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Thermally-activated delayed fluorescence (TADF) is a concept which helps to harvest triplet
excitations, boosting the efficiency of an organic light-emitting diode. TADF can be observed in
molecules with spatially separated donor and acceptor groups with a reduced triplet-singlet
energy level splitting. TADF materials with balanced electron and hole transport are attractive
for realizing efficient single-layer organic light emitting diodes, greatly simplifying their
manufacturing and improving their stability. Our goal here is to computationally screen
such materials and provide a comprehensive database of compounds with a range of
emission wavelengths, ionization energies, and electron affinities.
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INTRODUCTION

For obtaining efficient organic light-emitting diodes (OLEDs), it is convenient to tune individual processes,
such as charge injection, balanced hole and electron transport, and triplet and singlet exciton harvesting, by
using dedicated layers. Every new material adds a degree of freedom and hence flexibility to the OLED
design. For instance, doped charge transport layers ensure Ohmic injection, an appropriate host material
balances transport inside the emitting layer, and the phosphorescent emitter ensures triplet harvesting.
However, every new emitter requires optimization of the surrounding layers, with respect to energy levels,
triplet energies, and charge-transport properties, complicating the OLED design.

Recently, it was demonstrated that a complex multilayer design can be substituted by a simple single-
layer architecture (Kotadiya et al., 2019a) without compromising the balanced and trap-free electron and
hole transport. The ohmic charge injection and the absence of heterojunctions resulted in extremely low
operating voltages and thus power efficiency in a single-layer OLED utilizing thermally activated delayed
fluorescence, which helps to convert triplet into singlet excitons (Uoyama et al., 2012; Godumala et al., 2019).

An external quantum efficiency of 19% was achieved. Owing to the broad recombination zone and low
operating voltages, one of the key features of the single-layer device is the improved device stability, which
can be used to design a stable blueOLED, a grand challenge inOLED research (Heimel et al., 2018; Paterson
et al., 2019, 2020). In view of this, it would be useful to understand if the single-layer design can be employed
for blueOLEDs: the issue here is the trap-free transport for both holes and electrons, which sets limits on the
transport gap. In this paper, we first formulate the chemical design rules for TADF emitters with ambipolar
transport. Using these rules, we then computationally pre-screen a set of molecules comprised of acceptor,
donor, and bridge blocks and grade them according to the predicted emission wavelength.

DESIGN CRITERIA

Singlet-Triplet Energy Splitting
The important task of a TADF emitter is to convert triplet into singlet excitations. To do this, the
reverse intersystem crossing rate, krISC, should be high, which is only possible if the energy difference
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between the first singlet and the first triplet excited state is small,
ΔEST < 0.1 eV. A typical example of a TADF emitter is CzDBA
(Wu et al., 2018), shown in Figure 1. CzDBA has a D-π-A-π-D
architecture: two carbazole (Cz) fragments, twom-xylene bridges
and a central 5,10-dihydroboranthrene (DBA) core. The methyl
groups on the m-xylene bridge ensure that the core unit is nearly
orthogonal to the π bridge, leading to a small overlap between the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) and hence nearly zero
ΔEST.

Ambipolar Trap-free Transport
To ensure a broad recombination zone within the emission layer,
the thin film of the TADF emitter should provide balanced and
trap-free transport of holes and electrons. To realize this, one
needs to select compounds with an ionization energy (IE) and
electron affinity (EA) lying within the trap-free energy window
(Kotadiya et al., 2019b), i.e., with ionization energy (IE) < 6.5 eV
and electron affinity (EA) > 2.5 eV. These criteria ensure that
contaminants such as oxygen or water do not serve as energetic
traps for holes and electrons.

Small Energetic Disorder
From a dipolar glass model, the energetic disorder present in a
disordered molecular solid is proportional to the dipole moment
of the composing molecule. Therefore, thin organic films with
molecules with a small dipole moment (D) normally have a
narrower density of states (Novikov and Vannikov, 2009; Lin
et al., 2019; Mondal et al., 2021; Stankevych et al., 2021). This
design criteria can be enforced by selecting centrosymmetric
molecules only of the D-π-A-π-D or A-π-D-π-A type, similar
to CzDBA. This molecular architecture ensures a small dipole
moment and hence narrow density of states (Liu et al., 2021).

BUILDING BLOCKS

With these design rules in mind, and in view of the successful
example of CzDBA, we build and characterize a database of

emitters that fulfill the aforementioned criteria. To construct
the emitters, we start with 97 potential donor and acceptor
building blocks, all shown in the Supplementary Note S1. All
of them are (quasi-)linear, composed of three (fused) rings
and are reported in literature (synthesizable). These building
blocks are further pre-screened to ensure the desired donor-
acceptor architecture in an emitter. The pre-screening
proceeds as follows: knowing that the IE and EA of CzDBA
is already quite close to the boundary of the trap-free window
(Kotadiya et al., 2019a; Liu et al., 2021) we take the IECz and
EADBA as the pre-screening criteria for donors and acceptors,
respectively. Only the fragments possessing IE < IECz + 0.2 eV
(EA > EADBA - 0.2 eV) will be chosen as “trap-free” donors
(acceptors) and enter the next round, see Supplementary
Figure S2. The molecular structures of donors and
acceptors that pass the prescreening step are summarized
in Figure 2. To build the emitter molecules, only the
building blocks with the inversion symmetry are used as
core fragments. These are shown in dark colors in
Figure 2. This choice helps to fulfill the centrosymmetric
requirement for the entire molecule.

COMPUTATIONAL WORKFLOW

Using the selected building blocks, we constructed the database of
D-π-A-π-D and A-π-D-π-A. The simplified molecular-input-
line-entry system (SMILES) strings of compounds were created
through combination of the SMILES strings of the composing
donor, bridge and acceptor. The initial geometry of each
compound was first optimized using a semi-empirical method
and then by density functional theory (DFT). Details are given in
the Supplementary Note S2.

To obtain reliable predictions of solid-state IE, EA and excited-
state energy, we followed the cost-effective ω-tuning protocol
(Sun et al., 2016, 2017). In addition to the ΔEST, the difference in
the characters of the singlet and triplet excited states are crucial to
the rISC rate (El-Sayed, 1963). For this reason, the excited-state
characters were evaluated using a fragment-based method
(Plasser, 2020).

For compounds that pass the screening criteria, the density-of-
states distributions for holes and electrons were computed via
multi-scale simulations, that include morphology generation
using molecular-dynamics simulations, followed by polarizable
force-field evaluation of the solid-state contributions to the gas-
phase energy levels (Rühle et al., 2011; Poelking and Andrienko,
2016; Andrienko, 2018; Mondal et al., 2021). The entire workflow
is illustrated in Figure 3.

RESULTS AND DISCUSSION

Compounds With Small Singlet-Triplet
Splitting
The combination of the core and the arm fragments gives in
total 441 A-π-D-π-A and 504 D-π-A-π-D compounds. Due to
convergence problems in geometry optimization, especially

FIGURE 1 | The molecular structure of a prototypical single-layer TADF
emitter, 5,10-bis(4-(9H-carbazol-9-yl)-2,6-dimethylphenyl)-5,10-
dihydroboran-threne (CzDBA). It features a D-π-A-π-D (or arm-bridge-core-
bridge-arm) molecular architecture.
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in the anionic state with implicit solvent, the final database
contained 433 A-π-D-π-A and 481 D-π-A-π-D compounds.

The IE and EA of all compounds either lies within the
“trap-free window” or close to the borderline of the window,
showing that the effectiveness of prescreening of the building
blocks. Therefore, we put our emphasis on the small ΔEST

criterion. The distributions of the ES1 and ΔEST are shown in
Figure 4 (A-π-D-π-A) and Supplementary Figure S2 (D-
π-A-π-D). Around 50% of the compounds (206 out of 433 for
A-π-D-π-A and 268 out of 481 for D-π-A-π-D) have very
small singlet-triplet energy level splitting, ΔEST < 0.1 eV,
which illustrates the efficiency of the design strategy, that
is the use of the m-xylene bridge. Moreover, the computed S1
energy and ΔEST of CzDBA is 2.487 and 0.016 eV, which is in
excellent agreement with the experimental values of 2.48 and
0.033 eV (Wu et al., 2018; Kotadiya et al., 2019a).

Among these small- ΔEST compounds, we observed a broad
distribution in the S1 energy, ranging from 0.2 to 2.9 eV. This
indicates the opportunity to design single-layer emitting
OLEDs of different colors, including the infrared region.
The two branches in Figure 4 represent the rest (50%) of
the emitters with ΔEST > 0.1 eV, where a similar branch is also

observed for D-π-A-π-D (Supplementary Figure S3). This is
counterintuitive as the ΔEST should be small if the HOMO and
the LUMO are separated via the m-xylene bridges.

Analysis of the Excited-State Character
To better understand the origin of the large ΔEST, we calculated
the charge transfer (CT) number ranging from 0 to 1, using the
fragment-based analysis (see Supplementary Note S2). We
define the core as one fragment (fC) and two bridge + arm
pairs as the other fragment (fA). If the hole is 100% located at
one fragment and the electron is 100% located at the other one,
the charge transfer number is 1, representing a 100% CT
character. In contrast, if the hole and the electron are both
localized on the same fragment, the CT number is 0, featuring
a local-excitation (LE) character. In most cases, the CT number is
a fraction between 0 and 1 since most adiabatic excited states
exhibit a mixture of CT and LE characters. The larger the CT
number of the excited state is, the higher the CT character it has.

Figure 5 depicts the 2D histogram based on the CT numbers
of T1 and S1 states for the 227 A-π-D-π-A compounds with ΔEST

> 0.1 eV. Most of the scatter points are located at the upper left
corner, meaning that these emitters possess a charge-transfer S1

FIGURE 2 | Donors (blue), acceptors (red), and building blocks that can serve both as donors and acceptors (purple). The blocks with inversion symmetry (dark
colors) can be used as either core or arm fragments. The building blocks without inversion symmetry (light colors) can only be used as arm fragments. We also included
boant4, which is not centrosymmetric, as a core fragment to increase the number of compounds in the database.
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FIGURE 3 | Illustration of the computational workflow for virtual screening of single-layer TADF emitters.

FIGURE 4 | 2D histogram constructed using the descriptors (ES1 , ΔEST ) of the A-π-D-π-A database (433 molecules). The corresponding 1D histogram for each
descriptor is shown on the axes.
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and locally-excited T1 states. A similar result was observed in the
D-π-A-π-D case (see Supplementary Figure S4).

The emergence of the LE states can be explained utilizing the
frontier molecular orbital (FMO) energies of the constituent building
blocks (Blaskovits et al., 2020), which is illustrated in Figure 6A. The
competition between the CT excitation and LE excitation depends
on the relative ordering of the FMOs. In this context, we can define two
descriptors, RA � (EA

LUMO − EA
HOMO)/(EA

LUMO − ED
HOMO),

RD � (ED
LUMO − ED

HOMO)/(EA
LUMO − ED

HOMO), where EA/D
LUMO/HOMO

are the LUMO/HOMO energies of the acceptor/donor. If the RA

or the RD is much larger than 1, the CT excitation is more favorable
than the LE for the low-lying excited states and vice versa. Figure 6B
demonstrates that this simple approximation works quite well for our
A-π-D-π-A database: ForRA orRD smaller than∼1.2, theCTnumber
of T1 becomes close to 0. The same behavior was also found in the D-

π-A-π-D database, as shown in Supplementary Figure S5. This
indicates that a prescreening step based on the individual building
blocks saves the computational cost, similar to pre-screening of singlet
fission donor-acceptor copolymers (Blaskovits et al., 2020).

Compounds With Tn States Lying Close
to S1
The S1 and T1 states of most molecules that pass the first screening
step (ΔEST < 0.1 eV) exhibit CT character. According to the El-
Sayed rule, the krISC is zero between two states having the same
excited-state character, which implies that the rISC may not occur
for these pre-screened compounds. However, the conformational
disorder present in the solid state leads to a distribution of dihedral
angles between the constituent donor and acceptor (Weissenseel
et al., 2019). This disorder gives rise to different excited-state
characters, that is different mixing of CT and LE diabatic states of
the S1 and T1 states, (de Silva et al., 2019), resulting in non-zero
krISC. This explains why TADF could still be observed in the thin
film of CzDBA, where CTS1 and CTT1 are both close to 1 in the gas
phase (Kotadiya et al., 2019a).

In addition, higher triplet states (Tn with n> 1) with different
excited-state character from that of S1, can also assist in the rISC
process via a two-step mechanism (Gibson et al., 2016). A large
second order coupling can be achieved when the energies of S1, T1

and Tn are close to each other. Compounds with close-lying S1
and T1 that already show different excited-state characters would
possess large first-order coupling and hence high krISC. Therefore,
we applied additional screening criteria to the as-screened ∼500
molecules: 1) there should be at least one triplet state Tn that is
close to S1 (| ES1− ETn

| < 0.1 eV); 2) for the triplet states that are
energetically close to S1, the difference between the CT numbers
of S1 and Tn should be larger than 0.5 (CTS1−CTTn

> 0.5) to give
reasonable spin-orbit coupling.

Overall, around 100 molecules pass the criteria (49 A-π-D-π-A
and 46D-π-A-π-D), where themolecular structures are summarized
in Figure 7. All of these compounds, except for A-π-D-π-A

FIGURE 5 | 2D histogram constructed using the CT numbers of T1 and
S1 states of the A-π-D-π-A molecules with ΔEST > 0.1 eV (227molecules). The
corresponding 1D histogram for each descriptor is shown on the axes.

FIGURE 6 | (A) Schematic representation of the relation between the competence of LE and CT states and the relative order of FMO energies; (B) RD-RA scatter
plots colored by the CT number of the T1 state of the A-π-D-π-A database (433 molecules).
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molecules with non-centrosymmetric core boant4 (D � 4 − 5
Debye), possess nearly zero molecular dipole moment. Therefore,
they are considered promising candidates for single-layer OLED
emitters. The position of the electroluminescence (EL) spectrum
maximum of each compound, as shown in Figure 7, was estimated
by subtracting the computed S1 energy by a value δ, which is defined
as δ � ES1 − λEL,max � 2.480 − 2.214 � 0.266 eV, where ES1 and
λEL,max is the experimental optical gap and the wavelength of the
EL spectrum maximum of CzDBA (Kotadiya et al., 2019a). These

values are listed in Supplementary Tables S1,S2. We obtained a
series of potential TADF emitters with various EL spectrum
maximum, ranging from infrared (0.716 eV) to blue color
(2.660 eV), which paves the way for future development of
single-layer OLED devices.

Charge Carrier Density of States
More sophisticated solid-state simulations can then be
performed for the much smaller molecular dataset, which is

FIGURE 7 | The estimated EL spectrum maximum of 49 A-π-D-π-A candidates of single-layer OLED emitters. The molecular structures of the 14 selected
compounds are depicted.
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now only ∼10% of the initial number of compounds. As a
proof of concept, we computed the charge carrier density of
states for the blue A-π-D-π-A emitter, 37bdt1-ant2 (as shown
in Figure 8). The amorphous simulated morphology was
generated using molecular dynamics, where the details can
be found in Supplementary Note S4. The energetic disorder
for electrons (0.11 eV) and holes (0.12 eV) is relatively small,
which indicates a good hole/electron mobility. This also
demonstrates the success of our design strategy regarding
small molecular dipole moment. Since the simulated IE and
EA of 37bdt1-ant2 lie at the border of the trap-free window,
further experimental measurements are necessary to verify if
it is really free from universal traps.

CONCLUSION

To summarize, we have provided clear design rules for single-
layer OLED materials comprising TADF:

1. Molecular gas-phase ionization energies and electron affinities
within the ∼ 6.2 eV to ∼ 2.0 eV range. These are calculated
using implicit solvent with the dielectric constant of 3 and
ensure trap-free transport of electrons and holes.

2. Small molecular dipole moment. This condition is imposed by
the molecular symmetry and ensures a narrow density-of-
states distribution in the solid state.

3. Small singlet-triplet splitting. This is provided by the
orthogonal alignment of the bridge and the core units, as

well as the suitable level alignment between the HOMO and
LUMO of the donor and acceptor units. This is required for
efficient reverse intersystem crossing.

4. Different character of singlet and triplet excitations to ensure
sufficient spin-orbit coupling that enables reverse intersystem
crossing.

Using the suggested design rules, we have proposed a set of
TADF emitters with a broad range of emission wavelengths, from
infrared to sky-blue. We hope that the suggested structures can
serve as a clear guide towards further development of efficient and
stable single-layer OLEDs.
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