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Bioorthogonal chemistry allows rapid and highly selective reactivity in biological
environments. The copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a classic
bioorthogonal reaction routinely used to modify azides or alkynes that have been
introduced into biomolecules. Amber suppression is an efficient method for
incorporating such chemical handles into proteins on the ribosome, in which
noncanonical amino acids (ncAAs) are site specifically introduced into the polypeptide
in response to an amber (UAG) stop codon. A variety of ncAA structures containing azides
or alkynes have been proven useful for performing CuAAC chemistry on proteins. To
improve CuAAC efficiency, biologically incorporated alkyne groups can be reacted with
azide substrates that contain copper-chelating groups. However, the direct incorporation
of copper-chelating azides into proteins has not been explored. To remedy this, we
prepared the ncAA paz-lysine (PazK), which contains a picolyl azide motif. We show that
PazK is efficiently incorporated into proteins by amber suppression in mammalian cells.
Furthermore, PazK-labeled proteins show improved reactivity with alkyne reagents in
CuAAC.

Keywords: genetic code expansion, amber suppression, noncanonical amino acid, bioorthogonal chemistry, click
chemistry, copper catalyzed azide–alkyne cycloaddition (CuAAC)

INTRODUCTION

Genetic code expansion allows the expression of proteins with distinct chemical handles through the
residue- or site-specific introduction of noncanonical amino acids (ncAAs). First established in
Escherichia coli, genetic code expansion has been adapted to all domains of life (Chin, 2014; Chin,
2017; Brown et al., 2018). When incorporated into proteins, ncAAs can confer a plethora of different
functionalities: posttranslational modifications, crosslinking, spectroscopic probes, and also
bioorthogonal chemical handles for selective reactions in the cellular context (Sletten and
Bertozzi, 2009; Lang and Chin, 2014; Drienovská and Roelfes, 2020). Bioorthogonal chemistries
enable endless possibilities for further derivatizing ncAA-containing proteins in or on live cells with
fluorophores, lipids, or affinity handles (Lang et al., 2012; Elliott et al., 2014; Lang and Chin, 2014;
Peng and Hang, 2016; Li et al., 2020; Meineke et al., 2020). The copper-catalyzed azide–alkyne
cycloaddition (CuAAC, also referred to as “click” chemistry), is a Cu(I)-dependent, fast,
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biorthogonal, and widely utilized reaction to form covalent
bonds between alkyne and azide moieties (Rostovtsev et al.,
2002; Tornøe et al., 2002; Hein and Fokin, 2010; Haldón et al.,
2015; Li and Zhang, 2016). To circumvent the need for Cu(I)
catalysis, strained alkynes have also been realized in so-called
strain-promoted azide–alkyne cycloaddition (SPAAC)
reactions (Beatty et al., 2010; Jewett et al., 2010). Alkyne
and azide ncAAs, e.g., the methionine analogs azido-
alanine, 6-azido-norleucine, and homopropargylglycine, can
be used for CuAAC-mediated metabolic labeling. These
ncAAs are substrates for the endogenous translation
machinery, charged onto tRNAMet by methionyl-tRNA-
synthetase (or an engineered mutant) and stochastically
incorporated into nascent proteins in response to the AUG
codon (Saleh et al., 2019). Site-directed incorporation of
ncAAs into proteins, on the other hand, requires
reprogramming of one codon and introduction of a
dedicated, engineered pair of tRNA and aminoacyl-tRNA-
synthetase (aaRS) that is orthogonal to, i.e., not interfering
with, the translation machinery of the host. A widely used
strategy to reprogram a codon is amber suppression, as the
amber codon (UAG) is the least abundant of the three stop
codons in E. coli and mammalian cells. Two different tRNA/
aaRS systems have been used to site specifically install azide
moieties in eukaryotic cells: AzFRS has been engineered from
E. coli TyrRS to accept azido-phenylalanine (AzF) (Chin et al.,
2002; Liu et al., 2007; Ye et al., 2009; Ye et al., 2010). AzFRS is
combined with an amber suppressor mutant of Bacillus
stearothermophilus TyrT (Bst TyrTCUA) for AzF
incorporation in the mammalian system, which has shown
higher expression than the cognate EcoTyrT (Sakamoto et al.,
2002; Liu et al., 2007). AzF is routinely used for UV-
crosslinking studies [reviewed in (Coin, 2018)]; the azide is
also reactive in CuAAC or other click reactions (Bundy and
Swartz, 2010; Tian et al., 2014). An alternative tRNA/aaRS pair
for amber suppression is the versatile pyrrolysine-tRNA (PylT)
and pyrrolysine-tRNA-synthetase (PylRS) pair derived from
methanogenic archaea, which is orthogonal across bacterial
and eukaryotic hosts. Methanosarcina mazei PylT/RS (Mma
PylT/RS)-mediated ncAA incorporation is efficient in
mammalian cells, and a large number of active site mutants
for incorporation of structurally diverse ncAAs have been
described. The lysine-based ncAAs N-propargyl-L-lysine
(ProK) and N-ε-([2-Azidoethoxy]carbonyl)-L-lysine
(AzeoK) are efficiently incorporated with the Mma PylT/RS
pair (Nguyen et al., 2009; Meineke et al., 2020). Thus, genetic
incorporation of azides and alkynes has provided facile means
to derivatize proteins using bioorthogonal CuAAC chemistry.
However, the dependence on Cu(I) for catalysis has provided
challenges in performing CuAAC in a cellular environment.
Due to the sensitivity of Cu(I) ions toward oxidation in the
presence of atmospheric oxygen, Cu(I) is typically generated in
situ using stoichiometric amounts of sodium ascorbate as a
reducing agent. Water-soluble Cu(I) ligands, such as
tris(hydroxypropyltriazolylmethyl)amine (THPTA), have
greatly improved biocompatibility of CuAAC by effectively
complexing Cu(I), enhancing reaction speed at low Cu(I)

concentrations, while inhibiting both the reoxidation of
Cu(I) to Cu(II) and the production of reactive oxygen
species (Hong et al., 2009, 2010). A complementary
approach to increase biocompatibility of CuAAC is the use
of “copper-chelating azides,” such as picolyl azide
(Uttamapinant et al., 2012; Kuang et al., 2010; Brotherton
et al., 2009). Uttamapinant and others have demonstrated that
positioning the azidomethyl group adjacent to the pyridine
nitrogen significantly increases its reactivity in the presence of
low Cu(I) concentrations, presumably by increasing the local
concentration of the catalyst (Uttamapinant et al., 2012).
Interestingly, copper-chelating azides improved reaction
rates at low Cu(I) concentration synergistically with
THPTA; hence, the combination of soluble ligands with
picolyl azide allowed CuAAC to be performed on live cells
at as low as 40 µM Cu(I) concentration, for which no toxicity
was observed (Uttamapinant et al., 2012).

Despite the favorable properties of picolyl azide, genetic
incorporation of copper-chelating azide moieties has not been
reported in literature. Here, we synthesize a picolyl azide-lysine
(PazK) ncAA that is readily incorporated using existing PylT/RS
variants. We find that PazK has improved reactivity over simple
azides in lysate and on live cells, especially at low Cu(I)
concentrations, upgrading the repertoire of genetically
encodable CuAAC reagents.

MATERIALS AND METHODS

Chemical synthesis of picolyl azide-lysine
Experimental procedures for the synthesis of PazK can be found
in the supporting information.

Commercial Non-canonical Amino Acids
4-Azido-L-phenylalanine (AzF, CAS: 33173-53-4, Santa Cruz
Biotechnology) and (S)-2-amino-6-[(2-azidoethoxy)
carbonylamino]hexanoic acid (AzeoK, CAS: 1994331-17-7, Iris
Biotech) were prepared as 100 mM stock solutions in 200 mM
NaOH and 15% DMSO (w/v), and used at the final
concentrations indicated.

DNA constructs
The constructs for expression of Mma PylT/RS wild type (RRID:
Addgene_140009) and AF (RRID: Addgene_140023) variants as
well as the sfGFP150TAG reporter constructs (RRID:
Addgene_154766) were described previously (Meineke et al.,
2018, 2020). We generated analogous constructs for AzFRS
with four repeats of Bst TyrTCUA (RRID: Addgene_140018
and Addgene_174891). The plasmids share a common
architecture and are here collectively referred to as “pAS”
(Amber Suppression) plasmids: the aaRS, reporter or gene of
interest are controlled by an EF1 promoter and followed by an
IRES that allows expression of a downstream selection marker. A
cassette with four tandem repeats of the tRNA gene, controlled by
7SK Pol III promoter, is placed upstream of the EF1 promoter in
antisense orientation. All DNA constructs were verified by Sanger
sequencing.
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Cell culture and transfection
HEK293T cells were maintained in Dulbecco’s modified Eagle’s
medium (DMEM, GlutaMAXTM, Thermo) supplemented with
10% (v/v) FBS at 37°C and 5% CO2 atmosphere. For transient
transfection, 1.5–2.0 × 105 cells/ml were seeded 24 h before
transfection with TransIT-LT1 (Mirus) according to the
instructions of the manufacturer. ncAAs were added at the
time of transfection, and cells were harvested after 24 h.

Intact mass spectrometry
A modified transfection protocol was used for larger-scale GFP
expression for bead purification, increasing the amount of total
DNA to 6 μg (Mma PylT/RS AF and PylT/sfGFP150TAG at 2 + 8
ratio) per ml culture and transfecting 5.0–8.0 × 105 cells/ml with
2 μg of polyethylenimine (PEI) per μg of DNA. PazK was
supplemented to 0.5 mM at transfection and until harvest after
6 days. Cells were lysed in RIPA buffer supplemented with 1×
cOmplete protease inhibitor (Roche). The insoluble fraction was
removed by centrifugation. Expressed GFP was captured on GFP-
Trap_MA magnetic beads (ChromoTEK), washed with RIPA
buffer and PBS, and eluted in 1% (v/v) acetic acid.

Purified GFP samples were desalted and rebuffered into
100 mM ammonium acetate, pH 7.5, using ZebaSpin columns
with a 7-kDa cutoff (Thermo). Samples were directly infused into
an Orbitrap Fusion Tribrid mass spectrometer equipped with an
offline nanospray source using borosilicate capillaries (Thermo).
The capillary voltage was 1.5 kV, and the pressure in the ion-
routing multipole was maintained at 0.11 torr. Spectra were
acquired in the Orbitrap mass analyzer operated in high mass
mode at a resolution of 60.000 between 1,000 and 4,000 m/z. Data
were analyzed using Excalibur (Thermo).

Live cell imaging for GFP expression
GFP-expressing HEK293T cells were imaged in a ZOE
Fluorescent Cell Imager (BioRad).

Bioorthogonal labeling in lysate
HEK293T cells were transfected, cultured in the presence of
0.25 mM ncAA for 24 h and lysed in RIPA buffer with 1×
cOmplete protease inhibitor (Roche). The insoluble fraction
was removed by centrifugation. CuAAC was carried out on
equal volume aliquots in 1 mM CuSO4, 1 mM TCEP, 100 µM
THPTA, and 1 µM AF647 dye (AF647-Alkyne or AF647-Picolyl
Azide (Jena Bioscience)) for 1 h at 24°C, 450 rpm followed by
incubation at 4°C overnight. Samples were separated on 4%–20%
Tris-glycine gels (BioRad) and exposed for in-gel fluorescence at
630 nm in a GE AI600 imager and further analyzed by
Western blot.

Bioorthogonal labeling of surface receptor
proteins on live cells
Transfected HEK293T cells were grown in the presence of
0.25 mM PazK or 0.25 mM AzeoK for 24 h. Cells were washed
with PBS and labeled with 5 µM AF647-alkyne dye (Jena
Bioscience), 10–50 µM CuSO4, 50–250 µM THPTA in 2.5 mM
ascorbic acid (from a freshly prepared 100 mM stock) for 10 min

at room temperature (Hong et al., 2010). Cells were collected in
cold PBS, spun down, and lysed in PBS 0.1% (v/v) triton X-100
supplemented with 1× cOmplete protease inhibitor (Roche).
Aliquots were separated on 4%–20% Tris-glycine gels (BioRad)
and exposed for in-gel fluorescence at 460 and 630 nm in a GE
AI600 imager and further analyzed by Western blot.

Labeling of surface receptor proteins on live
cells for fluorescence microscopy
Transfected HEK293T were grown on poly-L-lysine-coated 18-
well imaging slides (Ibidi) in the presence of 0.25 mM PazK or
AzeoK for 24 h. Cells were washed with PBS and labeled with
5 µM alkyne dye (AFdye 647 alkyne, Jena Bioscience) in 50 µM
CuSO4, 250 µM THPTA, and 2.5 mM ascorbic acid for 10 min
at room temperature. Subsequently, the cells were washed with
PBS, counterstained with 2 µM Hoechst33342 (Life
Technologies) in PBS for 30 min, washed again, and fixed in
4% formaldehyde for 10 min. The cells were washed and
imaged in PBS on a Nikon Eclipse Ti2 inverted widefield
microscope, using a ×20 (0.75 NA) objective and filter sets
for DAPI and Cy5 fluorescence.

SDS-PAGE and Western blot
Aliquots of cell lysates were separated on 4–20% Tris-glycine gels
(BioRad) and transferred to nitrocellulose membranes.
Expression of GFP reporter and FLAG-aaRS was confirmed by
immunoblotting with antibodies against GFP (Santa Cruz, RRID:
AB_627695), HA-HRP (Roche, RRID:AB_390917), FLAG-HRP
(Sigma, RRID:AB_439702), GAPDH (Millipore, RRID:
AB_10615768), and corresponding secondary HRP-conjugated
antibodies when needed (BioRad, RRID:AB_11125936 and
Invitrogen, RRID:AB_2534727). Quantitative analysis of gel
lanes was performed using ImageJ software.

RESULTS

Synthesis of picolyl azide-lysine
To synthesize picolyl azide-lysine (PazK), two building blocks
were required, lysine derivative 3 and azide 7 (Figure 1). The
synthesis of 3 commenced with orthogonally protected Nα-Boc-
Nε-Cbz-Lysine 1. After methylation under standard conditions,
hydrogenation afforded 3 (Schnell et al., 2020), which contains
the free side chain amine, in 83% yield over two steps. To access
azide 7, dipicolinic acid dimethyl ester 4 was selectively reduced
with NaBH4 to alcohol 5 in 65% yield. Installation of the requisite
azide functionality was effected using a one-pot process where the
hydroxyl group of 5 was converted into the corresponding alkyl
bromide (PPh3 and CBr4), followed by displacement with sodium
azide without isolation of the bromide intermediate. Subsequent
ester hydrolysis under basic conditions afforded carboxylic acid 7
(Hanna et al., 2017). With building blocks 3 and 7 in hand, amide
formation was performed using standard conditions (EDCI,
HOBt, DIPEA in DMF). Lithium hydroxide-mediated ester
hydrolysis, followed by Boc deprotection under acidic
conditions afforded the desired PazK, as the hydrochloride salt.
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FIGURE 1 | Chemical synthesis of picolyl azide-lysine (PazK).

FIGURE 2 | Amber suppression mediated PazK incorporation into protein in mammalian cells. (A) Schematic depiction of noncanonical amino acid (ncAA)
incorporation into GFP. Expression of an orthogonal tRNA and aaRS pair allows incorporation of ncAAs with azide side chains into the GFP reporter in response to an
amber codon (UAG in the mRNA). (B) Chemical structures of (S)-2-amino-6-[(2-azidoethoxy)carbonylamino]hexanoic acid (AzeoK) and 4-azido-L-phenylalanine (AzF).
(C) Live-cell imaging of HEK293T cells transfected with Methanosarcina mazei pyrrolysine-tRNA/RS (Mma PylT/RS) wt, Mma PylT/RS AF, or Bacillus
stearothermophilus (Bst) TyrT/AzFRS and cognate tRNA/GFP150TAG reporter plasmid (1 + 4 ratio) in the absence (–ncAA) or presence of 0.5 mM of the indicated
ncAA. Images were taken 24 h posttransfection. (D) Intact mass determination of purified GFP containing 150PazK (incorporated withMma PylRS AF in GFP150TAG).
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Methanosarcina mazei
pyrrolysine-tRNA-synthetase AF active site
mutant allows incorporation of picolyl
azide-lysine into proteins
Next, we needed to establish that PazK can be accepted as a
substrate for tRNA aminoacylation by a tRNACUA/aaRS pair
orthogonal in mammalian cells. We used a GFP reporter with an
amber codon at position 150, allowing the use of fluorescence as a
readout for incorporation efficiency. If the ncAA added to the
medium is accepted by the aaRS to aminoacylate the cognate
tRNACUA, the amber stop codon is suppressed, and full-length
fluorescent GFP bearing PazK at position 150 (GFP150PazK) is
produced (Figure 2A).

We tested the incorporation of PazK by Mma PylRS and its
variant with mutations Y306A and Y384F: Mma PylRS AF
(Yanagisawa et al., 2008). Wild-type Mma PylRS can
accommodate a variety of ncAA substrates in its active site,
but the Pyl binding pocket cannot accommodate large or
bulky lysine adducts. The Mma PylRS AF mutant has been
rationally designed to enlarge the ncAA binding pocket
(Yanagisawa et al., 2008; Yanagisawa et al., 2019) and has
enabled incorporation of lysine derivatives with aromatic and
larger hydrocarbon rings (Borrmann et al., 2012; Nikić et al.,
2014; Ge et al., 2016).

The Mma PylT/RS pairs were cotransfected with a PylT/
sfGFP150TAG amber suppression reporter in HEK293T cells.
We assayed AzeoK (Figure 2B) and PazK against a control with
no ncAA, which showed no GFP fluorescence; AzeoK is an
excellent substrate for wild-type Mma PylRS (Meineke et al.,
2020) and, as expected, produced strong GFP fluorescence. PazK
only yielded low GFP fluorescence with the same wild-type PylT/
RS-transfected cells (Figure 2C). By adding AzeoK and PazK to
Mma PylT/RS AF-expressing cells, we observed similar GFP
fluorescence levels for both ncAAs (Figure 2C, right). For
comparison, we also tested the incorporation of AzF
(Figure 2B) and 6-azido-lysine (6AzK) (Supplementary
Figure S1). AzF was efficiently incorporated in Bst TyrTCUA/
AzFRS-expressing cells as judged by GFP fluorescence
(Figure 2C), while 6AzK was not a substrate for Mma PylT/
RS (Supplementary Figure S1). We further testedMethanogenic
archaeon ISO4-G1 (G1) PylT/RS and G1 PylT/RSY125A pairs
(Meineke et al., 2020) and found that wild-type G1 PylRS
accepted PazK with low efficiency, but G1 PylRSY125A showed
high incorporation efficiency for PazK (Supplementary Figure
S2). Hence, we conclude that azide-bearing ncAAs can be
incorporated well in mammalian cells with existing tRNA/
aaRS pairs.

We further sought to confirm the selective incorporation and
chemical stability of PazK in a target protein. Hence, we purified
sfGFP150PazK from HEK293T cells transfected with PylT/
sfGFP150TAG and Mma PylT/RS AF and performed intact
mass spectrometry. The calculated mass of 27,089 Da and
determined mass of 27,090.2 Da were in agreement,
confirming PazK incorporation and the stability of the picolyl-
azide moiety in the cellular environment (Figure 2D).

Copper-catalyzed azide–alkyne
cycloaddition reactivity of GFP containing
different azide-bearing non-canonical
amino acids
To compare CuAAC labeling of the three azide-containing
ncAAs, AzeoK, PazK, and AzF, we reacted GFP150ncAA with
fluorescent AF647-alkyne in HEK293T cell lysates after
transient transfection of amber-suppressor tRNA/aaRS,
using Mma PylT/RS AF for AzeoK and PazK and Bst TyrT/
AzFRS for AzF (Figure 3A). In agreement with fluorescent
imaging, anti-GFP Western blot confirmed the efficient
incorporation of all three ncAAs, in the order AzF > AzeoK
> PazK under the conditions used. For assessing the specificity
of CuAAC reaction for the three ncAAs, we reacted a
fluorescent dye, AF647-alkyne, via CuAAC in whole-cell
lysate. Here, we chose traditional in vitro conditions with
excess alkyne dye, high concentration of copper salt
(1 mM), 100 µM THPTA, and long reaction time (1 h at RT
followed by overnight incubation at 4°C) to reach a reaction
end point. CuAAC AF647-alkyne yielded a single band
corresponding to the size of GFP visible with in-gel
fluorescence imaging at 630 nm (Figure 3A). No other
bands are observed, confirming that all ncAA are
orthogonal to (i.e., not incorporated by) the endogenous
complement of aaRS enzymes. In principle, stoichiometric
labeling should be observed under the given reaction
conditions for the three azide-modified GFP proteins.
However, despite the lower amount of total GFP produced,
the signal for AF647-labeled GFP was strongest for PazK
and weakest for AzeoK (corresponding to a roughly 7.5-fold
higher AF647/GFP ratio for PazK compared to AzeoK)
(Figure 3A). These results confirm that AzeoK and AzF are
more efficiently incorporated, but suggest that the
incorporated PazK has a higher CuAAC reactivity. There
are several potential explanations for this observation:
terminal azides can undergo reduction to amines, and
aromatic azides are known to be photolabile; hence, some
of the AzeoK and AzF azide moieties may have been eliminated
in cellulo or upon lysis (Milles et al., 2012). On the other hand,
natural Cu(I) chelating molecules in the crude lysate and
reoxidation of Cu(I) to Cu(II) with atmospheric oxygen
may deplete Cu(I) available for CuAAC under elongated
reaction conditions. As an additional control, we performed
an SPAAC reaction with dibenzocyclooctyne (DBCO)-
TAMRA fluorescent dye in lysates of all the three azide-
bearing GFP species and again observed an improved
reactivity of PazK over AzeoK and AzF (Supplementary
Figure S3). This further hinted at the decomposition of the
AzeoK and AzF azide moieties in cellulo or upon cell lysis. In
summary, these results, together with the intact mass
(Figure 2D) suggest that PazK is favorably stable and
reactive compared with other available azide ncAAs. Of
note, SPAAC labeling with DBCO showed less specific
labeling of the azide-bearing GFP and a number of
background bands, in line with prior reports that SPAAC
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reactions are not strictly bioorthogonal due to side reactions
with thiols (van Geel et al., 2012).

Picolyl azide-lysine labelingwith low copper
concentrations
We moved on to investigate CuAAC labeling on live cells, where
the concentration of added copper and labeling conditions must
be optimized to find a compromise between reaction efficiency
and adverse side effects to proteins and cells. CuSO4

concentrations of 50 µM in the presence of excess copper
chelators have been successfully used for live cell CuAAC
labeling, while higher concentrations have been shown to
impact cell viability (Hong et al., 2010; Uttamapinant et al.,

2012; Meineke et al., 2020). We incorporated PazK and AzeoK
withMma PylT/RS AF into an amber mutant of the class B GPCR
corticotropin-releasing factor type 1 receptor (CRFR1 95TAG)
(Coin et al., 2013; Serfling et al., 2018, Serfling et al., 2019).
CuAAC with AF647-alkyne was performed with 5–50 µM CuSO4

and a fivefold excess of THPTA on the surface of live cells
expressing CRFR195AzeoK or CRFR195PazK (Figures 3B, C).
CRFR195AzeoK could be labeled with AF647-alkyne on the
surface of live cells with 50 µM CuSO4, while AF647
fluorescence was barely detectable at 20 µM CuSO4 and
undetectable at 5 µM CuSO4. CRFR195PazK yielded much
stronger specific AF647 fluorescence at 50 and 20 µM CuSO4

despite the lower expression level. Incorporation efficiency of
PazK and AzeoK into CRFR1 can be compared via detection of a

FIGURE 3 | Incorporation of PazK allows copper-catalyzed azide–alkyne cycloaddition (CuAAC) at reduced copper concentrations. (A) CuAAC labeling of azide
ncAAs in GFP in HEK293T cell lysate. Cells were transfected with Mma PylT/RS AF, or Bst TyrT/AzFRS and cognate tRNA/GFP150TAG reporter plasmid (1 + 4 ratio)
and cultured in the absence (–ncAA) or presence of 0.25 mM of the indicated ncAA for 24 h. CuAAC labeling with 1 mMCuSO4, 1 mM TCEP, 100 µM THPTA, and 1 µM
AF647-alkyne in cell lysate. Lysate aliquots were separated by SDS-PAGE and imaged for in-gel fluorescence. Immunostaining for GFP, FLAG-tagged aminoacyl-
tRNA synthetase, and GAPDH loading control after membrane transfer of the same gel. (B, C) CuAAC labeling of CRFR195PazK and CRFR195AzeoK on the surface of live
HEK293T cells. Cells were transfected with Mma PylT/RS AF and Mma PylT/CRFR1 95TAG reporter plasmid (1 + 4 ratio) and cultured in the absence (–ncAA) or
presence of 0.25 mM of the indicated ncAA for 24 h. CuAAC labeling with 5–50 µM CuSO4, 25–250 µM THPTA, and 5 µM AF647-alkyne on live cells. (B) CuAAC-
labeled cells were counterstained with Hoechst 33342, fixed in 4% formaldehyde for fluorescence microscopy. (C) Lysate aliquots were separated by SDS-PAGE and
imaged for in-gel fluorescence. Immunostaining for HA-tagged CRFR1 and FLAG-tagged aminoacyl-tRNA synthetase after membrane transfer of the same gel.
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C-terminal HA tag: at the same ncAA concentration, AzeoK
addition allows much more efficient amber suppression
(Figure 3C). Thus, PazK demonstrated greatly improved
CuAAC reactivity over AzeoK at copper concentrations as low
as 20 μM, while further reducing the copper concentration did not
support CuAAC with either ncAA. Thus, we conclude that PazK,
in combination with THPTA, allows efficient CuAAC reactions on
live cells with minimal expected toxicity (Hong et al., 2010).

DISCUSSION

The discovery of strain-promoted inverse electron-demand
Diels–Alder cycloaddition (SPIEDAC) has enabled versatile
bioorthogonal reactions that are fast, efficient, and nontoxic in
and on live cells (Lang and Chin, 2014; Nikić et al., 2014). As a
result, CuAAC has become obsolete for many fluorescent labeling
and chemical conjugation applications in cellular environments.
However, CuAAC is exquisitely bioorthogonal as well as
orthogonal to SPIEDAC and, thus, remains a universal choice
for performing two orthogonal chemical conjugations in the same
cellular environment (Nikić and Lemke, 2015). We have
previously demonstrated orthogonal dual-color labeling of
surface receptors on live cells combining SPIEDAC and
CuAAC on genetic encoded trans-cyclooct-2-en-lysine
(TCO*K) and ProK. Because PazK is a substrate for Mma
PylRS AF and G1 PylRS Y125A, it cannot be combined with
TCO*K to form a second orthogonal ncAA pair for dual labeling.
However, we note that ProK and PazK could be incorporated
with the orthogonal Mma PylT/PylRS and G1 hybT*/PylRS
Y125A pairs (Meineke et al., 2020), hence, providing a route
for installing site-specific alkynes and azides that could be
employed for orthogonal fluorescent labeling as well as site-
specific intramolecular or intermolecular crosslinking.

Currently, CuAAC reactions are limited to the cell surface
because low intracellular Cu(I) concentration does not permit
catalysis, and artificially raising copper concentrations within cells
is likely toxic (Bevilacqua et al., 2014; Li et al., 2017).We determine a
lower limit of 20 µMof copper for a successful CuAAC reaction with
PazK on live cells. Synthesizing and screening additional structural
variants of PazKmay, in the future, improve incorporation efficiency
and reactivity. For catalysis at even lower free copper concentrations,
the copper-chelating properties of the azide ncAA could be
enhanced by multivalent chelating ligands. For example,
coordinating azides with two or three triazole rings have been
shown, in principle, to enable intracellular CuAAC (Bevilacqua
et al., 2014; Li et al., 2017). It will, thus, be an interesting
challenge if PylT/RS variants can be identified that can accept
larger copper-chelating azides and if availability of Cu(I) in the
intracellular environment would be sufficient for catalysis.
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