575 (5) Å V 1182.6 Å3. IMA number: 2015-007-a. Type locality: Ploskaya Mt, Western Keivy Massif, Keivy Mountains, Lovozersky District, Murmansk Oblast, Russia.

Oxynatromicrolite (Fan et al., 2016), (Na, #)2 Ta2O6O, Fd3¯m, a 10.420(6) Å, V 1131.4 Å3. IMA number: 2013-063. Type locality: Pegmatite vein no. 309, Guanpo pegmatite field, Guanpo, Lushi County, Sanmenxia, Henan, China.

Oxycalciomicrolite (Menezes da Silva et al., 2020), Ca2Ta2O6O, Fd3¯m, a 10.4325 (4) Å, V 1135.46(14) Å3. IMA number: 2019-110. Type locality: Fumal pegmatite, Nazareno, Minas Gerais, Brazil.

Oxybismutomicrolite (Kasatkin et al., 2020), (Bi, #)2 Ta2O6O, Fd3¯m, a 10.475 (1) Å, V 1149.38 Å3. IMA number: 2019-047. Type locality: Solnechnaya pegmatite, Malkhan pegmatite field (Malchan; “Malechansk”), Krasnyi Chikoy, Zabaykalsky Krai, Russia.

“Hydromicrolite” (Atencio et al., 2010), (H2O, #)2 Nb2O6(H2O), a possible new species, analysis published (Andrade, 2007). Occurrence: Volta Grande mine (Mibra mine), Nazareno, Minas Gerais, Brazil.

Roméite Group

Hydroxycalcioroméite (Atencio et al., 2010), (Ca, #)2Sb5+2O6(OH), Fd3¯m, a 10.264 Å, V 1081.31 Å3, first described by Hussak and Prior (1895) as “lewisite.” IMA number: a pre-IMA mineral. Type locality: Tripuí (Tripuhy), Ouro Preto, Minas Gerais, Brazil.

Fluorcalcioroméite (Atencio et al., 2013), (Ca, #)2 Sb5+2O6F, Fd3¯m, a 10.2987 (8) Å, V 1092.31 Å3. IMA number: 2012-093. Type locality: Starlera Mine, Starlera Valley, Ferrera, Viamala Region, Grisons, Switzerland.

Hydroxyferroroméite (Mills et al., 2017a), (Fe2+, #)2Sb5+2O6(OH), Fd3¯m, a 10.25 (3) Å, V 1077 Å3. IMA number: 2016-006. Type locality: Correc d’en Llinassos (Ravin d’en Llinassous), Oms, Céret, Pyrénées-Orientales, Occitanie, France.

Oxycalcioroméite (Biagioni et al., 2013), Ca2Sb5+2O6O, Fd3¯m, a 10.3042 (7) Å, V 1094.06 Å3. IMA number: 2012-022. Type locality: Buca della Vena Mine, Ponte Stazzemese, Stazzema, Lucca Province, Tuscany, Italy.

Oxyplumboroméite (Hålenius and Bosi, 2013), Pb2Sb5+2O6O, Fd3¯m, a 10.3783 (6) Å, V 1117.84 Å3. IMA number: 2013-042. Type locality: Harstigen Mine, Pajsberg, Persberg ore district, Filipstad, Värmland County, Sweden.

“Fluornatroroméite” (Atencio et al., 2010), (Na, #)2 Sb5+2O6F, a possible new species, crystal structure determined (Matsubara et al., 1996). Occurrence: Gozaisho mine, Iwaki, Japan.

Elsmoreite Group

Hydrokenoelsmoreite (Atencio et al., 2010), □2W2O6 (H2O), first described by Williams et al. (2005) as “elsmoreite”. Hydrokenoelsmoreite-3C polytype: Cubic, Fd3¯m, a 10.3065(3) Å. V 1094.80 Å3. Hydrokenoelsmoreite-6R polytype: Trigonal, R3¯, a 7.2882(2), c 35.7056(14) Å, V 1642.51 Å3. IMA Numbers: “elsmoreite” (hydrokenoelsmoreite-3C) 2003-059. Type localities: Hydrokenoelsmoreite-3C (described as elsmoreite by Williams et al., 2005): Elsmore Tin Mine (Elsmore Tin lodes), Elsmore, Gough Co., New South Wales, Australia; hydrokenoelsmoreite-3C and hydrokenoelsmoreite-6R (formerly “ferritungstite”) from Hemerdon mine (now Drakelands mine) in Devon, United Kingdom (Mills et al., 2016).

Hydroxykenoelsmoreite (Mills et al., 2017b), (□, #)2 W2O6(OH), Trigonal, R3¯, a 7.313(2), c 17.863(7) Å, V 827(1) Å3. IMA number: 2016-056. Type locality: Masaka gold mine, Muyinga Province, Burundi.

Unassigned Members

Fluornatrocoulsellite (Atencio et al., 2017), (Na, #)2 Mg2F6F, R3¯m, a 7.1620(1), c 17.5972(3) Å, V 781.7049 Å3, first described by Birch et al. (2009) as “cousellite.” IMA number: 2009-046 (coulsellite). Type locality: Mt Cleveland Mine, Luina, Heazlewood district, Waratah-Wynyard municipality, Tasmania, Australia.

Hydrokenoralstonite (Atencio et al., 2017), □2Al2F6(H2O), Fd3¯m, a 9.91(4) Å. V 973.24 Å3, first described by Brush (1871) as “ralstonite.” IMA number: pre-IMA mineral. Type locality: Ivigtut Mine, Arsuk Fjord, Sermersooq, Greenland.

Betafite Group

“Oxycalciobetafite” (Atencio et al., 2010), (Ca,#)2Ti2O6O, a possible new species, analysis published (Meyer and Yang, 1988). Occurrence: Fra Mauro Base (Apollo 14 landing site), Fra Mauro Highlands, The Moon.

“Oxyuranobetafite” (Atencio et al., 2010), (U, #)2 Ti2O6O, a possible new species, analysis published (Mokhov et al., 2008). Occurrence: Luna 24 landing site, Mare Crisium, The Moon.

Data Availability Statement

The original contributions presented in the study are included in the article/supplementary material; further inquiries can be directed to the corresponding author.

Author Contributions

The author confirms being the sole contributor of this work and has approved it for publication.

Conflict of Interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Acknowledgments

The author acknowledges FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for financial support (process 2019/23498-0) and CNPq for research productivity scholarship (process 303431/2019-9).

References

Agakhanov, A. A., Kasatkin, A. V., Britvin, S. N., Siidra, O. I., Pautov, L. A., Pekov, I. V., et al. (2021). Cesiokenopyrochlore, the First Natural Niobate with an Inverse Pyrochlore Structure. Can. Mineral. 59, 149–157. doi:10.3749/canmin.2000056

CrossRef Full Text | Google Scholar

Andrade, M. B., Atencio, D., Chukanov, N. V., and Ellena, J. (2013b). Hydrokenomicrolite, (☐,H2O)2Ta2(O,OH)6(H2O), a New Microlite-Group mineral from Volta Grande Pegmatite, Nazareno, Minas Gerais, Brazil. Am. Mineral. 98, 292–296. doi:10.2138/am.2013.4186

CrossRef Full Text | Google Scholar

Andrade, M. B., Atencio, D., Persiano, A. I. C., and Ellena, J. (2013a). Fluorcalciomicrolite, (Ca,Na,☐)2Ta2O6F, a New Microlite-Group mineral from Volta Grande Pegmatite, Nazareno, Minas Gerais, Brazil. Mineral. Mag. 77 (7), 2989–2996. doi:10.1180/minmag.2013.077.7.08

CrossRef Full Text | Google Scholar

Andrade, M. B. (2007). “Estudo cristaloquímico de minerais do grupo do pirocloro no Brasil,”. Tese de Doutorado (São Paulo: Instituto de Geociências), 207. doi:10.11606/T.44.2007.tde-30072007-165039

CrossRef Full Text | Google Scholar

Andrade, M. B., Yang, H., Atencio, D., Downs, R. T., Chukanov, N. V., Lemée-Cailleau, M. H., et al. (2017). Hydroxycalciomicrolite, Ca1.5Ta2O6(OH), a New Member of the Microlite Group from Volta Grande Pegmatite, Nazareno, Minas Gerais, Brazil. Mineral. Mag. 81, 555–564. doi:10.1180/minmag.2016.080.116

CrossRef Full Text | Google Scholar

Atencio, D., Andrade, M. B., Bastos Neto, A. C., and Pereira, V. P. (2017). Ralstonite Renamed Hydrokenoralstonite, Coulsellite Renamed Fluornatrocoulsellite, and Their Incorporation into the Pyrochlore Supergroup. Can. Mineral. 55 (1), 115–120. doi:10.3749/canmin.1600056

CrossRef Full Text | Google Scholar

Atencio, D., Andrade, M. B., Bindi, L., Bonazzi, P., Zoppi, M., Stanley, C. J., et al. (2018). Kenoplumbomicrolite, (Pb,□)2Ta2O6[□,(OH),O], a New mineral from Ploskaya, Kola Peninsula, Russia. Mineral. Mag. 82, 1049–1055. doi:10.1180/minmag.2017.081.082

CrossRef Full Text | Google Scholar

Atencio, D., Andrade, M. B., Christy, A. G., Gieré, R., and Kartashov, P. M. (2010). The Pyrochlore Supergroup of Minerals: Nomenclature. Can. Mineral. 48, 673–698. doi:10.3749/canmin.48.3.673

CrossRef Full Text | Google Scholar

Atencio, D., Ciriotti, M. E., and Andrade, M. B. (2013). Fluorcalcioroméite, (Ca,Na)2Sb25+(O,OH)6F, a New Roméite-Group mineral from Starlera Mine, Ferrera, Grischun, Switzerland: Description and crystal Structure. Mineral. Mag. 77, 467–473. doi:10.1180/minmag.2013.077.4.06

CrossRef Full Text | Google Scholar

Atencio, D. (2016). Parabariomicrolite Discredited as Identical to hydrokenomicrolite-3R. Mineral. Mag. 80, 923–924. doi:10.1180/minmag.2016.080.129

CrossRef Full Text | Google Scholar

Atencio, D. (2013). The Pyrochlore Supergroup: Remarks on Nomenclature - Response. Can. Mineral. 51 (5), 803–804. doi:10.3749/canmin.51.5.803

CrossRef Full Text | Google Scholar

Biagioni, C., Meisser, N., Nestola, F., Pasero, M., Robyr, M., Roth, P., et al. (2018). Hydrokenopyrochlore, (□,#)2Nb2O6·H2O, a New Species of the Pyrochlore Supergroup from the Sahatany Pegmatite Field, Antananarivo Province, Madagascar. ejm 30, 869–876. doi:10.1127/ejm/2018/0030-2761

CrossRef Full Text | Google Scholar

Biagioni, C., Orlandi, P., Nestola, F., and Bianchin, S. (2013). Oxycalcioroméite, Ca2Sb2O6O, from Buca Della Vena Mine, Apuan Alps, Tuscany, Italy: a New Member of the Pyrochlore Supergroup. Mineral. Mag. 77, 3027–3037. doi:10.1180/minmag.2013.077.7.12

CrossRef Full Text | Google Scholar

Birch, W. D., Grey, I. E., Mumme, W. G., and Pring, A. (2009). Coulsellite, a New mineral from the Cleveland Mine, Luina, Tasmania. Aust. J. Mineralogy 15, 21–24.

Google Scholar

Brush, G. J. (1871). On Ralstonite, a New Fluoride from Arksut Fiord [Greenland]. Am. J. Sci. s3-2, 30–31. doi:10.2475/ajs.s3-2.7.30

CrossRef Full Text | Google Scholar

Černý, P., Hawthorne, F. C., Laflamme, J. H. G., and Hinthorne, J. R. (1979). Stibiobetafite, a New Member of the Pyrochlore Group from Vežná, Czechoslovakia. Can. Mineral. 17, 583–588.

Google Scholar

Christy, A. G., and Atencio, D. (2013). Clarification of Status of Species in the Pyrochlore Supergroup. Mineral. Mag. 77 (1), 13–20. doi:10.1180/minmag.2013.077.1.02

CrossRef Full Text | Google Scholar

Chukanov, N. V., Blass, G., Zubkova, N. V., Pekov, I. V., Pushcharovskii, D. Y., and Prinz, H. (2013). Hydroxymanganopyrochlore: A New mineral from the Eifel Volcanic Region, Germany. Dokl. Earth Sc. 449 (1), 342–345. doi:10.1134/s1028334x13030100

CrossRef Full Text | Google Scholar

Chukanov, N. V., Skrigitil, A. M., Kuzmina, O. V., and Zadov, A. E. (1999). Bismutopyrochlore (Bi, U, Ca, Pb)1+x(Nb,Ta)2O6(OH)·nH2O − a New mineral from the Mika Pegmatite Vein (Eastern Pamirs). Zapiski Vsesoyuznoye Mineralogichestogo Obshchestvo 128 (4), 36–41.

Google Scholar

Ercit, T. S., Hawthorne, F. C., and Černy, P. (1986). Parabariomicrolite, a New Species and its Structural Relationship to the Pyrochlore Group. Can. Mineral. 24, 655–663.

Google Scholar

Fan, G., Ge, X., Li, G., Yu, A., and Shen, G. (2016). Oxynatromicrolite, (Na,Ca,U)2Ta2O6(O,F), a New Member of the Pyrochlore Supergroup from Guanpo, Henan Province, China. Mineralogical Mag. 81 (4), 743–751.

Google Scholar

Franchini, M., Lira, R., Meinert, L., Ríos, F. J., Poklepovic, M. F., Impiccini, A., et al. (2005). Na-Fe-Ca Alteration and LREE (Th-Nb) Mineralization in marble and granitoids of Sierra de Sumampa, Santiago del Estero, Argentina. Econ. Geology 100, 733–764. doi:10.2113/100.4.733

CrossRef Full Text | Google Scholar

Goreaud, M., and Raveau, B. (1980). Alunite and Crandallite: a Structure Derived from that of Pyrochlore. Am. Mineral. 65, 953–956.

CrossRef Full Text | Google Scholar

Grey, I. E., Birch, W. D., Bougerol, C., and Mills, S. J. (2006). Unit-cell Intergrowth of Pyrochlore and Hexagonal Tungsten Bronze Structures in Secondary Tungsten Minerals. J. Solid State. Chem. 179, 3860–3869. doi:10.1016/j.jssc.2006.08.030

CrossRef Full Text | Google Scholar

Groat, L. A., ČErný, P., and Ercit, T. S. (1987). Reinstatement of Stibiomicrolite as a Valid Species. Geologiska Föreningen i Stockholm Förhandlingar 109, 105–109. doi:10.1080/11035898709453757

CrossRef Full Text | Google Scholar

Hålenius, U., and Bosi, F. (2013). Oxyplumboroméite, Pb2Sb2O7, a New mineral Species of the Pyrochlore Supergroup from Harstigen Mine, Värmland, Sweden. Mineral. Mag. 77, 2931–2939. doi:10.1180/minmag.2013.077.7.04

CrossRef Full Text | Google Scholar

Hogarth, D. D. (1977). Classification and Nomenclature of the Pyrochlore Group. Am. Mineral. 62, 403–410.

Google Scholar

Hogarth, D. D., and Horne, J. E. T. (1989). Non-metamict Uranoan Pyrochlore and Uranpyrochlore from Tuff Near Ndale, Fort Portal Area, Uganda. Mineral. Mag. 53, 257–262. doi:10.1180/minmag.1989.053.370.14

CrossRef Full Text | Google Scholar

Hogarth, D. D. (2013). The Pyrochlore Group: Remarks on Nomenclature. Can. Mineral. 51 (5), 801. doi:10.3749/canmin.51.5.801

CrossRef Full Text | Google Scholar

Hussak, E., and Prior, G. T. (1895). Lewisite and Zirkelite, Two New Brazilian Minerals. Mineral. Mag. J. Mineral. Soc. 11, 80–88. doi:10.1180/minmag.1895.011.50.05

CrossRef Full Text | Google Scholar

Ivanyuk, G. Y., Yakovenchuk, V. N., Panikorovskii, T. L., Konoplyova, N., Pakhomovsky, Y. A., Bazai, A. V., et al. (2019). Hydroxynatropyrochlore, (Na,Сa,Ce)2Nb2O6(OH), a New Member of the Pyrochlore Group from the Kovdor Phoscorite-Carbonatite Pipe, Kola Peninsula, Russia. MinMag. 83 (1), 107–113. doi:10.1180/minmag.2017.081.102

CrossRef Full Text | Google Scholar

Jingwu, Y., Li, G., Guangming, Y., Ge, X., Xu, H., and Wang, J. (2015). Fluornatropyrochlore, a New Pyrochlore Supergroup mineral from the Boziguoer Rare Earth Element deposit, Baicheng County, Akesu, Xinjiang, China. Can. Mineral. 53, 455–460.

Google Scholar

Kartashov, P. M., Mokhov, A. V., and Kovalenko, V. I. (1998). Rare Earth Sr-Pyrochlore from Western Mongolia: The First Find in Association with Alkalic Granites. Doklady Earth Sci. 359, 510–513.

Google Scholar

Kasatkin, A. V., Britvin, S. N., Peretyazhko, I. S., Chukanov, N. V., Škoda, R., and Agakhanov, A. A. (2020). Oxybismutomicrolite, a New Pyrochlore-Supergroup mineral from the Malkhan Pegmatite Field, Central Transbaikalia, Russia. MinMag. 84, 444–454. doi:10.1180/mgm.2020.25

CrossRef Full Text | Google Scholar

Knudsen, C. (1989). “Pyrochlore Group Minerals from the Qaqarssuk Carbonatite Complex,” in Lanthanides, Tantalum and Niobium. Editors P. Möller, P. Černý, and F. Saupe (Berlin: Springer-Verlag). doi:10.1007/978-3-642-87262-4_3

CrossRef Full Text | Google Scholar

Li, G., Yang, G., Lu, F., Xiong, M., Ge, X., Pan, B., et al. (2016). Fluorcalciopyrochlore, a New mineral Species from Bayan Obo, Inner Mongolia, P.R. China. Can. Mineral. 54, 1285–1291.

Google Scholar

Li, T., Li, Z., Fan, G., Fan, H., Zhong, J., Jahdali, N. S., et al. (2020). Hydroxyplumbopyrochlore, (Pb1.5,□0.5)Nb2O6(OH), a New Member of the Pyrochlore Group from Jabal Sayid, Saudi Arabia. MinMag. 84 (5), 785–790. doi:10.1180/mgm.2020.69

CrossRef Full Text | Google Scholar

Matsubara, S., Kato, A., Shimizu, M., Sekiuchi, K., and Suzuki, Y. (1996). Romeite from the Gozaisho Mine, Iwaki, Japan. Mineralogical J. 18 (4), 155–160. doi:10.2465/minerj.18.155

CrossRef Full Text | Google Scholar

Menezes da Silva, V. H. R., Ávila, C. A., Neumann, R., Faulstich, F. R. L., Alves, F. E. A., Almeida, F. B., Cidade, T. P., and Sousa, S. S. C. G. (2020). Oxycalciomicrolite, (Ca,Na)2(Ta,Nb,Ti)2O6(O,F), a new member of the microlite group (pyrochlore supergroup) from the Paleoproterozoic São João del Rei Pegmatite Province, Minas Gerais state, Brazil. MinMag. 84, 854–858. doi:10.1180/mgm.2020.74

CrossRef Full Text | Google Scholar

Meyer, C., and Yang, S. V. (1988). Tungsten-bearing Yttrobetafite in Lunar Granophyre. Am. Mineral. 73, 1420–1425.

Google Scholar

Mills, S. J., Christy, A. G., Kampf, A. R., Birch, W. D., and Kasatkin, A. (2017b). Hydroxykenoelsmoreite, the First New mineral from the Republic of Burundi. ejm 29, 491–497. doi:10.1127/ejm/2017/0029-2618

CrossRef Full Text | Google Scholar

Mills, S. J., Christy, A. G., Rumsey, M. S., Spratt, J., Bittarello, E., Favreau, G., et al. (2017a). Hydroxyferroroméite, a New Secondary Weathering mineral from Oms, France. ejm 29, 307–314. doi:10.1127/ejm/2017/0029-2594

CrossRef Full Text | Google Scholar

Mills, S. J., Christy, A. G., Rumsey, M. S., and Spratt, J. (2016). The crystal Chemistry of Elsmoreite from the Hemerdon (Drakelands) Mine, UK: hydrokenoelsmoreite-3C and hydrokenoelsmoreite-6R. Mineral. Mag. 80, 1195–1203. doi:10.1180/minmag.2016.080.058

CrossRef Full Text | Google Scholar

Mills, S. J., Hatert, F., Nickel, E. H., and Ferraris, G. (2009). The Standardisation of mineral Group Hierarchies: Application to Recent Nomenclature Proposals. ejm 21, 1073–1080. doi:10.1127/0935-1221/2009/0021-1994

CrossRef Full Text | Google Scholar

Miyawaki, R., Momma, K., Matsubara, S., Sano, T., Shigeoka, M., and Horiuchi, H. (2017). Hydroxykenopyrochlore, IMA 2017-030a, CNMNC Newsletter No. 39. Mineralogical Mag. 81, 1279–1286. October 2017, page 1285.

Google Scholar

Mokhov, A. V., Kartashov, P. M., Bogatikov, O. A., Ashikhmina, N. A., Magazina, L. O., and Koporulina, E. V. (2008). Fluorite, Hatchettolite, Calcium Sulfate, and bastnasite-(Ce) in the Lunar Regolith from Mare Crisium. Dokl. Earth Sc. 422 (1), 1178–1180. doi:10.1134/s1028334x08070416

CrossRef Full Text | Google Scholar

Momma, K., and Izumi, F. (2011). VESTA 3for Three-Dimensional Visualization of crystal, Volumetric and Morphology Data. J. Appl. Cryst. 44, 1272–1276. doi:10.1107/s0021889811038970

CrossRef Full Text | Google Scholar

Rouse, R. C., Dunn, P. J., Peacor, D. R., and Wang, L. (1998). Structural Studies of the Natural Antimonian Pyrochlores. J. Solid State. Chem. 141, 562–569. doi:10.1006/jssc.1998.8019

CrossRef Full Text | Google Scholar

Schmitt, A. K., Trumbull, R. B., Dulski, P., and Emmermann, R. (2002). Zr-Nb-REE Mineralization in Peralkaline Granites from the Amis Complex, Brandberg (Namibia): Evidence for Magmatic Pre-enrichment from Melt Inclusions. Econ. Geology 97, 399–413. doi:10.2113/gsecongeo.97.2.399

CrossRef Full Text | Google Scholar

Subramanian, M. A., Aravamudan, G., and Subba Rao, G. V. (1983). Oxide Pyrochlores - A Review. Prog. Solid State. Chem. 15, 55–143. doi:10.1016/0079-6786(83)90001-8

CrossRef Full Text | Google Scholar

Tindle, A. G., and Breaks, F. W. (1998). Oxide Minerals of the Separation Rapids Rare-Element Granitic Pegmatite Group, Northwestern Ontario. Can. Mineral. 36, 609–635. doi:10.1119/1.879923

CrossRef Full Text | Google Scholar

van Wambeke, L. (1978). Kalipyrochlore, a New mineral of the Pyrochlore Group. Am. Mineral. 63, 528–530.

Google Scholar

Voloshin, A. V., Men'shikov, Yu. P., Pakhomovskiy, Ya. A., and Polezhaeva, L. I. (1981). Cesstibtantite, (Cs,Na)SbTa4O12 − a New mineral from Granitic Pegmatites. Zapiski Vsesoyuznoye Mineralogichestogo Obshchestvo 116, 345–351.

Google Scholar

Voloshin, A. V., and Pakhomovskiy, Ya. A. (1986). Minerals and mineral Formation Evolution in Amazonite Pegmatites of Kola peninsula. Leningrad: Nauka, 168.

Vorma, A., and Siivola, J. (1967). Sukulaite − Ta2Sn2O7 − and Wodginite as Inclusions in Cassiterite in the Granite Pegmatite in Sukula, Tammela, in SW Finland. Bull. de la Comm. géologique de Finlande 229, 173–187.

Google Scholar

Williams, P. A., Leverett, P., Sharpe, J. L., Colchester, D. M., and Rankin, J. (2005). Elsmoreite, Cubic WO3·0.5H2O, a New mineral Species from Elsmore, New South Wales, Australia. Can. Mineral. 43, 1061–1064. doi:10.2113/gscanmin.43.3.1061

CrossRef Full Text | Google Scholar

Witzke, T., Steins, M., Doering, T., Schuckmann, W., Wegner, R., and Pöllmann, H. (2011). Fluornatromicrolite, (Na, Ca, Bi)2Ta2O6F, A New Mineral Species from Quixaba, Paraiba, Brazil. Can. Mineral. 49, 1105–1110. doi:10.3749/canmin.49.4.1105

CrossRef Full Text | Google Scholar

Yang, G., Li, G., Xiong, M., Pan, B., and Yan, C. (2014). Hydroxycalciopyrochlore, a New mineral Species from Sichuan, China. Acta Geologica Sinica - English Edition 88, 748–753. doi:10.1111/1755-6724.12235

CrossRef Full Text | Google Scholar

Keywords: pyrochlore supergroup, nomenclature, pyrochlore group, microlite group, elsmoreite group, roméite group

Citation: Atencio D (2021) Pyrochlore-Supergroup Minerals Nomenclature: An Update. Front. Chem. 9:713368. doi: 10.3389/fchem.2021.713368

Received: 22 May 2021; Accepted: 06 August 2021;
Published: 06 September 2021.

Edited by:

Sarah C. Finkeldei, University of California, Irvine, United States

Reviewed by:

Xiaolong Zhu, Merck, United States
Brendan Kennedy, The University of Sydney, Australia

Copyright © 2021 Atencio. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Daniel Atencio, datencio@usp.br

Download