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Selenium-sulfur solid solutions (Se1-xSx) are considered to be a new class of promising
cathodic materials for high-performance rechargeable lithium batteries owing to their superior
electric conductivity than S and higher theoretical specific capacity than Se. In this work, high-
performance Li-Se1-xSx batteries employed freestanding cathodes by encapsulating Se1-xSx

in a N-doped carbon framework with three-dimensional (3D) interconnected porous structure
(NC@SWCNTs) are proposed. Se1-xSx is uniformly dispersed in 3Dporous carbonmatrix with
the assistance of supercritical CO2 (SC-CO2) technique. Impressively, NC@SWCNTs host
not only provides spatial confinement for Se1-xSx and efficient physical/chemical adsorption of
intermediates, but also offers a highly conductive framework to facilitate ion/electron
transport. More importantly, the Se/S ratio of Se1-xSx plays an important role on the
electrochemical performance of Li- Se1-xSx batteries. Benefiting from the rationally
designed structure and chemical composition, NC@SWCNTs@Se0.2S0.8 cathode exhibits
excellent cyclic stability (632mA h g−1 at 200 cycle at 0.2 A g−1) and superior rate capability
(415mA h g−1 at 2.0 A g−1) in carbonate-based electrolyte. This novel NC@SWCNTs@
Se0.2S0.8 cathode not only introduces a new strategy to design high-performance cathodes,
but also provides a new approach to fabricate freestanding cathodes towards practical
applications of high-energy-density rechargeable batteries.
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INTRODUCTION

Lithium-sulfur (Li-S) batteries are considered as promising next-generation electrochemical energy-
storage systems in view of their high theoretical energy density (2600W h kg−1), environmental
friendliness and natural richness of sulfur (Yao et al., 2017; Zheng et al., 2020; Yuan et al., 2021a;
Yuan et al., 2021b; Sun et al., 2021). Although great progress has been made, the widespread practical
application of Li-S battery is still facing issues of the insulation property of natural sulfur (5× 10−30 Sm−1,
25°C), the serious volume effect in the cycle process, and the dissolution of the intermediate polysulfide,
leading to the low sulfur utilization, fast capacity decay and poor cycle stability (Zhang et al., 2020).

As a congener of element S, Se has similar chemical properties with S, such as high theoretical
volumetric capacity (3,253 mA h cm−3, ρ � 4.81 g cm−3), which is suitable for mobile devices and
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hybrid electric vehicles with strict restrictions on battery volume
(Lin et al., 2021; Sun et al., 2021). Meanwhile, selenium is a
semiconductor with much higher electronic conductivity (1 ×
10−3 S m−1) than sulfur, which is conducive to excellent kinetic
behavior (Zhang et al., 2020). Nevertheless, in the current
research stage of Li-Se batteries, there are still many problems
in Se cathode materials, such as relatively unfavorable higher cost
and lower gravimetric capacity (675 mA h g−1) when compared to
Li-S batteries (1,675 mA h g−1) (Fang et al., 2018b). In order to
offset the drawbacks of Se and S and complement each other’s
advantages, a solid solution of Se and S (Se1-xSx, 0 < x < 1) has
been proposed as high-performance cathode materials for lithium
storage. Se1-xSx is a class of chemical compounds with different
Se-S ratios, which not only owns a higher theoretical capacity
than pure Se, but also has increased electronic conductivity and
accelerated reaction kinetics than pristine S (Abouimrane et al.,
2012; Wei et al., 2016; Xu et al., 2019).

However, similar to S, Se1-xSx cathodematerials also suffer from
poor cycle lifespan and low Coulombic efficiency due to the
dissolution and shuttling of intermediates (Chen et al., 2019; Du
et al., 2020). Since Se1-xSx cathode materials exhibit similar
electrochemical behaviors to S, the strategies of immobilizing S
should also be effective for Se1-xSx (Luo et al., 2014). At present, the
main host materials of Se1-xSx are carbonaceous materials (Sun
et al., 2021), such as hollow carbon spheres (Xu et al., 2015; Hu
et al., 2020), mesoporous carbon (Han et al., 2019), carbon
nanotubes (Fan et al., 2018; Guan et al., 2019; Shen et al.,
2020), carbon fiber (Chen et al., 2014; Zhang et al., 2017),
graphene (Tang et al., 2016; Chen et al., 2019) and carbonized
polyacrylonitrile (Li et al., 2018). Generally, expect serving as hosts
for Se1-xSx, these carbonaceous materials play another dual role of
establishing conductive frameworks to facilitate ions/electrons

transport and inhibiting the shuttle effect (Hu et al., 2020).
Nevertheless, the physical adsorption ability of nonpolar pristine
carbon materials to polar intermediates is too weak to effectively
prevent the dissolution and diffusion of intermediate (Sun et al.,
2016; Nazarian-Samani et al., 2021). Research shows heteroatom-
doped (B, N, O, etc.) carbon hosts can effectively improve the
electrochemical performance of Li-Se1-xSx batteries due to the
strong chemical affinity of polarized carbon surface, which can
significantly trap the soluble intermediates to inhibit the shuttle
effect and side reactions in the electrolyte (Guo et al., 2016; Zhang
et al., 2017; Fan et al., 2018; He et al., 2018; Sun et al., 2021).

Herein, a series of Se1-xSx cathode materials with optimized Se/
S ratio are incorporated into N-doped three-dimensional (3D)
porous carbon matrix to form novel freestanding Se1-xSx foamy
cathodes (NC@SWCNTs@Se1-xSx) with the assistance of
supercritical CO2 fluid (Figure 1). In carbonate-based
electrolyte, NC@SWCNTs@Se1-xSx cathodes exhibit single-
phase transformation during charge/discharge. Benefiting from
the rationally designed structure and chemical composition,
NC@SWCNTs@Se1-xSx cathodes with high conductivity and
strong adsorption present superior electrochemical performance.

EXPERIMENTAL SECTION

Preparation of NC@SWCNTs
Melamine foam (3 cm × 3 cm × 3 cm) was washed with
anhydrous ethanol and dried in an oven at 80°C for 12 h, then
immersed in SWCNTs/NMP suspension (0.4%). After 6 h, the
melamine foam impregnated with SWCNTs/NMP suspension
was taken out and dried in a vacuum oven at 80°C for 24 h to
obtain the precursor of melamine/SWCNTs. The above precursor

FIGURE 1 | Schematic illustration of the synthetic process of NC@SWCNTs@Se1-xSx.
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was calcined at 700°C under flowing N2 atmosphere for 3 h to
obtain NC@SWCNTs host.

Preparation of NC@SWCNTs@Se1-xSx
NC@SWCNTs@Se1-xSx composites were prepared with the help of
supercritical CO2 (SC-CO2) fluid, which is reported in our previous
works (Fang et al., 2018a; Fang et al., 2018b; Fang et al., 2020). Firstly,
S and Se powders with different molar ratios (S:Se � 7:3, 8:2, 9:1)
were put into stainless-steel milling jars, respectively. The pre-mixed
Se and S mixture was obtained after ball milling (500 rpm) for 12 h.
Subsequently, 0.6 g pre-mixed Se and S mixture and a piece of NC@
SWCNTs (3 cm× 3 cm× 3 cm,∼0.4 g) were put into a stainless-steel
jar. Then, CO2 was pumped into the jar until the gaseous pressure
reached 8.5MPa. After the jar was kept at 32°C for 24 h, NC@
SWCNTs@Se1-xSx precursor was obtained by rapidly releasing CO2.
Then, NC@SWCNTs@Se1-xSx precursor was sealed in a quartz glass
tube under vacuum. Finally, the sealed quartz glass tube was heated
to 400°C for 3 h to obtain NC@SWCNTs@Se1-xSx. The samples with
different Se/S molar ratios were labeled as NC@SWCNTs@Se0.3S0.7,
NC@SWCNTs@Se0.2S0.8 and NC@SWCNTs@Se0.1S0.9, respectively.
For comparison, NC@SWCNTs hosts impregnated with Se or S
were prepared by using the same SC-CO2 method and named NC@
SWCNTs@Se and NC@SWCNTs@S, respectively.

Materials Characterizations
The morphologies and microstructures of samples were observed
on field-emission scanning electron microscopy (FE-SEM, Hitachi
S-4800) and transmission electron microscopy (TEM, FEI Tecnai
G2 F30) equipped with an energy-dispersive spectroscopy (EDS)
detector. X-ray diffraction (XRD) patterns were recorded on
Rigaku Ultima IV powder X-ray diffractometer by using Cu Kα
radiation (λ � 0.15418 nm). Raman spectra were performed by
Renishaw InVia Raman spectrometer (λ � 532 nm).
Thermogravimetric analysis (TGA) was conducted on SDT
Q600 analyzer (TA Instruments) under a flowing Ar atmosphere.

Electrochemical Measurements
NC@SWCNTs@Se1-xSx cathodes were cut into disks of 15 mm in
diameter and 2 mm in height. CR2025 coin-type cells were
assembled in an Ar-filed glove box (MIKROUNA, moisture
<1.0 ppm, oxygen <1.0 ppm) with NC@SWCNTs@Se1-xSx
composites as cathodes, commercial microporous polypropylene
membrane (Celgard 2400) as separator, and lithium metal as
anode. A solution of 1.0 M LiPF6 in a co-solvent of ethylene
carbonate (EC) and dimethyl carbonate (DMC) (1:1, volume
ratio) was used as electrolyte. The dosage of electrolyte in coin-
type cells is 15 μl mg−1 (based on the mass of Se1-xSx). Li-Se1-xSx
cells were cycled in the voltage range of 1.0–3.0 V on a battery
testing system (Shenzhen Neware Technology Co. Ltd.). Cyclic
voltammetry (CV) was performed on a CHI650B electrochemical
workstation (Chenhua, Shanghai, China).

RESULTS AND DISCUSSION

The morphology and microstructure of NC@SWCNTs host are
characterized by SEM and TEM as illustrated in Figure 2. As

vividly depicted in Figure 2A and Supplementary Figure S1,
NC@SWCNTs host exhibits a 3D honeycombed network
structure, fully inheriting the 3D interconnected framework of
melamine foam. Local magnification SEM images (Figures 2B,C)
demonstrate that numerous interlaced SWCNTs are covered the
surface of melamine foam derived carbon skeletons, as well as
SWCNTs are formed into small sheets between carbon skeletons.
This unique interconnecting structure not only endows NC@
SWCNTs a highly conductive 3D network to accelerate the
electron/ion transport, but also effectively enhances the
mechanical strength and flexibility of NC@SWCNTs host.
Moreover, TEM results (Figure 2D) further indicate that
SWCNTs are crisscrossed in carbon skeletons, forming an
intertwined 3D network structure. On the basis of EDS results
(Figure 2E), the main elements in NC@SWCNTs are C, O and N,
which are uniformly distributed in NC@SWCNTs. Notably, N
signal is derived from melamine foam since melamine has high
content of N. According to the above analysis, NC@SWCNTs
host has a typical 3D network structure that is composed of
SWCNTs-coated N-doped carbon skeleton derived from
melamine foam and wafery sheets interwoven by SWCNTs.
The pores and layer gaps in NC@SWCNTs host are conducive
to loading more Se1-xSx active materials. Meanwhile, the 3D
interconnected conductive network framework can not only
effectively promote redox kinetics, but also endow NC@
SWCNTs host with strong mechanical properties to buffer the
volume expansion during cycling. Additionally, the doped N is
also beneficial to the adsorption of intermediates.

After Se1-xSx impregnation, compared to NC@SWCNTs host,
NC@SWCNTs@Se1-xSx composites well maintain the original
morphology of NC@SWCNTs (Supplementary Figure S2).
Moreover, no discernible Se1-xSx particles can be found at the
surface of NC@SWCNTs. Additionally, according to EDS
mapping results, the C, N, Se and Se signals are overlapped
well, suggesting Se1-xSx composites are uniformly permeated into
the pores and layer gaps of NC@SWCNTs host with the
assistance of SC-CO2 due to the good permeability, excellent
diffusivity and high solubility of SC-CO2. Furthermore, elemental
analyses (Supplementary Table S1) of NC@SWCNTs@Se1-xSx
show that molar ratios of Se to S in NC@SWCNTs@Se1-xSx
conform to the design values.

NC@SWCNTs@Se1-xSx composites are further revealed by
XRD and Raman analysis. As illustrated in Figure 3A, all the
samples have a wide peak in 2θ ranging from 15 to 40o,
corresponding to the existence of NC@SWCNTs. Meanwhile,
the characteristic diffraction peaks of Se and S are clearly
observed in NC@SWCNTs@Se and NC@SWCNTs@S samples,
respectively. With the introduction of Se, no characteristic
diffraction peak of Se is detected in NC@SWCNTs@Se1-xSx
composites. However, some characteristic diffraction peaks of
S with low intensity can be still observed, indicating a small
amount of Se may occupy S position and further form Se1-xSx in
NC@SWCNTs host (Yao et al., 2017). To further investigate the
bond between Se and S, Raman spectra were depicted in
Figure 3B. Apparently, all the samples have three
characteristic peaks located at 260, 375 and 470 cm−1,
respectively, which are assigned to Se-Se, Se-S and S-S
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stretching vibrations, (Chen et al., 2019; Pham et al., 2019). With
increasing Se content in Se1-xSx, the strength of Se-Se and Se-S
bonds are simultaneously increased, whereas the strength of S-S
bonds are gradually decreased. Thus, it could be concluded that
Se1-xSx composites are successfully synthesized.

To further inspect the Se1-xSx content and thermal stability of
NC@SWCNTs@Se1-xSx composites, TGA tests are performed as
shown in Supplementary Figure S3. According to TG results,
NC@SWCNTs@S and NC@SWCNTs@Se exhibit the lowest and
highest onset decomposition temperatures of ∼130 and ∼300°C,

FIGURE 2 | (A–C) SEM images and (D) TEM image of NC@SWCNTs. (E) STEM image of NC@SWCNTs and the corresponding mapping images.

FIGURE 3 | (A) XRD patterns of NC@SWCNTs@S, NC@SWCNTs@Se0.3S0.7, NC@SWCNTs@Se0.2S0.8, NC@SWCNTs@Se0.1S0.9 and NC@SWCNTs@Se. (B)
Raman spectra of NC@SWCNTs@Se0.3S0.7, NC@SWCNTs@Se0,2S0.8 and NC@SWCNTs@Se0.1S0.9.
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respectively. Meanwhile, the onset decomposition temperatures
of NC@SWCNTs@Se0.3S0.7, NC@SWCNTs@Se0.2S0.8, and NC@
SWCNTs@Se0.1S0.9 are between NC@SWCNTs@S and NC@
SWCNTs@Se samples, and gradually increase with increasing
Se content in Se1-xSx. It is because the thermal stability of Se is
higher than that of S, the higher the content of Se in Se1-xSx, the
higher the thermal stability of solid solution. Moreover, the
distinct weight losses exist in all the samples, corresponding to
the active material in samples. Therefore, the actual contents of S,
Se0.3S0.7, Se0.2S0.8, Se0.1S0.9, and Se in NC@SWCNTs@S, NC@
SWCNTs@Se0.3S0.7, NC@SWCNTs@Se0.2S0.8, NC@SWCNTs@
Se0.1S0.9, and NC@SWCNTs@Se are 54.8, 58.7, 52.5, 58.4, and
56.8%, respectively, which are close to the design value of ∼60%.

In order to evaluate the electrochemical performance of NC@
SWCNTs@Se1-xSx composites, NC@SWCNTs@Se1-xSx
composites are employed as freestanding cathodes in Li-Se1-xSx
batteries with carbonate-based electrolyte (LiPF6-EC/DMC).
Figure 4A and Supplementary Figure S4 show initial three
cyclic voltammetry (CV) curves of NC@SWCNTs@Se1-xSx
cathodes at a scanning rate of 0.1 mV s−1 in the potential
window from 1.0 to 3.0 V versus Li/Li+. At the initial scan, a
sharp reduction peak at ∼1.38 V, a small reduction peak at ∼2.37 V,

and a broadened oxidation peak at ∼2.14 V are clearly observed.
The small reduction peak at ∼2.37 V disappears after the first scan,
while the sharp reduction peak at ∼1.38 V shifts to ∼1.7 V during
the subsequent scan. The peak shift indicates the activation process
during the first lithification process, and the polarization is
effectively reduced thereafter (Luo et al., 2014; Zhu et al., 2018).
The subsequent CV curves are well overlapped after the first scan,
indicating the good cyclability and reversibility of NC@SWCNTs@
Se0.2S0.8 cathode (Guo et al., 2019). It should be mentioned that the
CV curves of NC@SWCNTs@Se1-xSx cathodes are obviously
different from S cathode, indicating the introduction of Se
changes the electrochemical reaction process of S that is
conducive to its stable work in carbonate-based electrolytes.
Moreover, galvanostatic charge-discharge curves (Figure 4B and
Supplementary Figure S5) of NC@SWCNTs@Se1-xSx cathodes
are consistent with CV results. During the first discharge process,
there are two plateaus: one is an extremely short plateau at ∼2.38 V,
and another is a long plateau at ∼1.75 V. In the subsequent cycles,
the short plateau at ∼2.38 V disappears, while the long plateau at
∼1.75 V becomes a little steeper and shifts to ∼1.88 V. The short
plateau at ∼2.38 V is attributed to the transformation of Se0.2S0.8 to
polysulfides/polyselenides intermediates. And the disappearance of

FIGURE 4 | (A) CV curves of the NC@SWCNTs@Se0.2S0.8 cathode. (B) Charge/discharge curves of the NC@SWCNTs@Se0.2S0.8 cathode at 0.2 A g−1. (C) Cycle
performances and (D) rate performances of NC@SWCNTs@Se1-xSx cathodes.
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the short plateau is probably due to the dissolution of intermediates
into the electrolyte (Li et al., 2015). Meanwhile, the long plateau at
1.75–1.88 V is assigned to the conversion of polysulfides/
polyselenides to Li2S/Li2Se (Luo et al., 2014). During the charge
process, there is only one sloping plateau at ∼2.12V, corresponding
to the conversion of Li2Se/Li2S to Se0.2S0.8.

Figure 4C shows the cyclic performance of NC@SWCNTs@
Se1-xSx cathodes with different Se/S ratios at a current density of
0.2 A g−1. NC@SWCNTs@Se0.2S0.8 cathode delivers the highest
initial discharge capacity (2,398.5 mA h g−1) among NC@
SWCNTs@Se0.3S0.7, NC@SWCNTs@Se0.2S0.8 and NC@
SWCNTs@Se0.1S0.9 samples. The initial discharge capacity
exceeds the theoretical capacity may be attributed to side
reactions and the formation of SEI layer on the surface of
electrode (Luo et al., 2014). After 200 cycles, the reversible
capacities of NC@SWCNTs@Se0.3S0.7, NC@SWCNTs@Se0.2S0.8
and NC@SWCNTs@Se0.1S0.9 samples are 490, 632 and 360 mA
h g−1 with the corresponding capacity retentions of 51.7, 65.3 and
47.9%, respectively. Obviously, NC@SWCNTs@Se0.2S0.8 cathode
exhibits the superior cyclic stability. In addition, the rate
capabilities of NC@SWCNTs@Se1-xSx cathodes at different
current densities are presented in Figure 4D. Compare to other
samples, NC@SWCNTs@Se0.2S0.8 cathode demonstrates the best
rate performance. The reversible rate capacities ofNC@SWCNTs@
Se0.2S0.8 cathode are 998.4, 723.7, 606.8, 506.1, and 415.0 mA h g−1

at the current density of 0.2, 0.5, 0.8, 1.0 and 2.0 A g−1, respectively.
When the current density switches back to 0.5 A g−1, the reversible
discharge capacity of NC@SWCNTs@Se0.2S0.8 cathode reverts to
the initial value. Moreover, as shown in Supplementary Table S2
and Supplementary Figure S4, NC@SWCNTs@Se0.2S0.8 cathode
with Se loading of as high as 4.4 mg cm−2 (a relevant areal capacity
of as high as 2.78 mA h cm−2) can surpass most reported Se1-xSx
cathodes (Luo et al., 2014; Li et al., 2015; Guo et al., 2016;Wei et al.,
2016; Li et al., 2017; Yao et al., 2017; Zhang et al., 2017; Hu et al.,
2018; Li et al., 2018; Zhu et al., 2018). Such remarkable
electrochemical performance of NC@SWCNTs@Se0.2S0.8
cathode mainly is due to the following reasons: 1) Se and S in
Se0.2S0.8 solid solution play different roles: Se can significantly
improve the electrical conductivity, while S can greatly enhance
capacity. 2) N-doped 3D porous carbon matrix and interlaced
SWCNTs not only provide storage space for Se1-xSx, but also
effectively reinforce the structural stability, and further promote
the cycling stability of NC@SWCNTs@Se1-xSx cathodes.

CONCLUSION

In summary, a series of rationally designed freestanding NC@
SWCNTs@Se1-xSx cathodes with 3D interconnected porous

structure are developed with the assistance of supercritical
CO2 fluid. NC@SWCNTs host with 3D network structure
serves as an effective matrix for encapsulating Se1-xSx as well
as facilitating ion/electron transport and redox kinetics.
Benefiting from the rationally designed structure and
optimized chemical composition, NC@SWCNTs@Se0.2S0.8
cathode exhibits excellent cycling stability (632 mA h g−1 at
0.2 A g−1 at 200 cycle) and remarkable rate performance
(415 mA h g−1 at 2 A g−1) in carbonate-based electrolyte. This
work offers a feasible approach to develop high-performance Se1-
xSx cathodes for advanced Li-Se1-xSx batteries.
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