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Supramolecular materials, which rely on dynamic non-covalent interactions, present a
promising approach to advance the capabilities of currently available biosensors. The
weak interactions between supramolecular monomers allow for adaptivity and
responsiveness of supramolecular or self-assembling systems to external stimuli. In
many cases, these characteristics improve the performance of recognition units,
reporters, or signal transducers of biosensors. The facile methods for preparing
supramolecular materials also allow for straightforward ways to combine them with
other functional materials and create multicomponent sensors. To date, biosensors
with supramolecular components are capable of not only detecting target analytes
based on known ligand affinity or specific host-guest interactions, but can also be
used for more complex structural detection such as chiral sensing. In this Review, we
discuss the advancements in the area of biosensors, with a particular highlight on the
designs of supramolecular materials employed in analytical applications over the years. We
will first describe how different types of supramolecular components are currently used as
recognition or reporter units for biosensors. The working mechanisms of detection and
signal transduction by supramolecular systems will be presented, as well as the important
hierarchical characteristics from the monomers to assemblies that contribute to selectivity
and sensitivity. Wewill then examine how supramolecular materials are currently integrated
in different types of biosensing platforms. Emerging trends and perspectives will be
outlined, specifically for exploring new design and platforms that may bring
supramolecular sensors a step closer towards practical use for multiplexed or
differential sensing, higher throughput operations, real-time monitoring, reporting of
biological function, as well as for environmental studies.

Keywords: supramolecular, biosensors, self-assembly, host-guest interactions, supramolecular analytical
chemistry

INTRODUCTION

The development of sensing platforms that can detect target analytes in biological milieu has since
transformed the workflow in fields such as disease diagnostics, drug discovery, and food industry
(Bhalla et al., 2016; Vigneshvar et al., 2016). These biosensors commonly rely on chemical,
immunological, or enzymatic sensing elements whereby the kinetics and affinity of receptor-
target binding at the molecular level are critical to their efficiency (Bhalla et al., 2016; Lim and
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Ahmed, 2017). There are currently several forms of biosensors
that can successfully monitor biological analytes by reporting
chemical, optical, electrical, or a combination of these signals
(Figure 1). For example, biosensors are used not only to screen
pathogens and prevent food contamination, but also, they are
used to identify and detect the level of glucose, heart failure, and
other diseases (Mehrotra, 2016). Since the development of the
first biosensor in 1962 (Clark and Lyons, 1962), which was used
for oxygen detection, the range of analytes that can be detected by
these biosensors have now expanded from ionic species or small,
neutral organic molecules, to cellular phenotypes (Mehrotra,
2016; Mako et al., 2019). Despite several advancements in the

area of biosensing, currently available biosensors are reported to
still have challenges associated with them, such as long-term
stability, low sensitivity, selectivity at low target concentrations,
and most importantly—the ability to perform under real-world
environments.

More recently, supramolecular materials brought together by
dynamic non-covalent interactions, such as host-guest
interactions mediated by H-bonding, have been utilized as
biosensing elements. The reversible nature of bonds that hold
supramolecular monomers together provide several advantages
for biosensing and for monitoring biologically-relevant analytes
or signals in a continuous manner (Webber et al., 2016; Pinalli

FIGURE 1 | Schematic representation of the components involved in detection and signal transduction for biosensing.

FIGURE 2 | Different recognition mechanisms utilized in supramolecular analytical chemistry. (A) Direct sensing, illustrating a turn-on and turn-off response; (B)
indicator displacement sensing; and sensing based on supramolecular (C) assembly/(D) disassembly.
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et al., 2018). Supramolecular analytical chemistry explores new
design and properties of synthetic structures that can afford signal
modulating molecular recognition and self-assembly processes
via dynamic interactions (You et al., 2015). The non-covalent and
adaptive nature of synthetic supramolecular units allow for
multiple mechanisms of detection (Figure 2) that lead to
increased signal-to-noise ratio and broadened range of
analytes. Three general detection schemes, particularly for
sensing systems that generate optical read-outs are the
following: 1) direct sensing, whereby a signal output is
generated upon the direct binding of an analyte to the
receptor (Figure 2A); 2) indicator displacement, which
involves the signal change upon the displacement of an
indicator by an analyte from the sensory unit (Figure 2B);
and 3) aggregation/disaggregation of sensory units in the
presence of absence of the analyte (Figure 2C,D). The low
energy barrier for disassembly and reassembly of
supramolecular structure (Li J. et al., 2020), specifically those
that are based on aggregates held by π-π interactions, also support
good signal amplification. Curently available supramolecular
materials have been made from inorganic systems, organic
structures, polymers, hybrid materials, charged molecules,
crystals, gels, metallic nanoparticles, and others by combining
various types of non-covalent interactions (Martins et al., 2015;
Wang et al., 2016). Many of these materials and their composites
can be functionalized in a facile manner to achieve water
solubility, making such supramolecular building blocks more
relevant for sensing biological analytes under aqueous
environments (Wang et al., 2016). Compared to top-down
fabrication approaches such as etching and photolithography,
the bottom-up fabrication of supramolecular materials allows the
formation of biosensor elements with nanoscale dimensions
(Nguyen et al., 2001; Aida et al., 2012; Kumar et al., 2018).
Beyond harnessing unique signal transduction mechanisms from
nanomaterials, the utility of supramolecular ensembles with
nanoscale dimensions enables the miniaturization of
biosensors which positively benefits the performance and
applicability of biosensors. The higher surface area-to volume
ratio increases the active sensing area, both enhancing the signal-
to-noise-ratio and reducing the non-specific binding in
biosensors (Adams et al., 2008; Soleymani and Li, 2017).
Biosensors based on supramolecular ensembles also present
higher local concentration of binding sites and lower
interference from water molecules solvating the assemblies,
resulting in highly sensitive recognition processes (Wang et al.,
2016). Considering all of these properties, supramolecular
materials are promising candidates for analytical applications
and have the potential to address some existing challenges in the
field of biosensors.

Herein, we will highlight key advancements in developing
supramolecular systems for biosensing and use this as a roadmap
to describe the next-generation of supramolecular biosensors.
First, we will provide examples of supramolecular structure
designs that serve as building blocks for biosensors operating
via different signal transduction mechanisms. We will then
feature representative examples of how certain supramolecular
materials are used and implemented for various biosensing

devices. To conclude, we will draw attention to emerging
approaches for utilizing supramolecular systems, particularly
how these may be adapted in the future towards better
addressing the existing challenges in biosensing. The unique
characteristics of supramolecular materials and the evolution
in the design of their structures or device implementation will
enable next-generation biosensors to measure a broader range of
analytes, biological functionalities or responses with improved
performance—towards positively contributing in environmental,
pharmaceutical, and biomedical applications.

SUPRAMOLECULAR SYSTEMS AS
RECOGNITION AND REPORTER UNITS
FOR BIOSENSING
Macrocycles as Recognition Units
Natural receptors, such as enzyme-substrate, protein-ligand,
and antibody-antigen rely on non-covalent interactions, shape
recognition, and binding site complementarities with high
specificity. Several biosensors have employed these
interactions to enhance selectivity (Kalantar-zadeh, 2013).
In a similar fashion, synthetic supramolecular host-guest
interactions, which typically involve macrocyclic systems,
have been established as recognition elements in biosensors
(Figure 3). For most macrocyclic hosts, the molecular
recognition mechanism is based on the non-covalent
entrapment of analytes as guest molecules in the host
cavity. Macrocycles are considered to be chemically stable,
easy to functionalize, and are suitable receptors for a wide
range of analytes as guest molecules (Ghale and Nau, 2014;
Pinalli et al., 2018). A variety of macrocycle functionalities can
be achieved by the cyclization of different motifs based on aryl
groups connected via short linkers—often resulting
macrocycles with a hydrophobic inner part and hydrophilic
outer part (Braegelman and Webber, 2019).

Among the most commonly used macrocyclic host is
cyclodextrin (CD), which is synthesized through cyclization
of glucose polysaccharides with α-1,4-linkage and can have
tunable cavity sizes (Diehl et al., 2015; Wajs et al., 2016;
Braegelman and Webber, 2019). The inner part of CDs is
hydrophobic, whereas the outer part consists of hydroxyl
moieties that facilitate water solubility. While adamantane-
cyclodextrin is a widely used host-guest interaction for
detection, CDs can also bind to a variety of nonpolar small
molecule guests with binding affinities usually ranging from
100–1000 M−1 (Mako et al., 2019). Cucurbiturils (CB[n]s) is
another class of water-soluble supramolecular host with a rigid
cavity that can bind strongly with larger organic or metal cations
(Diehl et al., 2015; Mako et al., 2019). CB[n]s are synthesized by
the condensation of glycoluril and formaldehyde under acidic
conditions, whereby the number of glycouril groups defines the
size of the CB[n] cavity (Pinalli et al., 2018). The macrocycle rim
of cucurbiturils are lined with carbonyls that result in a negative
charge density at the cavity, which drives the binding of
positively-charged guests along with solvation effects (Ling
et al., 2016; Kaifer, 2018). Beyond sensing, cucurbiturils can
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also act as delivery vehicles for many hydrophobic drugs due to
the hydrophobic nature of the host cavity (Diehl et al., 2015).

Another established class of macrocyclic supramolecular host
is calix[n]arenes, which have been used as a receptor for both
small cations and anions (Mako et al., 2019). Calixarenes can be
formed by the condensation of a p-substituted phenol, resorcinol,

or pyrogallol with an aldehyde. Calixarenes conjugated with
naphthylidine have been reported to be capable of detecting
amino acids such as cysteine, histidine, aspartic acid, and
glutamic acid (Chinta et al., 2009). Hamuro and coworkers
showed that calix[4]arenes could target a protein (cytochrome
C) and inhibit the protein-protein interactions (Hamuro et al.,

FIGURE 3 | Examples of macrocycles used as supramolecular recognition units for biosensing. Adapted from Ghale et al., 2014. Copyright 2014 American
Chemical Society.
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1997). Calixpyrroles, which are calixarene derivatives with
conical conformation, have been demonstrated to bind to
cations or anions depending on structural modification (Gale
et al., 1996). Crown ether adds to this list of commonmacrocycles
that can serve as a receptor for many metal ions chemical species,
which is often incorporated in fluorescence-based sensor systems
(Li et al., 2017). Unlike the other macrocycles discussed above, the
binding affinities of neutral crown ethers for metal cations in
organic solvents are generally stronger than in aqueous solution
(Diehl et al., 2015). For example, 18-crown-6 binding of K+ has an
association constant of 106 M−1 methanol, whereas in water, it is
only 102 M−1 (Lamb et al., 1980). Preferential binding among
different cations, such as between lithium vs. manganese cations,
has also been demonstrated for crown ethers (Pauric et al., 2016).

Among the most recently explored class of macrocyclic host is
pillar[n]arenes, composed of p-dialkoxybenzene-based repeating
units connected by methylene bridges (Li Q. et al., 2020). Pillar[n]
arenes can be synthesized via one-pot Friedel-Crafts alkylation of
1,4-dialkoxybenzenes, to form rigid macrocycles (Cai et al., 2021).
They utilize ion-dipole interactions, solvophobic effects, and
C-H-π interactions to interact with the guest compounds.
These driving forces provide host-guest selectivity for different
types of target analytes (Cai et al., 2021). Their electron-rich
cavities can bind with cationic (e.g., toxic heavy metal ions) and
neutral guests, but these cavities can also be functionalized to bind
with anionic guests (Li Q. et al., 2020). For instance, Yin and co-
workers have developed a sensor based on a water-soluble pillar
[5]arene host and a planar chromophoric guest to detect Fe3+ ions
with a 2.13 × 10–7 mol/L limit of detection (Yao et al., 2017).
Apart from sensing and detection, pillar[n]arenes can also be
used for targeted live cell imaging. Yao and co-workers have
reported a supramolecular system with a two-step, sequential red
fluorescence enhancement using pillar[5]arene-based host-guest
recognition for mitochondria-targeted cell imaging (Guo et al.,
2020). With this imaging construct, pillar[5]arene formed a
complex with bicyanostilbene derivative (BSC8) due to the
presence of two N-methylpyridin-1-ium groups. When pillar
[5]arene/BSC8 complex was co-assembled with sodium
dodecyl benzene sulfonate (SDBS), the red fluorescence was
enhanced. In addition to pillar[n]arenes, prismarenes are also
emerging macrocycles for supramolecular sensing. Gaeta and co-
workers recently reported a templation-based
thermodynamically controlled synthesis of primarenes, which
have been demonstrated to have a good affinity for quaternary
ammonium guests (Della Sala et al., 2020).

π-Conjugated Assemblies as Reporter
Systems
Supramolecular sensory ensembles with large π-systems or
chromophores have emerged in recent years as effective
reporter units for biosensing. These are often comprised of
self-assembling π-systems with aggregation-induced changes in
physical properties, such as absorption, fluorescence, or
impedance, upon exposure to an analyte or other external
triggers. For example, perylene-3,4:9,10-bis(dicarboximide) or
perylene bisimide (PBI) is considered as an ideal fluorophore

for sensors because it is an electron acceptor and exhibits strong
fluorescence in its monomeric and small oligomeric states (Jones
et al., 2004; Zhao et al., 2007). PBI and its analogues have been
extensively studied as sensory units not only due to their excellent
optoelectronic properties, but also for their stability under
thermal and oxidative stress. The planar π-electron
conjugation of PBIs allow for π-π stacking interactions
amongst repeating units to form aggregates, resulting in
fluorescence quenching and a hypsochromic shift of the
absorption upon assembly (Zheng et al., 2005; Tang et al.,
2007). PBI derivatives can be easily functionalized, which
makes it more attractive for sensing with high specificity. In a
recent example, the assembly system of a PBI derivative, N,N′-
bis(2-(trimethylammonium)ethylene)perylene bisimide
dichloride, was used as a reporter element for detecting
biogenic amines based on electronic communication and effect
of these amines on the aggregation (and therefore, photophysical
properties) of dicationic PBI units (Bettini et al., 2019). Pyrene is
another widely used chromophore for biosensors that has a large
extinction coefficient, strong tendency towards π-π interactions,
and good stability in aqueous solution when functionalized
appropriately. The emission of pyrene is excimeric in nature,
as characterized by a structureless fluorescence profile that is red-
shifted by ca. 100 nm from the monomer emission (Wang et al.,
2016). Charged pyrene derivatives are often designed to probe
analytes that can electrostatically influence the aggregation of
pyrene, which can be monitored by the increase or quenching of
excimer emission. More examples of self-assembling π-systems
for biosensing with optical readouts will be discussed in the
subsequent sections.

Graphene is another interesting supramolecule that has caught
attention for sensing applications in the recent years (Cho et al.,
2020). While it is well known for its high mechanical strength,
thermal conductivity, and elasticity (Pumera et al., 2010), the high
surface-to-volume ratio of graphene enables the absorption of a
large amount of aromatic biomolecules through π-π interactions
(Geim and Novoselov, 2007), making it a favorable candidate for
biosensing applications. Similarly, the high specfic surface area of
graphene allows for direct contact with analytes resulting in high
specificity and allows receptors to be efficiently immobilized on
the graphene surface (Justino et al., 2017; Szunerits and
Boukherroub, 2018). One limitation of graphene is that its
native, unfunctionalized form has poor dispersion ability in
aqueous medium. On the other hand, graphene oxide (GO) is
easier to disperse and its nanoscale analogues have size-enabled
properties that have already been leveraged for differential
sensing of proteins, cells, and bacteria together with different
fluorophores (Chou et al., 2012; Pei et al., 2012).

Coordination Complexes as Reporter Units
Supramolecular coordination complexes (SCCs) with
π-conjugated ligands, controllable coordination geometries,
and tunable cavity architecture present several advantages for
sensing applications (Cook et al., 2013; Liu et al., 2015; Dey and
Haynes, 2021). Contrary to conventional fluorophores in small
molecule probes, which experience signal quenching due analyte-
induced aggregation, many SCCs display a higher signal-to-noise
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ratio due to aggregation-induced emission behavior in the
presence of an analyte or trigger. The first wave of designs
for these complexes were primarily designed for ion sensing.
To date, 2D-metallacycles and 3D-metallcages have been used
to probe larger ionic analytes, biomolecules, gases, and
antibiotics based on changes in fluorescence emission
intensities or quantum yields. Pt(II) complexes have been
among the most widely used SCC for sensing applications.
Recent examples include a Pt-based SCC capable of serving
as a dual selective probe to detect both cations and anions,
such as Zn2+ and pyrophosphate (Wong et al., 2021).
Yam and co-workers demonstrated another recent example
of an SCC involving Pt(II) complex used to detect RNA,
RNA synthesis inhibitor, and nucleolus (Law et al., 2021).
This guanidinium-functionalized alkynylplatinum(II) complex
exhibited low cytotoxicity against HeLa and Chinese hamster
ovary (CHO) cells, along with a low detection limit of 73.5 ng/ml
for its luminescence-based sensing mechanism. Other examples
of metal complexes have also now been used for chirality
recognition of biomolecules (Folmer-Andersen et al., 2005;
Folmer-Andersen et al., 2006; Dong et al., 2017; Mendez-
Arroyo et al., 2017). Several efforts have also been dedicated to
explore the influence of microenvironments on the sensing
efficiency of SCCs as optical biosensors, which is important
due to the heterogeneity of analyte environments for real-
world applications. For example, Stang and co-workers
demonstrated the effect of the number of metallacycle
appendages and solvent polarity for SCC sensing (Tang et al.,
2018). Their group reported other factors, such as the shape of
coordination complexes, counter-anion, or substituent effects,
that may influence the photophysical properties and sensing
performance of SCCs (Yan et al., 2016; Zhou et al., 2016;
Zhang M. et al., 2017). To explore the practical applicability of
SCCs, Duan and co-workers reported SCCs with optical
responses that can be utilized to detect amino acids even in
human blood serum sample. They were able to show that their
synthesized material (cerium-based tetrahedron with twelve
hydrogen-bonding amide linkages and four triphenylamines)
can selectively detect tryptophan/tryptophan-containing
peptides in DMF-water mixtures (He et al., 2012).

Advancing Detection Schemes Using
Nanoparticle Constructs
The sections above described general classes of compounds used
for recognition and/or signal transduction. Under this section,
presented are sensing elements that are specifically packaged to
have structures within the nanoscale. This strategy often allows
for enhanced signaling, multifunctionality, or better compatibility
with bioimaging techniques due to improved systemic circulation
dynamics. Nanoparticles for sensing that have been previously
reported span the range of organic-inorganic composites,
polymeric materials, and bioconjugated structures. Carbon-
based nanoparticles, nanofibers, or nanotubes are widely used
as nano-biosensors because they can be modified easily with
functional groups and have high chemical stability. Carbon
nanotubes (CNTs) are mainly used as electrochemical

transducers in biosensors because of their large surface area,
allowing an increase of immobilization of enzymes to the reaction
area with high sensitivity and high electrical conductivity (Zhang
et al., 2016; Cho et al., 2018). Similarly, the innate surface
properties of CNTs allow biomolecules such as DNA and
proteins to adsorb easily. CNTs can also be functionalized
with hydrophilic units resulting in higher carrier capacity (Rao
et al., 2011). Considering the relevance of these carbon-based
nanomaterials for biological sensing, there have been several
efforts focused on surface-functionalizing CNTs (e.g., with
amino acids) or investigating the biodegradation of CNTs due
to oxidative enzymes (Bianco et al., 2011; Tîlmaciu and Morris,
2015). A previous report showed CNT biodegradation due to
human myeloperoxidase, demonstrating the potential of CNT-
based DNA sensors for long-term biological use (Kagan et al.,
2010). Fullerenes, which are considered as 0-D nanomaterials
with low toxicity and good stability, have also been reported to be
useful in electrochemical biosensors with low detection limits
(Yuan et al., 2018; Wang et al., 2020).

Development of stimuli-responsive, amphiphilic
nanomaterials or amphiphile-induced aggregation of
nanoparticles have also emerged as a strategy to reduce
concerns with instability under biological environments and
toxicity. An early report from Heinze and co-workers
demostrated an optical chemical/biochemical biosensor that
is nanophase-separated due to amphiphilic polymeric
networks (Hanko et al., 2006). This design allows for one
phase to interact with the sensing elements, and another for
the target analytes. Moroever, using amphiphilic sensors have
high applicability for analytes that are also amphihilic in
character such as glycolipids (Xu et al., 2018). Specific
applications that have used amphiphilic structures for
sensing include bacterial detection (Nandi et al., 2015) or
assessment of pH-fluctuations in cancer cells or tumor
tissues (Kim et al., 2020).

As a step towards developing sensing platforms for high
throughput screening, nanoparticle array have also been
developed for detecting biomacromolecule libraries. Rotello
and co-workers have made huge strides on this front,
particularly on using metal nanoparticle bioconjugates that
utilize characteristic fingerprints for pattern recognition
(Miranda et al., 2010b; Bunz and Rotello, 2010; Mout et al.,
2012). For example, their group developed arrays of gold
nanoparticle-fluorescent polymer complexes that were able to
provide quantitative differentiation of multiple proteins with
varying structural characteristics (Moyano et al., 2011). In
another approach, enzyme-amplified array sensing (EAAS)
was developed with gold nanoparticles, β-galactosidase as the
enzyme, and an enzyme-activatable fluorescent probe (Miranda
et al., 2010a). More recent versions of nanoparticle sensor arrays
from Rotello and co-workers have been used to identify different
mammalian cell types/states or to detect bacteria (Bajaj et al.,
2010; Chen et al., 2015).

In the subsequent sections, we will be highlighting more
examples of biosensors based on supramolecular systems, but
with more emphasis on the mechanisms involved for signal
transduction.
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OPTICAL SUPRAMOLECULAR
BIOSENSORS

Supramolecular biosensors with readouts based on changes in
absorption, reflectance, emission, or interferometric pattern can
operate under label-free or label-based sensing (Peltomaa et al.,
2018). Regardless of the photonic process involved, optical
biosensors are often considered to be highly sensitive,
reproducible, and simple to use. The discussion below
highlights a couple of optical processes utilized for biosensing
(Figure 4).

Several optical sensors used for biologically relevant analytes
utilize fluoresent probes, which either provide a “turn-on” or
“turn-off” response. Sensors that use a “turn-on” response are
deemed to be more generally favorable due to less background
noise than a “turn-off” response. Early reports on supramolecular
fluorescence sensors are largely based on chromophores that are
able to change their emission upon binding of metal ions
(Fabbrizzi and Poggi, 1995). For example, an anthracene-based
supramolecular sensor with 3,8-bis-pyridin-4-ylethynyl [1,10]-
phenanthroline (BPP) ligand was reported to be sensitive to
micromolar concentrations of Ni2+, Cd2+, or Cr3+ (Resendiz

et al., 2004). When BPP is self-assembled with 1,8-platinum-
functionalized anthracene, the complex formed acts as a unit
molecular clip which enables the optical sensing of transition
metals. In a recent report by Gu and co-workers, a platform for
highly selective detection of an endocrine disrupting compound
(17β-estradiol) utilized a fluorescence-labeled DNA aptamer
targeted for this analyte (Yildirim et al., 2012). Their portable,
inexpensive, and reusable biosensor allows for real-time
monitoring of 17β-estradiol through covalently immobilized
recognition units onto the optical fiber sensor surface
(Figure 4A).

Another widely used fluorescence-based phenomenon in
biosensing is fluorescence resonance energy transfer (FRET),
which occurs when energy transfer between donor and
acceptor units occur as two interacting dipoles (Yuan et al.,
2013; Mako et al., 2019; Wu et al., 2020a). FRET probes require
the modulation of donor-acceptor distance or spectral overlap
integral based on the analyte to be detected (Figure 4B). As an
example, Wei et al. reported a metal ion FRET sensor that is
highly selective towards potassium ion constructed using
crown ether, carbon dots, and graphene (Wei et al., 2012).
The dynamic carbon dots and 18-crown-6-ether-reduced

FIGURE 4 | (A) Fluorescent labeling-based, (B) FRET-based, (C) SPR-based, and (D) LSPR-based mechanisms for optical biosensors. Adapted from (Yildirim
et al., 2012; Yuan et al., 2013; Damborsky et al., 2016; Huertas et al., 2019). Copyright 2012, 2013 American Chemical Society; 2016 Portland Press.
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graphene oxide hybrids (18C6E-rGO-Am-CD) complex were
assembled. This platform can detect K+ concentrations
relevant to the K+ content in the blood (3.5–5.3 mM).
Moreover, this supramolecular sensor showed higher
selectivity towards K+ as compared to other cations, which
implies that the variation in the physiological concentrations
of other ions have negligible effects on the read-outs.
Sensitivity for other cations or even other biomolecules can
be tuned for this sensor by combining different derivatives of
crown ethers with carbon dots-reduced-graphene oxide.
Additionally, the excitation (>450 nm) and emission
(>500 nm) wavelengths of the sensing unit can minimize
the background fluorescence from biological fluids. A more
recent study by Nau and co-workers used a supramolecular
FRET-based system for salmon sperm DNA sensing (Zhang
et al., 2019). CB[7] was used as the recognition unit that was
attached to a carboxyfluorescein (CF) dye as the FRET
acceptor. The FRET donor is 4′,6-diamidino-2-phenylindole
(DAPI), which can then intercalate with DNA. Upon
increasing the DNA concentrations, DAPI moves farther
from CB[7]-CF and does not serve as FRET donor. This
relocation causes the fluorescnce intensity ratio to linearly
increase in picomolar range (up to 20 μg/ml), with a limit of
detection of ca. 60 ng/ml. This ratiometric, FRET-based
sensing platform can be used as another method for DNA
quantification with high sensitivity and reliability.
Supramolecular biosensors with FRET probes have also
been used for sensing metabolites such as creatinine. In the
work by Sierra et al., calix[4]pyrrole phosphate-cavitands were
used to sense creatinine and its lipophilic derivative
hexylcreatinine (Figure 5; Sierra et al., 2020). They reported
the use of calix[4]pyrrole modified with dansyl fluorophore to
examine hexylcreatinine binding. The molecular recognition

mechanism of the developed supramolecular biosensor for
creatinine utilizes a combination of H-bonding, π-π, C-H-π
interactions of polar groups of the receptor unit. Data from
calorimetric titration revealed a one-site binding model for
this system, as suggested by the sigmoidal binding isotherm
with an inflection point around a host:guest ratio of 1:1. This
sensor for creatinine is advantageous over other creatinine
sensors because of the excellent binding ability to neutral polar
species, mono- and polyatomic anions from cone
conformation of the reporter unit. However, this reported
supramolecular biosensor needs improvement in its
selectivity to distinguish creatinine from other biologically
relevant analytes such as proline and urea.

As mentioned in an earlier section, optical biosensors that
depend on supramolecular assembly or aggregation of
chromophores as triggered by the presence of analytes are also
widely used. A fast, responsive humidity sensor reported by
Mogera et al. used nanofibers built from self-assembled
coronene tetracarboxylate (donor) and dodecyl methyl
viologen (acceptor), which are photoactive components that
can generate electrical readouts (Mogera et al., 2014). The
response time of this sensor to relative humidity was reported
to be only 10 milliseconds. This supramolecular sensing system is
stable under ambient conditions and can even be stored up to
8 months. Other biosensors depend on conjugated aromatic
compounds known as aggregation-induced emission
luminogens (AIEgens), which often consist of flexible
molecular moieties that can consume the energy of the excited
state upon photoexcitation through intramolecular motion in the
dispersed state. The fluorescence of AIEgens can be attributed to
the restriction of intermolecular motion (Li J. et al., 2020).
Supramolecular materials based on AIEgens could result in
high luminescence efficiency and can be constructed easily to

FIGURE 5 | (A) Schematic showing the supramolecular fluorescence-based approach towards detecting creatinine. BHQ: a black-hole quencher (B) Top:
Interaction of creatinine with a calix[4]pyrrole recognition unit. Bottom: Calix[4]pyrrole receptor is modified with dansyl fluorophore. (C) Top: Heat vs. time raw data for the
calorimetry titration of the lipophilic creatinine derivative. Bottom: Normalized and integrated data from (C) top, showing the fit to the one-site binding model. Figures
adapted from (Sierra et al., 2020). Copyright 2020 American Chemical Society.

Frontiers in Chemistry | www.frontiersin.org August 2021 | Volume 9 | Article 7231118

Lim et al. The Future of Supramolecular Biosensors

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


give controlled and tunable architectures (Li J. et al., 2020). Tang
and co-workers reported the first AIEgen using
tetraphenylethylene (TPE) as the supramolecular reporter unit
(Hong et al., 2008). A more recent example from Lee an co-
workers utilized a fluorescent “turn-on” peptide-modified TPE
probe to detect heparin. This probe used electrostatic interactions
and self-assembly to form supramolecular nanoparticles. The
limit of detection of this sensor was 138.0 pM in water and
2.6 nM in serum sample (Lee et al., 2018). This sensor is the first
example that shows the dual role of a fluorescent probe to detect
and inhibit via the recognition process. Compared to the
previously reported fluorescence methods for detecting
oversulfated chondroitin sulfate, known as the heparin
contaminant that can cause hypotension and angioedema, this
fluorescence probe does not require a large amount of the enzyme
and can be easily utilized for fast high-throughput screening.

Finally, under this section, we highlight surface plasmon
resonance (SPR) as a widely utilized optical phenomenon for
biosensors (Ogoshi and Harada, 2008; Dey and Goswami, 2011;
Huertas et al., 2019; Chen and Wang, 2020). SPR allows for
changes in refractive index to be measured in response to binding
of analytes on the surface. This phenomenon occurs when the
polarized light is reflected on the surface of metal at the interface
of two media at a certain angle (Figure 4C). For example, Chen
et al. used a hydrogel-gold nanoparticle supramolecular sphere to
develop a label-free and real-time SPR imaging biosensor and
specifically detect prostate cancer cell-derived exosomes (Chen
et al., 2020). DNA probes on the gold chip surface modified with
antibodies can capture the targets by forming polymers. Although
the reported limit of detection for this biosensor is 1 × 105

particles/mL, which is relatively inferior than the reported
values of other nanomaterial-based methods for detecting
exosomes, this sensor platform provided high response signals
and also shows specificity against exosomes derived from
different cells lines. This SPR imaging biosensor has the
potential to be utilized in the clinical applications for early
diagnosis and real time treatment monitoring of prostate
cancer. On the other hand, localized SPR (LSPR) presents a
modified SPR configuration that relies on distinct optical
processes that occur due to the interaction of light with
metallic nanostructures (Figure 4D). LSPR involves
photoexcitation of metallic nanostructures that induces a
collective electron charge oscillation and impacts the UV-
visible absorbance (Damborsky et al., 2016). Sensing platforms
based on LSPR offer a similar performance SPR systems without
requiring high surface densities of recognition molecules.

SUPRAMOLECULAR SENSING WITH
ELECTROCHEMICAL AND ELECTRICAL
READ-OUTS
Since the conception of the first electrochemical biosensor based
on glucose oxidase, electrochemical read-outs have been
predominantly used for biosensors, primarily due to their
efficiency in metabolite monitoring (Chaubey and Malhotra,
2002; Turner, 2013; Hammond et al., 2016). Application of

supramolecular materials in electrochemical biosensors not
only improves the selectivity detection of biochemical
reactions, but also increases the signal-to-noise ratio by
minimizing the electrochemical sensor elements to nano-scale
or micro-scale (Schoning and Poghossian, 2002). Electrochemical
sensing in the presence of chemical and biological analytes
typically involves electron transfer due to non-covalent
interactions, which consequentially, alters the electrical
properties of supramolecular systems in response to analyte
exposure. This alteration can be converted to electrical signals
and analyzed by various electrical read-out techniques such as
potentiometry and amperometry (Grieshaber et al., 2008).
Supramolecular systems that utilize electrochemical processes
or electrical read-outs (Figure 6; Yan and Sadik, 2001; Lu
et al., 2019) for analyte recognition has been widely used for
ion quantification, protein sensing, nucleic acid analysis, and
small molecule detection. To date, pushing the limit of detection
to sub-nanomolar range has been a major driving factor for the
development of potentiometric and amperometric biosensors
(Bakker and Pretsch, 2005; Paul and Srivastava, 2018). One of
the advantages of potentiometric biosensors is their
independence from sample volume and biosensor size. This
provides the potential to minimize the biosensor size and
achieve high sensitivity at the same time (Ding and Qin,
2020). On the other hand, signal generation for
supramolecular amperometric biosensors is based on charge-
transfer processess that can produce measurable currents for
the analysis. An amperometric biosensor offers advantages
such as short response and analysis time, ease of use without
sample pretreatment, broad detection range, and the possibility of
miniaturization (Luo et al., 2018; Kawai et al., 2019; Takeda et al.,
2021).

Healthcare diagnostics, such as the quantitative detection of
disease-related proteins, is a major application of supramolecular
electrochemical biosensors (Hewitt and Wilson, 2017; Merkx
et al., 2019). As an alternative to PCR-based nucleic acid
analysis techniques, an increasing number of studies apply
electrochemical detection due to its rapid detection speed with
high accuracy (Espy et al., 2006; Song et al., 2016; Fu et al., 2018;
Drame et al., 2020). Zhao and co-workers developed a self-
assembled supramolecular nanocomposite for the sensitive and
selective electrochemical detection of CD44, an important surface
biomarker of breast cancer stem cell (Zhao et al., 2018).
Nanospheres self-assembled by diphenylalanine (FF) provide
surfaces for gold and silver nanoparticle deposition to amplify
the electrochemical signal. CB[8] links nanoparticles through
host-guest interactions to aggregate at the electrode surface
(Figure 7A). The recognition stability of this sensor is
increased by using binding peptides as recognition units.
Furthermore, the utility of gold and silver nanoparticles not
only facilitates interactions between sensing elements, but also
enable an ultra-high sensitivity for CD44 detection
(Figure 7B,C). Aptamer-based electrochemical supramolecular
biosensor is another promising platform due to its advantages,
such as high sensitivity and fast response (Rivas et al., 2015; Yu
et al., 2016a; Pereira et al., 2020). Yu et al. proposed a new strategy
for using smart protein biogates in electrochemical detection of
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prion protein (PrPC) (Yu et al., 2015). The quantitative analysis of
prion can be achieved on the basis of ratiometric electrochemical
sensing using methylene blue (MB) and ferrocenecarboxylic acid
(Fc). Protein biogates formed by the prion aptamer with MB
strongly bind with β-CD on the electrode surface and prevent
competitive binding by Fc. Taking advantage of only one single-
labeled target aptamer enables a low detection limit (16 fM) and
offers the potential for a facile, large-scale production of this
biosensor. Later, the same research group proposed the first
cascaded, dual-signaling, amplified electrochemical strategy for
aptamer-based prion detection as shown in Figure 7D (Yu et al.,
2016b). The free DNA2 released by specific and selective binding
between PrPC and DNA1 with PrPC-binding aptamer can
hybridize with DNA3 to release the electroactive Fc from
ordered mesoporous carbon probe (OMCP). This dual-
signaling amplification can be achieved via the competitive
guest-host interaction between Fc molecule/Rhodamine B
(RhB) and β-CD for the high selectivity of detection.
Recycling of DNA2 can be realized by dissociation through
Exo III cleavage, which presents the advantage of being able to

perform specific, repeatable, and robust assays using this sensor.
Moreover, the application of enzymes for DNA recycling has the
potential to be used in other DNA-based biosensors.

Reusability of sensors is another important design factor that
has been realized with a couple of electrochemical biosensors.
Yang and coworkers developed a pioneering example of a
recyclable and immobilization-free electrochemical
supramolecular biosensor for breast cancer early diagnostics
(Yang et al., 2016). They reported a stable DNA sandwich
structure formed by hybridization of MB-labeled signal DNA
and alkylamino-modified capture DNA for a highly selective and
ultra-sensitive detection of breast cancer susceptibility gene
(BRCA). At the same time, host-guest interactions between
this DNA sandwich structure with trithiocarbonate modified
pillar[5]arene (P5A-CTA) allows for sensor regeneration by
simple washing. This immobilization-free technology based on
the host-guest interaction and homogeneous DNA hybridization
has a high potential for practical applications due to its high
reproducibility, ease of use, and reusability. Macrocycles such as
β-CD and calixarenes have also been widely studied as a

FIGURE 6 | Examples of supramolecular biosensors with electrical readouts. (A) Sensor interface immobilized with double-stranded DNA onto electrodeposited
avidin monolayer (left) and impedance measurements in the presence of Fe(CN6)

3-/4- using Au-based electrode with different surface modification (right). (B)
Electrochemical sensor based on a composite of graphene aerogel and metal-organic framework for simultaneous detection of multiple heavy-metal ions in aqueous
solutions. Adapted from (Yan and Sadik, 2001; Lu et al., 2019). Copyright 2001, 2019 American Chemical Society.
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recognition element for nucleic acid electroanalysis due to good
selectivity and fast readouts (Wang et al., 2005; Jiang et al., 2017;
Barakat et al., 2020). For instance, supramolecular complex
formed by ferrocenyl-β-CD and adamantylnaphthalene
diimide not only yields strong electrochemical signals, but also
stabilizes the whole target system due to threading intercalation
with DNA strands (Sato et al., 2004). Furthermore,
electrochemically active ferrocene is first masked by β-CD, and
then released in the presence of target DNA. This allows for the
analysis to be primarily based on the rise of an electrochemical
signal instead of a drop, thereby operating under a “turn-on”
detection scheme. In another example, Gorbatchuk et al. studied
DNA damage using a copolymer of tetrasubstituted thiacalix[4]
arene and oligolactic acid, then measuring changes on the
polymer film properties such as permeability, charge

distribution, and the charge transfer resistance (Gorbatchuk
et al., 2017).

For the detection of biologically-relevant small molecules
using supramolecular electrochemical sensors, signal specificity
and binding selectivity are currently the most critical challenges
for performance optimization. To determine two low-molecular
weight tumor markers with similar structures, Shishkanova
et al. reported a supramolecular receptor by functionalizing
Troger’s base with amino- and coumarin-units to selectively
bind with vanillylmandelic acid (VMA) in the presence of
homovanillic acid (HVA) (Shishkanova et al., 2016). The
spatial arrangement and accessibility of binding sites played a
critical role in the selectivity of this biosensor. Control over
receptor geometry provides a mechanism that utilizes spatial
factor to enable high sensor specificity. In another example,

FIGURE 7 | (A) Schematic illustration of detection of CD44 in cell samples. (B) Linear sweep voltammetry scans obtained in the presence of CD44-positive breast
cancer stem cells (BCSCs) (curve a), CD44-negative cell BT474 (curve b) or in the absence of cell samples (curve c). (C) Peak currents obtained in different
concentrations of BCSCs. Inset shows a linear relationship between the absolute value of the peak current and the logarithm of cell concentration from 10 cells/mL to
106 cells/mL. Figures are adapted from (Zhao et al., 2018). (D) Schematic illustration of the label-free and cascaded dual-signaling amplified electrochemical
strategy for cellular prion protein detection. Figure is adapted from (Yu et al., 2016b). Copyright 2016, 2018 Elsevier.
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Uppachai et al. applied supramolecular chemistry with
surfactant assemblies to improve electrochemical sensor
sensitivity for dopamine detection. The supramolecular
assemblies formed by tetra-butylammonium bromide and
sodium dodecyl sulphate enhance the electron transfer of
dopamine due to hydrophobic interaction and electrostatic
attraction between dopamine and gold nanoparticles on the
modified glassy carbon electrode (Uppachai et al., 2020). Shen
et al. reported a supramolecular aptamer self-assembled by
the thiolated aptamer probe and a biotin-labeled analog in
the presence of cocaine. This dual amplification resulting
from the binding of linear DNA molecule and catalysis of
the α-naphthylphosphate (α-NP) hydrolysis improves the
limit of detection for cocaine to 1.3 nM (Shen et al., 2015).
The mechanism of this rolling circle amplification is
possible to be applied to the other detection of drug abuse in
a fast and sensitive manner with suitable supramolecular
aptamers.

Lastly, it is important to highlight supramolecular sensing
methods that rely on changes in electrical properties such as
via impedance measurements and field effect transistors (FETs).
Supramolecular sensing of enantiomeric composition using field-
effect transistors (FET) has been reported with cyclodextrin-
functionalized silicon nanowire FET (Si NWFET) (Duan et al.,

2013). The supramolecular interface of this device was able to
distinguish L- and D-enantiomers of thyroxine molecules
(Figure 8). The reported affinity constants for L- and
D-thyroxine are 1.02 ± 105 M−1 and 7.11 ± 108 M−1,
respectively. The involved mechanism shed the light on
supramolecular interface built by functionalization of Si
NWFET with cyclodextrin to benefit both practical device
design and fundamental research study. Another example of
supramolecular FET-based sensing was demonstrated with CB
[7] derivatives to detect amphetamine-type stimulants (ATS)
(Jang et al., 2017). This OFET-based wireless sensoring
platform offered a sensitive, flexible, and rapid approach for
real-time liquid phase ATS detection. The limit of detection
generated by this supramolecular biosensor was on the
picomolar range, showing the highest sensitivity towards ATS
to date. Moreover, the OFET based mechanism enables the
feasibility to fabricate this portable and miniaturized sensor to
drive the development of on-site real-time detection. Currently,
there are several other macrocyclic receptors used in electrical
sensors not only for solution-based analytes, but also for vapors.
Calixarenes, porphyrins, and cyclodextrins are among those that
have demonstrated good selectivity and fast readouts when
coupled with electrical transducers for biosensing (Phillips
et al., 2020).

FIGURE 8 | (A, B) Detection of 1 nM L- and D-thyroxine enantiomers using Si NWFETs functionalized with β-CD. (C) Adsorption scheme for the sensing of
streptavidin through a mixture of adamantyl–biotin 3) and adamantyl–oligo(ethylene glycol) 4) at the surface. Modified from (Duan et al., 2013. Copyright 2013 American
Chemical Society.
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OTHER TRANSDUCTION MECHANISMS
FOR SUPRAMOLECULAR BIOSENSORS

While conventional biosensors that solely rely on photonic or
electronic processes are widely used, there are other
transduction mechanisms used for sensing which may offer
unique advantages in terms of selectivity and sensitivity. These
include, but are not limited to, piezoelectric, thermometric,
magnetic, and micromechanical transducers. Discussed below
are some examples of sensor systems based on supramolecular
materials that utilize less common signal transduction
mechanisms.

Biosensors that rely on pressure or force sensing do not
require an analyte to bind to the sensors to initiate a readout.
With this, pressure-based and piezoelectric biosensors have the
potential to be used in portable devices for healthcare
applications at home and point-of-care settings (Yu et al.,
2021; Pohanka, 2018). In the report by Zhang et al., elastic
microstructured polydimethylsiloxane (PDMS) film was
constructed by using self-assembly method with
monodispersed polystyrene (PS) microsphere as a monolayer
(Figure 9A) (Zhang Y. et al., 2017). The surface microstructure,
along with material durability and stability, were critical factors
in determining the sensitivity of this supramolecular-based
pressure sensor. This sensor exhibited a detection capacity at
low pressures, affording a real-time change in resistance
measurement by simply putting a dry rose flower on the top
of the sensor. As the process of removing and placing the dry
rose was repeated, the resistance values also increased and
decreased, confirming the good limit of detection for this
sensor. Moreover, by enhancing the size of the microdomes,
the pressure sensors showed highly sensitive detection
capability (∼15 kPa−1), fast repsonse time of 100 ms, and a
low limit of detection of 4 Pa (Figures 9B,C). In addition, its
tunability and facile fabrication process with low cost make this
supramolecular pressure sensor potentially useful for real-time
human health monitoring using wearable electronics. There
have also been reports on supramolecular, stretchable
pressure sensors such as the conductive self-healable gels
(CSGs) by Khan and co-workers (Khan et al., 2020). This
study reported a supramolecular gel, containing polythioctic

acid (PTA), pyromellitic acid (PA), Fe3+ and a polyaniline
(PANI) network, that is highly sensitive (2.8 kPa−1),
stretchable (>5,000%), and has good strain sensitivity (gauge
factor of 11). This supramolecular, self-healable gel sensor is
injectable, making it an excellent candidate to be used in future
biomedical applications. Quartz crystal resonators are also
commonly used as piezoelectric biosensors because of the
linear relationship that can be established between deposited
mass and frequency response of the crystal standing wave
(Pohanka, 2018; Chalklen et al., 2020). In a report by Liu
et al., a piezoelectric supramolecular sensor was coated with
β-cyclodextrin and calixarene derivatives to show high
sensitivity and selectivity toward aliphatic amines. The
frequency data demonstrates the sensitivity of this
piezoelectric quartz crystal sensor to the size and the shape
of the aliphatic amine analytes (Liu et al., 2002). In this case, the
microstructural change of the host molecule dictates how
sensitively the piezoelectric quartz crystal sensor coated with
cyclodextrin derivatives detects the amine guests. For the
piezoelectric quartz crystal sensors coated with calixarene
derivatives, there are two main sensing
mechanisms—formation of complex inside (endo) and
outside (exo) the macrocycle—depending on the interaction
with the amine guests. Further illustrating the advantages of a
piezoelectric transducer, CB[6] was used for a sensor that can
rapidly detect cocaine with high sensitivity (Menezes et al.,
2017). This piezoelectric sensing platform also offers reusability
for detecting drugs. These representative examples suggest that
macrocyclic receptors can be systematically tuned to impart
selectivity on piezoelectric systems for rapid sensing.

On the other hand, thermal biosensors offer the advantage of
long-term stability since there is often no chemical contact
needed between transducer and sample. A general workflow
for a thermometric biosensor is shown in Figure 10A, which
specifically illustrates an enzyme thermistor (Zhou et al., 2012).
The thermostated box can regulate the physiological temperature,
whereby the heat generated reduces thermistor resistance and
the bridge amplifier reads the signal (Zheng et al., 2006; Zhou
et al., 2012). A pioneering study on a supramolecular
thermochromic system utilized a zinc-porphyrin complex with
a metal-ligating 3-pyridyl group (Tsuda et al., 2003). This sensor

FIGURE 9 | (A) Pressure sensor based on a flexible PDMS film, micropatterned using a colloid self-assembly technology. (B) The pressure sensitivities of sensor
films with planar, and single microdome, and interlocked microdome surfaces. (C) Time-dependent response of the microdome-patterned PDMS sensor at a constant
pressure of 100 Pa. Adapted from (Zhang Y. et al., 2017). Copyright 2017 American Chemical Society.
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takes advantage of the ability of the complex to have a thermally-
induced change in axial coordination dynamics, ultimately
leading to an altered absorption profile (Figure 10B). The
temperature-dependent molecular transformation leads to a
change in effective π-electronic conjugation length, resulting in
absorption spectral shifts that are highly dependent on alkynyl
group. In particular, one of the conditions led the zinc complex in
toluene to change its color from green to yellow to red as the
temperature increased. Without any alkynyl group, the color only
slightly changed from orange to pink and having two alkynyl
groups did not result in a dramatic color change as the
temperature increased from 0 to 100°C. This reported sensor
presents an example of wide-range thermochromism, thus, has
the potential to be used as a multicolor thermometer with easy

visualization of the colors representing corresponding
temperatures. Another example of a supramolecular
temparature sensor is reported by Sambe et al., whereby the
sensor was constructed based on the host-guest interactions with
hydrophilic tetracationic macrocyclic host cyclobis(paraquat-
p-phenylene) tetrachloride (CBPQT4+) with a programmable
functionality (Sambe et al., 2014). Finally, as an example of a
sensor array system that utilizes a hybrid approach for signal
read-outs, Zhang and co-workers developed a
thermochemiluminescence (TCL)-based platform for protein
and cell discrimination. The fingerprint TCL signals are
uniquely generated as a function of thermal catalytic oxidation
(Kong et al., 2011). The reported cross-reactive sensing
array system, which can be categorized under a class of vapor-

FIGURE 10 | (A) Schematic diagram of a thermal biosensor. (B) Thermochromism exhibited by a zinc complex of alkynyl-functionalized (3-pyridyl)porphyrin in
toluene. Adapted from (Tsuda et al., 2003; Zhou et al., 2012). Copyright 2003 American Chemical Society.
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based sensors known as “chemical noses,” is composed of
nanomaterials that are solid catalysts with good stability. This
TCL-based sensing system is advantageous over other types due
to enhanced sensitivity, reversibility, and fast generation of read-
outs.

EMERGING TRENDS AND CURRENT
CHALLENGES

Our discussion up to this point has demonstrated the rich
variety of exemplar molecular designs and signal transduction
mechanisms used for supramolecular biosensors to date. These
previously reported supramolecular sensors have afforded the
detection of charged species, not limited to metal cations and
anions, but also organics species such as amino acids. Beyond
broadening the scope of target analytes, it is logical that the
next steps in the field would be to explore ways that could
increase the sensitivity, selectivity, and stability of
supramolecular materials for biosensing. Optimization of
these characteristics have been among the longstanding
challenges that are relevant towards the practical
applications of supramolecular sensors for biological
imaging (Reineck and Gibson, 2017), technologies for
national security (Sun et al., 2015), or food industry (Zhou
et al., 2018)—to name a few. On a similar note, the rise of
newer device platforms that enable real-time sensing and high
throughput screening (e.g., microfluidics or flexible sensors)
requires compatibility and stability of supramolecular
structures present in real biological environments. Among
the pioneering examples of microfluidic integration is the
supramolecular optical chemosensor by Nocera and co-
workers, which uses cyclodextrin modified with a Tb3+

macrocycle to detect polyaromatic hydrocarbons in aqueous
solutions at sub-micromolar concentrations even without
signal amplification (Rudzinski et al., 2002). Recently, gel-
based supramolecular sensors have been emerging as a
platform that provides a unique kinetics and dynamics for
the sensing process (Cao et al., 2019; Ma et al., 2019; Sebastian
and Prasad, 2020). For example, supramolecular copper
metallogel has been used for sensing toxic cyanide ions
(Sebastian and Prasad, 2020). This work presented cyanide
sensing based on deprotonation in aqueous medium caused by
very high solvation energy of cyanide ion in water. Beyond
these aforementioned themes, discussed below are other
promising trajectories that have been emerging in the field
of supramolecular biosensors.

First, we are currently in an era where molecular machines
(rotaxanes, catenanes, or molecular rotors) exist and continue
to be explored for analytical applications. These complex
structures offer the advantage of having fast-motion
response that is fatigue-resistant, which may be used to
detect submolecular movement (Erbas-Cakmak et al., 2015).
Interlocked structures of molecular machines are
advantageous for optically sensing small guest molecules. In
a study by Cornell and co-workers, a biosensor with a self-
assembled lipid bilayer embedded with gramicidin A ion

channels has been developed to act as a biological switch
(Moradi-Monfared et al., 2012). This rapid and sensitive
diagnostic device, which preserves its accuracy even in the
presence of human serum, plasma and whole blood, can be
used as an alternative for enzyme-linked immunosorbent assay
(ELISA) that does not require pre- or post-processing steps. A
recent work from Stoddart and co-workers demonstrates the
use of electrochemically switchable bistable [2]rotaxane with a
fluorescent molecular rotor, which may be used in the future
for electro-optical sensing applications (Wu Y. et al., 2020).
Cyclodextrin-based catenanes and rotaxanes have also been
reported for use in sensing many cations and anions (Bąk et al.,
2020). For example, it was reported that rotaxane was used to
sense Au3+ using fluorophores like anthracene (Chan et al.,
2019).

New approaches towards differential sensing or multiplexing
using supramolecular materials have also gained attention over
the past decade. Sensor arrays that mimic the human sensory
system (i.e., artificial nose or tongue) have been used to
discriminate between multiple analytes. For example, Eker
et al., reported a supramolecular luminescent sensor platform
with five parallel sensing self-assembled monolayers incorporated
in a microfluidic device that can detect multiple analytes
(phosphate anions and aromatic carboxylic acids) (Eker et al.,
2011). Other examples that involve supramolecular arrays for
differentially sensing biomolecular analytes used antibody-free
systems for the detection of the histone code (Minaker et al.,
2012) and gold nanoclusters for nucleotide sensing (Rana et al.,
2012; Pezzato et al., 2013), and even mammalian cell types or
cancer states (Bajaj et al., 2010).

Since many biologically relevant molecules are chiral, and
different enantiomers have varying biological activity or
functionality, methods for chirality analysis are of high
significance for biological analyte sensing. Supramolecular
materials used for chiral sensing commonly utilize optical
sensing mechanisms. Wolf and co-workers made several
advances in this area, primarily by using achiral
chromophores that exhibit induced circular dichroism and
only show strong Cotton effects in the UV-Vis region upon
addition of the chiral analyte. Several metal complexes have
also been used for circular dichroism-based sensing.
Additionally, combining circular dichroism readouts with
SPR and FET sensors have been previously reported (Ariga
et al., 2010). A recent report on chiral supramolecular
biocoordination polymers with photochromic,
photoluminescent, photoconductive, and chemiresistive
characteristics present a future for chiral sensing whereby
one system may afford multiple signal transduction
mechanisms (Shang et al., 2018).

Next, advancements in platform engineering is required to
achieve sensors that are portable, inexpensive, and can be used
multiple times over. Reusability or recyclability of sensors is a
well-sought property since many available sensors are based
upon irreversible interactions. The supramolecular-based
sensors achieve high stability during the recycling due to
the unique interactions between sensor elements and
analytes. For instance, Qu et al., developed a reusable
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supramolecular sensing platform using β-CD as a host to
detect bacteria and proteins. They showed that it could be
used to detect bacteria (E. coli) and protein (Concanavalin A)
several times without losing bioactivity (Qu et al., 2017a).
Another example is from Lu et al., which involves a silver
nanocluster-based pH sensor together with a copolymer ligand
that has N-heterocyclic groups of 8-hydroxyquinoline and N-
isopropylacrylamide (Lu et al., 2018). This reversible sensing
system was able to be reused to sense a pH range of 3.04–5.25
up to six times. Sonication or rinsing the sensor surface with a
solution at a specific pH (Duan et al., 2015), surfactant
addition (Tang et al., 2016; Qu et al., 2017b), or utilization
of competitive binding (Jia et al., 2016; Lei et al., 2016) are
other strategies that have been reported to effectively
regenerate supramolecular sensing units.

Lastly, interfacing supramolecular sensors directly with living
system—whether for mammalian cell screening or detection of
bacteria or virus—is an area that continuously receives high
interest in biosensing. This has been proven to be challenging
due to the complex and dynamic microenvironments within or
surrounding these target living systems. Nonetheless, the
examples of supramolecular materials used for differentially
screening or identifying cells (e.g., tumorigenic vs. healthy)
and bacteria highlighted in earlier sections suggest that the
field is now significantly past establishing the proof-of-
principle for detecting these analytes. Recent studies that
explore the supramolecular assembly dynamics within cellular
environments or sub-cellular localization present the future
potential of having more controlled detection schemes within
the biological millieu (Krivitsky et al., 2019; Bai et al., 2020; He
et al., 2020; Pieszka et al., 2020).

OUTLOOK

In this Review, we summarized the key technological
advancements in the area of supramolecular biosensors
(Figure 11). We have highlighted the evolution of utility of
supramolecular components in biosensing platforms, from
recognition units, to now being able to be both detectors and
transducers. Advancements in supramolecular analytical
chemistry have led to innovative designs for high performing
biosensors that have transformed the types of analytes and
biological niches where these sensors can be applied—from
small ionic species, to now being able differetially detect
proteins, cell phenotypes, and bacteria. The analytical
supramolecular systems developed to date are getting closer
to truly mimicking the natural sensory systems of higher order
species, relying on selective interactions with a broad range of
analytes instead of a specific interaction with just one type of
analyte. As such, beyond the single analyte sensing paradigm,
supramolecular sensors can now report environmental parameters
(such as temperature and pressure), differentiate between
stereoisomers, and perform multiplexed sensing. While this
review is not meant to provide a comprehensive history of
every iteration of supramolecular sensor design reported to date,
we hope to have highlighted the key advancements that has led to
the state-of-the-art supramolecular biosensors nowadays.

Due to the innumerable variations of supramolecular
structures that may be designed and synthesized, one can
expect that the next-generation of supramolecular structures
can open doors for more complex recognition and
transduction functionalities that are yet to be realized. Such
advancements can bring supramolecular-based biosensors a

FIGURE 11 | A schematic depiction of the evolution of supramolecular systems developed over time and the analytes that they can detect.
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step closer towards its practical use for real-time drug delivery
monitoring, reporting of tissue function of 3D organ models,
or as commercial components of wearable health monitors.
Overall, supramolecular biosensing has evolved over the years
into a rich, transdisciplinary field with high promise towards
more practical applications in future technologies.
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