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The defluorosilylation of aryl fluorides to access aryl silanes was achieved under transition-
metal-free conditions via an inert C–F bond activation. The defluorosilylation, mediated by
silylboronates and KOtBu, proceeded smoothly at room temperature to afford various aryl
silanes in good yields. Although a comparative experiment indicated that Ni catalyst
facilitated this transformation more efficiently, the transition-metal-free protocol is
advantageous from a green chemistry perspective.
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INTRODUCTION

Organofluorine compounds have been critical over the past few decades in pharmaceutical (Inoue
et al., 2020), agrochemical (Ogawa et al., 2020), functional materials (Hiyama, 2000; Babudri et al.,
2007; Berger et al., 2011; Liu et al., 2017; Liu et al., 2019) and polymer (Améduri et al., 2020)
industries. The progress of synthetic technologies exemplified by fluorination (Rozen et al., 1996;
Shibata et al., 2007; Furuya et al., 2011; Campbell et al., 2015; Ni et al., 2015; Lee et al., 2016; Zhu et al.,
2018) and trifluoromethylation (Ma et al., 2004; Shibata et al., 2008; Shibata et al., 2010; Merino et al.,
2014; Liu et al., 2015; Charpentier et al., 2015; Alonso et al., 2015; Xiao et al., 2021) reactions has
expressively supported such success and prosperity of organofluorine compounds. One of the most
attractive properties of organofluorine compounds is their durability, represented by Teflon®,
induced by the most vital bond energy of the C–F bond in carbon chemistry (Uneyama et al.,
2006; Luo et al., 2007; Amii et al., 2009). However, their robustness has often caused severe persistent
environmental toxicity, such as the super-greenhouse effect by fluorocarbons (McCulloch et al.,
2003; Velders et al., 2007; Shine and Sturges, 2007; Sovacool et al., 2021) and the bioaccumulation of
perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) (Vierke et al., 2012;
Stanifer et al., 2018; Chen et al., 2019; Li et al., 2020). Given this limitation, recent attention has
been focused on the activation and cleavage of remarkably inert C–F bonds of organofluorine
molecules, creating a new field of research in fluorine chemistry (Stahl et al., 2013; Ahrens et al., 2015;
Shen et al., 2015; Eisenstein et al., 2017; Hamel et al., 2018).

In 2018, we reported a significant achievement on the C–F bond cleavage of aryl fluorides via
defluorosilylation using silylboronates (R3SiBPin) in the presence of potassium tert-butoxide
(KOtBu) and a catalytic amount of Ni. The C–F bond cleavage occurred via the five-centered
transition state via a π-nickel complex and a non-classical oxidative pathway (Scheme 1A); (Cui
et al., 2018). Notably, we also found that the C–F bond activation did not require an Ni catalyst in the
case of alkyl fluorides. The defluorosilylation of alkyl fluorides proceeded smoothly with R3SiBPin
exclusively in the presence of KOtBu. A highly nucleophilic, silyl anionic species directly reacts with
alkyl fluorides via a concerted SN2 process (Scheme 1B). The defluorosilylation reaction was then
successfully reported by several groups (Gao et al., 2019; Liu et al., 2019; Kojima et al., 2019; Mallick
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et al., 2019; Coates et al., 2019; Lim et al., 2020; Sheldon et al.,
2020). In 2019, Martin and co-workers reported the lithium-
promoted defluorosilylation of organic fluorides, in which
lithium bis(trimethylsilyl)amide (LiHMDS) and dimethyl ether
(DME) cooperated well to activate the inert C–F bond (Scheme
1C); (Liu et al., 2019). In the same year, Uchiyama and co-
workers also reported a transition-metal-free defluorosilylation of
fluoroarenes using PhMe2SiBPin and sodium tert-butoxide
(NaOtBu) (Kojima et al., 2019). In situ generated silyl anion
species enabled the direct defluorosilylation of fluoroarenes
(Scheme 1D). In 2021, we have continuously reported the
catalyst-free carbosilylation of alkenes using R3SiBPin and
organic fluorides, including aryl and alkyl fluorides, via
selective C–F bond activation (Zhou et al., 2021). The
substrate-scope showed slightly better yields when the reaction
was performed in the presence of an Ni-catalyst, although we

noticed that the effect of Ni-catalyst was not significant (Scheme 1E).
While the results of Uchiyama and co-workers (Scheme 1D);
(Kojima et al., 2019) and our recent results (Scheme 1E); (Zhou
et al., 2021) indicate that Ni-catalyst is not necessary for their
transformations, the conditions are not precisely the same such
as bases, solvents and reaction times, which is difficult to conclude
the Ni-effect. We thus decided to carefully re-examine our original
work of defluorosilylation of aryl fluorides in 2018 (Scheme 1A);
(Cui et al., 2018) by the same conditions, R3SiBPin in the presence of
KOtBu, with or without an Ni-catalyst. We disclose herein the
improved-catalyst-free conditions for silylboronate-mediated
defluorosilylation of aryl fluorides. A wide variety of aryl
fluorides 1 having a substitution at the aromatic ring were
smoothly converted into the corresponding aryl silanes 3 in good
yields by R3SiBPin 2 (2.0 equiv) in the presence of KOtBu (3.0 equiv)
in a mixed solvent system (c-hex/THF � 1/2) at room temperature.

SCHEME 1 | Examples of defluorosilylation reactions of organic fluorides with R3SiBPin.
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Heteroaromatic fluorides 1 are also accepted by the same conditions
to provide heteroaromatic silanes 3 in good yields. We also carried
out the same reactions under Ni-catalysis.While the yields under the
catalyst-free conditions were lower than those underNi-catalysis, the
transition-metal-free system is advantageous from the perspective of
green chemistry (Scheme 1F).

RESULTS AND DISCUSSION

To start the optimization, we selected 4-fluorobiphenyl (1a) and
silylboronate Et3SiBpin (2a) as model substrates to examine the
defluorosilylation reaction. Based on our earlier reported
conditions of the Ni-catalyzed defluorinative silylation of aryl
fluorides 1 [Et3SiBpin (1.5 equiv), KOtBu (2.5 equiv), 10mol%
Ni(cod)2 in cyclohexane (c-hex)/THF (1/2, v/v) at room
temperature], we carried out the reaction of 1a with 2a under
the conditions mentioned above but without Ni-catalyst. All the
optimizations were carried out on a 0.1 mmol scale of 1a. The
expected biphenyl-4-yl-triethylsilane (3aa) was observed in 65%
1HNMR yield after 8 h (entry 1,Table 1). To compare Uchiyama’s
reaction conditions (Kojima et al., 2019) (NaOtBu, THF), replacing
KOtBu with NaOtBu, gave 58% yield of 3aa (entry 2). Other bases
such as LiOtBu or KOMe resulted in no reaction (entries 3 and 4).
The conditions by Martin (Liu et al., 2019) (LiHMDS, DME) were
also attempted but using our solvent system (c-hex/THF � 1/2, v/
v), but no reaction resulted (entry 5). Interestingly, KHMDS
facilitated this defluorosilylation reaction by affording 3aa in
27% yield (entry 6). We subsequently attempted the reaction in
a single solvent of c-hex, THF, or diglyme to investigate the effect of
solvent. The mixed solvent system, c-hex/THF (entry 1), was more
effective than others (entries 7–9). We next varied the amounts of
2a and KOtBu (entries 10 and 11) and found that 2.0 equiv of 2a
and 3.0 equiv of KOtBu were the optimum amounts to afford 3aa

in 74% yield (56% isolated yield; entry 11). To re-ascertain the
effect of Ni(COD)2, we investigated the reaction using these
optimized conditions (entry 11) but in the presence of Ni
catalyst. The defluorosilylation reaction performed more
efficiently under the optimal conditions with Ni(COD)2 to give
3aa in 83% yield (65% isolated yield; entry 12), while 1a remained
(detected by crude 19F NMR). These comparative results thus
convinced us that Ni(COD)2 accelerates the present defluorinative
transformation, while the transition-metal-free variant (entry 11) is
advantageous from a green chemistry perspective.

With the optimized reaction conditions in hand (entry 11,
Table 1), we next examined the feasibility of this transition-
metal-free defluorosilylation reaction (Table 2). All the reactions
were carried out on a 0.2 mmol scale of 1. As shown, various
aromatic fluorides were examined under catalyst-free conditions.
We efficiently converted a wide range of fluoroarenes 1 into
corresponding defluorosilylation products 3 in good yield. It was
found that any position (o-,m-, or p-) in the aromatic substitution
of 1was viable, affording the corresponding products 3 (3aa: 59%;
3ba: 51%; 3ca: 26%; 3da: 40%; 3ea: 55%) in acceptable to good
yields (26–59%) under the catalyst-free conditions. We next
repeated the same substrate scope in the presence of
Ni(COD)2 (entry 12, Table 1) and the yield of products
3aa–3ea improved considerably (3aa: 86%; 3ba: 82%; 3ca:
74%; 3da: 70%; 3ea: 79%). Thus, these differences clearly show
the efficiency of Ni(COD)2. Previous results with Ni(COD)2 are
also indicated in Table 1 to ascertain the advantage of the Ni
catalyst. Besides, the aryl fluorides 1f–1h with an electron-rich
substitution were well-tolerated in this defluorosilylation reaction
in moderate yield (3fa: 46%; 3ga: 45%; 3ha: 39%). Several
substituted aryl silanes (3ia–3na) were also successfully
obtained in moderate yield under identical conditions and a
variety of functional groups such as OMe (1j), OMOM (1k),
OPh (1l), NMe2 (1m) and 1H-pyrrole (1n) were well tolerated.

TABLE 1 | Optimization of defluorosilylation reaction conditions.

Entry X Base (Y) Solvent Yield of 3aaa

1 1.5 KOtBu (2.5) c-hex/THF (1/2) 65%
2 1.5 NaOtBu (2.5) c-hex/THF (1/2) 58%
3 1.5 LiOtBu (2.5) c-hex/THF (1/2) N.R.
4 1.5 KOMe (2.5) c-hex/THF (1/2) N.R.
5 1.5 LiHMDS (2.5) c-hex/THF (1/2) N.R.
6 1.5 KHMDS (2.5) c-hex/THF (1/2) 27%
7 1.5 KOtBu (2.5) c-hex 45%
8 1.5 KOtBu (2.5) THF 62%
9 1.5 KOtBu (2.5) diglyme 45%
10 1.5 KOtBu (3.0) c-hex/THF (1/2) 60%
11 2.0 KOtBu (3.0) c-hex/THF (1/2) 74% (56%)c

12b 2.0 KOtBu (3.0) c-hex/THF (1/2) 83% (65%)c

aUnless otherwise noted, the reaction was carried out using 1a (0.1 mmol), Et3SiBpin (2a), and a base in solvent (0.6 ml, v/v) at rt for 8 h; yields were determined by 1H NMR and 19F NMR
analysis of the crude reaction mixture using 3-fluoropyridine as the internal standard.
b10 mol% Ni(cod)2 was added.
cIsolated yield is shown in parentheses.
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TABLE 2 | Substrate scope of the defluorosilylation strategiesa.

aUnless otherwise noted, the reaction was carried using 1 (0.2 mmol), 2 (2.0 equiv), and KOtBu (3.0 equiv) without or with Ni(COD)2 (10 mol%) in c-hex/THF (1.2 ml, 1/2, v/v) at rt for 8 h.
Isolated yields are shown.
bThe yields shown are previously reported data by using reaction conditions: 1 (0.2 mmol), 2 (1.5 equiv), Ni(COD)2 (10 mol%), KOtBu (2.5 equiv), c-hex/THF (0.8 ml, 1/2, v/v), rt, 2–12 h.
c0.4 mmol 1 was used.
PMP, p-methoxyphenyl; MOM, methoxymethyl.
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The nitrogen-containing hetero-aromatic fluorides 1o–1q were
successfully converted to the corresponding silanes 3. For
example, 5-fluoro-2-phenylpyridine (1o) and 1H-indole
derivatives (1p and 1q), which possess an active C–H bond,
were well-tolerated and smoothly underwent the selective
defluorosilylation process to afford desired products (3oa:
43%; 3pa: 37%; 3qa: 42%). Notably, 1,2-difluorobenzene (1r)
was efficiently mono-silylated in good yield (3ra: 62%). Sterically
demanding o-substituted substrates 1s and 1t were also
transformed into the corresponding products 3sa and 3ta
under Ni-free conditions in 26 and 12% yields, respectively.
Ni-catalyst conditions improved both cases to 67% (3sa) and
35% (3ta). Furthermore, other silyl boronates such as
PhMe2SiBpin (2b) and tBuMe2SiBPin (2c) were also
investigated instead of 2a to yield the corresponding silylated
products 3ab and 3ac in 36 and 51% yield, respectively. In all
cases, the Ni catalyst-based protocol (Cui et al., 2018) has a
substantial yield advantage in this defluorosilylation reaction,
while both conditions did not entirely consume the staring
materials 1. The substrates (1u and 1v) having electron-
withdrawing group were not suitable, which is the limitation
of this transformation.

Based on our previous work of defluorosilylation of alkyl
fluorides 1 with R3SiBPin 2 mediated by a potassium base (Cui
et al., 2018), the defluorosilylation of aryl fluorides mediated by a
lithium base (Martin) (Liu et al., 2019) and by a sodium base
(Uchiyama) (Kojima et al., 2019), the reaction should proceed the
nucleophilic attack of the silyl anion involving a concerted SNAr
process. A schematic reaction of the catalyst-free defluorosilylation
process is presented in Scheme 2 by considering our previous work
and Uchiyama’s elegant DFT calculations (Kojima et al., 2019). First,
R3SiBPin 2 reacts with tBuOK to provide potassium silyl anion
species C complexed with tBuO-BPin via A and B (Cui et al., 2018;
Jain et al., 2018; Zhou et al., 2021).C approaches the aryl fluoride 1 to
form the intermediate I. A concerted SNAr reaction happens with
the attack of the boron center of tBuO-BPin by another tBuOK via a
transition state IIwith the key C–F bond cleavage to furnish the aryl
silanes 3 with the formation of KF and D, K+[tBuO2BPin]-.

CONCLUSION

In summary, we reported a feasible transition-metal-free method for
synthesizing aryl silanes3 through the defluorosilylationof arylfluorides
1 by using silylboronates R3SiBPin 2 and KOtBu. Furthermore, we
compared our new results with a previous report on the success of Ni-
catalyzeddefluorosilylation offluoroarenes. Thus,we concluded that the
transformation of aryl fluorides into corresponding aryl silanes via a
C−F bond cleavage can be achieved even in the absence of Ni(COD)2,
but in relatively lower yields than those of theNi-catalyzed protocol, due
to different reaction mechanisms. A further extension of this
methodology is currently underway.
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