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Luminescent molecular aggregates have attracted worldwide attention because of their
potential applications in many fields. The luminescent properties of organic aggregates are
complicated and highly morphology-dependent, unraveling the intrinsic mechanism
behind is urgent. This review summarizes recent works on investigating the
structure–property relationships of organic molecular aggregates at different
environments, including crystal, cocrystal, amorphous aggregate, and doped systems
by multiscale modeling protocol. We aim to explore the influence of intermolecular non-
covalent interactions on molecular packing and their photophysical properties and then
pave the effective way to design, synthesize, and develop advanced organic luminescent
materials.
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INTRODUCTION

In recent years, organic luminescent materials have attracted considerable attention due to their
practical applications in optoelectronic devices, such as organic light-emitting diodes (OLEDs),
organic light-emitting transistors (OLETs), and sensors (Ostroverkhova, 2016; Zhao Z. et al., 2018;
Salehi et al., 2019). Traditional organic luminescence always shows bright emission in solution, but
weak or quenched emission in aggregated states, that is the aggregation-caused quenching (ACQ)
effect (Watson and Livingston, 1948). However, organic luminescent materials are usually used in
aggregated states. The notorious ACQ effect has significantly hindered the development of organic
luminescence. Fortunately, Tang’s group proposed the aggregation-induced emission (AIE) concept:
organic molecules exhibit weak emission or non-emission in dilute solutions, while emitting brightly
in the aggregated states (Luo et al., 2001; Tang et al., 2001). A large number of AIE luminogens
(AIEgens) have been designed and synthesized in recent years, and it opens an avenue to an array of
possibilities for their applications in photoelectric (Furue et al., 2016; Liu et al., 2020), medical (Song
et al., 2020; Sharath Kumar et al., 2021), environmental (Cheng et al., 2017; Wang et al., 2020), and
military (Zhou et al., 2019) fields and so on (Mei et al., 2015). It is demonstrated that molecular
aggregates usually show different photophysical properties from dispersed monomers in dilute
solutions, and their luminescent properties are usually highly morphology-dependent. For example,
Mutai et al. (2014) found that 6-Cyano 2-(2′-Hydroxyphenyl)imidazo[1,2-a]pyridine has three
different crystals but emits three different fluorescent colors due to their divergent molecular
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packing. Tang et al. showed that some nitro-substituted
tetraphenylethylene (TPE) and triphenylamine (TPA) are non-
emissive in the crystal state but glitter brightly in amorphous
aggregates (Zhao W. et al., 2018). Zhao et al. proposed a series of
organic emitters by integrating planar and distorted functional
groups (donor, acceptor, or π-plane) with long alkyl side chains,
which could impart bright emission in both solution and solid
states (Wu et al., 2019). In addition, introducing a supramolecular
host molecule into the AIEgen can effectively enhance the
emission efficiency in both the monomer and aggregated states
due to the non-covalent interactions between the host and guest
molecules (Liang et al., 2014; Song et al., 2014; Liang et al., 2016;
Liow et al., 2017). And, doping trace amounts of luminophores
into host molecules makes efficient room temperature
phosphorescence (Hirata et al., 2013; Kabe and Adachi, 2017;
Han et al., 2019; Lei et al., 2019; Lei et al., 2021; Xie et al., 2021).
Therefore, the luminescent properties of organic molecular
aggregates are sensitive to molecular packing and
intermolecular non-covalent interactions and are highly
complicated.

Exploring the structure–property relationships of organic
molecular aggregates is of great importance in designing,
synthesizing, and developing advanced luminescent candidates.
In experiments, the restriction of intramolecular rotation (RIR)
mechanism, the intramolecular vibration (RIV) mechanism, and
also the restriction of motion (RIM)mechanism were proposed to
explain the AIE phenomenon (Chen et al., 2003; Dong et al., 2007;
Hong et al., 2009; Leung et al., 2014; Mei et al., 2014; Tu et al.,
2021). Theoretically, Peng and Shuai et al. proposed that the trip-
out of electron–vibration coupling blocks the excited-state non-
radiative decay channels in aggregated states and turns
fluorescence on (Peng et al., 2007a; Peng et al., 2007b; Niu
et al., 2010). Li and Blancafort et al. put forward the restricted
access to a conical interaction (RACI) mechanism based on the
potential energy surface analysis (Peng et al., 2016; Crespo-Otero
et al., 2019). Shuai’s group also proposed the blockage of non-
radiative decay via the minimum energy crossing point (MECP)
away from the harmonic region in aggregates (Ou et al., 2020;
Peng and Shuai, 2021). In addition, other scenarios have also been

declared, including excited-state intramolecular proton-transfer
(ESIPT)–inspired solid state emitters (Padalkar and Seki, 2016;
Zhao J. et al., 2019), the restriction of the E/Z isomerization
mechanism (Chung et al., 2013), the blockage of access to the
dark state with n → π* or σ→ π* in the aggregation phase (Ma
et al., 2016; Tu et al., 2019; Peng et al., 2021; Tu et al., 2021),
halogen bonding interactions–induced effective phosphorescence
(Cai et al., 2018; Yang et al., 2020), the energy transfer–facilitated
room temperature phosphorescence in a trace amount guest-
doped host-matrix system (Lei et al., 2020; Lei et al., 2021; Wang
et al., 2021), and so on.

Theoretical calculations play key roles in exploring the
relationships between molecular structures and luminescent
properties. The luminescent properties of AIEgens are highly
environment-dependent, so different molecular models need to
be setup according to the relevant environments in experiments,
such as the dilute solution, amorphous aggregate, and crystal
(Figure 1). It is well-known that most AIE phenomena are
usually confirmed in the solution, so the model setup should
consider the solvent effect. Especially, molecules with
intramolecular charge transfer properties are quite sensitive to
the solvent polarity, and they usually demonstrate red-shifted
emission as polarity increases (Tu et al., 2020; Zhang et al., 2020).
The implicit solvation models, such as the polarizable continuum
model (PCM), are good for considering the solvent effect (Tomasi
et al., 2005; Fan et al., 2015; Provorse Long and Isborn, 2017). For
the solvent insensitive molecules, to be simple, sometimes the
model is setup at the gas phase directly. For the solid phase, we
build the hybrid quantummechanics/molecular mechanics (QM/
MM) model to consider the influence of molecular packing on
photophysical properties of the studied system (Vreven et al.,
2006; Lior-Hoffmann et al., 2012; Van der Kamp and
Mulholland, 2013; Chung et al., 2015; Shen et al., 2016;
Pahima et al., 2019). During the QM/MM calculations, the
QM molecule is active, and all other molecules in the MM
region are frozen. The density functional theory (DFT)/time-
dependent DFT (TDDFT) are chosen to deal with the
luminescent properties of the QM molecule at the ground and
excited states, respectively. For crystal, the QM/MMmodel can be

FIGURE 1 | Setup models of organic molecules in dilute solution, crystal, and amorphous aggregates.
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setup based on the experimental X-ray crystal structure.
However, the molecular conformations of AIEgens in
amorphous aggregates or thin films are not available in
experiments. The large timescale molecular dynamics (MD)
simulations need to be performed to determine the
conformations (Zheng et al., 2019). Then, the QM/MM
models are setup, and the photophysical properties of AIEgens
are calculated based on the obtained MD conformations
accordingly. Moreover, the molecular packing of amorphous
aggregates is irregular, resulting in distinct local environments
for each molecule in the amorphous aggregate. It is noted that we
need to consider various molecular packings in amorphous
aggregates during calculations.

In this review, we will summarize some recent works to
demonstrate the relationship between molecular packing of
organic molecules and their luminescent properties at the
atomic level by using multiscale modeling protocol. Here, the
influence of intermolecular non-covalent interactions on the
molecular packing and their photophysical properties are
highlighted at several representative environments, including
from the regular packing crystal to the irregular amorphous
aggregates and then from the host–guest complexation by
supramolecular self-assembly to the solvent-involved cocrystal,
and then to host–guest doping systems. This work emphasizes the
ability of multiscale modeling protocol in explaining the
luminescent properties of organic molecular aggregates.

LUMINESCENT PROPERTIES OF ORGANIC
AGGREGATES

Organic Aggregates of the
Propeller-Shaped Silole System
The first molecule discussed here belongs to the typical propeller-
shaped AIE system. Unlike crystals with periodic molecular

packing, amorphous aggregates are structurally heterogeneous;
it is a great challenge to investigate the aggregation effects on
photophysical properties of AIEgens. Taking the emblematic
hexaphenylsilole (HPS) as an example (see Scheme 1), the
aggregation effect of HPS was systematically investigated by
simulating four different sizes of amorphous aggregates (20,
30, 40, and 60) by combining MD and QM/MM calculations
(Zheng et al., 2016). The embedded QM/MMmodel and exposed
QM/MMmodel (insets in Figure 2A) were setup, respectively, to
differentiate the different environments of HPS embedded inside
the amorphous aggregate and exposed on the surface. In addition,
for each aggregate size, five embedded molecules with different
conformations were selected, and their photophysical properties
were calculated accordingly to include the impact of the
molecular packing difference. Compared to HPS crystal, the
fluorescent emission in amorphous aggregate is red-shifted,
giving a direct interpretation for the crystallization-enhanced
emission phenomenon in the experiment (Dong et al., 2015;
Zhao et al., 2020). The fluorescence quantum efficiency (FQE)
was calculated by ηF≈kr/(kr + kic), where kr is the radiative decay
rate constant, and kic is the non-radiative decay rate constant,
respectively. The FQE of both the embedded (>92.7%) and
exposed HPS molecules (<7%) are size-independent, and the
FQE of embedded HPS is 1–2 orders of magnitude larger than
those of the exposed ones (Figure 2A). This is because the
environment-insensitive kr is hardly changed, but the kic of
embedded HPS molecules are significantly smaller than those
of exposed ones. Analyzing the key parameter of reorganization
energy (λ) determining kic, it indicates that the λ of dihedral
angles (λdihedral) mainly contributes to the different kic between
the embedded and the exposed HPS molecules in amorphous
aggregates (Figure 2B), implying that the densely packed
amorphous aggregate significantly blocks the non-radiative
decay channel of the excited state energy by retarding the
electron–vibration coupling of the low-frequency rotational

SCHEME 1 | Overview of molecular structures discussed in this review.
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modes of phenyl rings in HPS. We conclude that the FQE of the
nano-sized aggregate is size-independent, and the embedded
molecules dominate their luminescent intensity; therefore we
predict there is a linear relationship between the fluorescent
intensity and aggregate size, which was also successfully
confirmed in the experiment (Jiang et al., 2017; Figure 2C).

Organic Aggregates of the Annulene-Based
System Without Rotors
Cyclooctatetrathiophene (COTh, Scheme 1) is a non-aromatic
annulene-based eight-member ring (Zhao J. et al., 2019); it
demonstrates aromaticity reversal property upon excitation,
following the Baird’s rule that the aromatic (anti-aromatic)
molecule at the ground state (S0) reverses to the anti-aromatic
(aromatic) property at the lowest excited triplet state (T1) (Baird,
1972). The aromaticity reversal can serve as a driving force
inducing the significant conformational change to quench the
emission. Thus, suppressing the excited-state aromaticity reversal
of COTh turns the emission on (Zhao Z. et al., 2019). Theoretical
calculations for COTh in both isolated and crystalline states were
carried out to unravel the AIEmechanism at the atomic level. The
isolated COTh was setup at the gas phase, and the crystalline state
was simulated by the QM/MMmodel (Figure 3A) to consider the
influence of molecular packing on its photophysical properties.
Upon excitation, the dihedral angles of neighboring thiophene
rings of COTh are dramatically changed; the eight-member ring
became more planar (Figure 3B), while the corresponding bond
lengths and bond angles are still similar. The change of dihedral
angles upon irradiation in solution is more significant than those
of the crystalline state, that is to say, the conformation of COTh in
crystal is more constrained, supported by its smaller λ than that in
solution. The larger λ in solution is mainly contributed by the
change of dihedral angles (Figure 3C). In addition, the
femtosecond transient-absorption spectra analysis also
indicated that COTh has a very rapid molecular deformation
in dilute solution, while the change is suppressed in the solid state.

The nucleus-independent chemical shift (NICS) and
anisotropy of the induced current density (ACID) analysis

were performed based on the S0 and T1 transition-state
structures. As shown in Figure 3D, the highly positive
NICSzz(1) at S0 and negative NICSzz(1) at T1 indicate COTh is
anti-aromatic at S0 and aromatic at T1; therefore the aromaticity
reversal occurred upon excitation in the COTh system. It is also
supported by the different ring-current of the eight-member ring
at S0 and T1 states (Figure 3D). In general, the COTh molecule
adopts a tub-like conformation at S0 due to its non-aromatic
feature (Liu et al., 2007; Nishinaga et al., 2010); it can suffer a
quick conformational change to approach the planar/quasi-
planar aromatic state (Kotani et al., 2020). Therefore, as
illustrated in Figure 3E, there are two pathways for the
isolated COTh molecule to stabilize the anti-aromaticity state
at S1, go-up and go-down to reach the minimum energy
structures (MES) corresponding to the non-radiative decay of
exciton, resulting in the quenched emission. However, crystal
densely packing effectively restricts the molecular deformation
process and essentially enhances its emission (Figure 3F).

Organic Aggregates of NBN-Doped
Polycyclic Aromatic Hydrocarbons
Replacement of the C�C unit with its isoelectronic B–N unit can
effectively alter the optoelectronic performances of polycyclic
aromatic hydrocarbons (PAHs). NBN-5 and NBN-6 (Scheme 1)
are two representative NBN-doped PAHs; NBN-6 is AIE-active,
and NBN-5 could emit fluorescence in both solution and solid
states (Wan et al., 2018). The photophysical properties of both
compounds at different environments (including the dilute
solution, amorphous aggregate, and crystal) were
systematically explored by combining MD simulations and the
thermal vibration correlation function–coupled QM/MMmodels
(Zeng et al., 2021). The embedded and exposed QM/MMmodels
were setup respectively (as discussed above) to consider the
different molecular packing in amorphous aggregates. It is
found that, upon excitation, the dihedral angle D1 between
rings A and B of NBN-6 exhibits significant changes in both
solution (27.0°) and exposed (16.0°) states, which are much larger
than those of the embedded (about 5.1°) and crystalline (3.9°)

FIGURE 2 | (A) Average fluorescence quantum efficiency (FQE) of four embedded (red) and exposed (blue) HPS molecules extracted from amorphous aggregates
with different sizes, and the representative embedded and exposed QM/MM models of HPS are shown in the insets. (B) λdihedral of embedded and exposed HPS
molecules in different sizes of aggregates. (C) Fluorescent intensity is linear to the volume of HPS aggregates. The volume (inset, atomic force microscope (AFM) image)
and fluorescence (inset, fluorescence image) of individual HPS aggregate measured by fluorescence confocal atomic force microscopy. The red solid line is the
linear fitting of experimental data (Jiang et al., 2017). (Reproduced with permission from Zheng et al. (2016); Copyright 2016 The Royal Society of Chemistry).
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state; in the meanwhile, the conjugation and planarity of NBN-6
at S0 are obviously improved after aggregation. Therefore, the
rotation of ring A in NBN-6 can be effectively restricted in the
aggregated state, leading to fluorescence enhancement. By
contrast, the structural modifications of NBN-5 are pretty
slight, with the largest structural change of D1 5.7° in solution
(much smaller than that of NBN-6). Furthermore, the
configurations of NBN-5 are insensitive to environments,
keeping rigid and planar structures in all cases. It is clear to
see that NBN-6 has intramolecular charge transfer (ICT)
property; the highest occupied molecular orbital (HOMO) is
located on ring B and naphthalene moiety, while the lowest
unoccupied molecular orbital (LUMO) is distributed on rings
A and B (Figure 4A). In contrast, both the HOMO and LUMO of
NBN-5 are delocalized on the whole backbone (Figure 4B). The
ICT property of NBN-6 leads to their relatively lower energy gap
and redder fluorescence emission at all environments than those
of NBN-5. AIEgens with ICT properties are quite sensitive to the
environments (Zhang et al., 2020); the FQE of NBN-6 is highly

environment-dependent, with kic decreasing by 2–4 orders of
magnitude after aggregation; thus NBN-6 is AIE-active
(Figure 4C). Meanwhile, the FQE of NBN-5 is environment-
independent, showing bright emission in both solution and solid
states (Figure 4D). Normal mode analysis of NBN-6 at different
environments indicates that the suppression of the out-of-plane
rotation and distortion of ring A after aggregation is the primary
reason for the AIE effect.

Organic Aggregates Involving
Supramolecular Host Molecules
Experimentally, a supramolecular host with a specific cavity can
encapsulate proper-size AIEgens and form host–guest complexes,
emitting fluorescence in the dispersed monomer (Liang et al.,
2014; Song et al., 2014; Liang et al., 2016; Liow et al., 2017).
However, the detailed structure–property relationship that
determines the host–guest interaction–induced emission
enhancement phenomenon remains elusive. A typical host

FIGURE 3 | (A) QM/MM model of COTh in the crystalline state. (B) Key dihedral angles in both dilute solution and crystal at S0 and S1 states. (C) Projection λ of
COTh on internal coordinates, including bond lengths, bond angles, and dihedral angles. (D) NICSzz scan of COTh based on its transition-state structures at the S0

(black) and T1 (blue) states. The ACID plots of both S0 and T1 states were in the inset. Proposed decay pathways along the potential energy surface of COTh (E) in dilute
solution and (F) in solid state. Abbreviation: GS, ground state; ES, excited state; TS, transition state; MES, minimum energy structure; A, absorption; F,
fluorescence; NR, non-radiative decay. (Reproduced with permission from (Zhao Z. et al., 2019); This figure is extracted from an open access journal with thanks;
Copyright 2019 Nature Publishing Group).
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FIGURE 4 | Electron density contours of HOMO and LUMO of (A)NBN-6 and (B)NBN-5 at S0 geometry in methanol solution. The FQE of (C)NBN-6 and (D)NBN-
5 at different environments. (Reproduced with permission from (Zeng et al., 2021) Copyright 2021 The Royal Society of Chemistry).

FIGURE 5 | (A–C) The QM/MM models for the G-3 aggregate, G-3 aggregate with 2CD, and 2CD/G-3D aggregate, respectively. To be shown more clearly, we
take “aggregate” as the abbreviation “aggr.” here. (D) The calculated kr and λ of two monomers and three aggregates, respectively. (Reproduced with permission from
Yang et al. (2021); Copyright 2021 The Royal Society of Chemistry).
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molecule CD and a TPE derivative (G-3, Scheme 1) were taken as
examples to study the influence of host–guest interactions on the
photophysical properties of AIEgens by multiscale modeling
protocol (Yang et al., 2021). MD simulations confirm that the
host–guest inclusion complex 2CD/G-3(D) was formed by
several cooperatively interplayed non-covalent interactions. On
the one hand, the interior hydrophobic cavity of CD hosts one
phenyl ring of the TPE moiety and partial PEG chain of the guest
by the hydrophobic interaction. On the other hand, the exterior
hydrophilic surfaces of CD fasten the PEG chain and adjacent
phenyl rings of the TPE moiety of the guest by the intermolecular
hydrogen bond and O-H. . .π interactions, respectively.

Importantly, three representative aggregates: G-3 aggregate, G-
3 aggregate with 2CD, and 2CD/G-3(D) aggregate were also
simulated by MD simulations to consider the aggregation effect.
The QM/MM models for all three kinds of aggregates were setup
accordingly to further obtain the photophysical properties
(Figures 5A–C). The kr and λ are calculated and summarized
in Figure 5D, where λ measures the extent of intramolecular
electron–vibration coupling; the decrease in λ implies the sharp
reduction of kic. Introducing host–guest interaction, the
fluorescent emission of the single inclusion complex 2CD/G-
3(D) obviously increases relative to G-3 because of the slightly
increased kr and the sharply decreased λ. It is suggested that the

FIGURE 6 | (A,B) Calculated spin-orbital coupling coefficients (ξ) and reorganization energies of low-lying excited states in amorphous, crystal, and cocrystal
phases of Cz2BP. (C) Illustration of the vibronic decoupling effect of the electron and C�O stretching vibration. (D) Calculated key parameters (kp, knr,Vp and τp) of the
exciton energy decay process in amorphous, crystal, and cocrystal. (Reproduced with permission from Ma et al. (2019); Copyright 2019 American Chemical Society).
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host–guest interactions are responsible for hindering the non-
radiative decay channel of the excited state energy of G-3.
Upon aggregation, kr of the G-3 aggregate and G-3 aggregate
with 2CD are sharply boosted; at the same time, the corresponding
λ is decreased, which is beneficial to the enhanced emission of
aggregates. However, further increasing the concentration of CD is
not conducive to luminescence because the high concentration of
CD causes the disassembling of the 2CD/G-3(D) aggregate and the
decrease of packing density; thus, the non-radiative decay channel
is unblocked again. Therefore, the aggregation effect coupled with
host–guest interactions in the G-3 aggregate with the 2CD system
could significantly restrict the low-frequency rotational motions of
phenyl rings and the C�C double bond twisting of the TPE moiety
effectively; therefore the non-radiative decay channels of excited
state energy in amphiphilic AIEgens are effectively blocked and
finally enhances the fluorescent intensity.

Organic Aggregates Involving
Co-Crystallized Solvent Molecules
The luminescent properties of organic molecules are highly
morphology-dependent (Ma et al., 2016; Taylor and Wood,
2019; Fu et al., 2021). 4,4′-bis(9H-carbazol-9-yl)-methanone
(Cz2BP, Scheme 1) was observed to emit room-temperature

phosphorescence in a cocrystal consisting of chloroform but
not in the amorphous nor the crystal phase (Li et al., 2015).
The impact of the intermolecular hydrogen bond interactions
on luminescent properties of Cz2BP was quantitatively
investigated by the thermal vibration correlation
function–coupled QM/MM calculations (Ma et al., 2019). It
is found that compared with amorphous aggregate and crystal,
the strong intermolecular hydrogen bond (C�O. . .H−C)
between Cz2BP and chloroform in cocrystal makes the
densest molecular packing and effectively decouple the
vibronic effect. For the T1 state, responsible for
phosphorescence, its relative compositions of (n, π*) and
(π, π*) and the spin-orbital coupling coefficients (ξ)
strongly depend on the aggregation. From amorphous to
crystal to cocrystal, the ξ(T1→S0) decreases from 17.22,
9.57 to 5.52 cm−1, while the corresponding (π, π*)
components of the T1 state are 59.8, 88.6, and 94.6%,
respectively (Figure 6A). The electron–vibration coupling
analysis (Figure 6B) indicates that the λ is dominated by
high-frequency modes, including the stretching vibration of
the C�O bond and the breathing vibration of benzene and
carbazole units. In particular, the C�O stretching vibration
(ω) is drastically reduced from 1,888.46 to 717.24 to
186.67 cm−1 from amorphous to crystal to cocrystal, and

FIGURE 7 | (A) Model setup of the doped system. (B) The energy levels of the host TPA and guest MADBA. (C) The calculated energy level diagram, spin-orbit
couplings (ξ), and the oscillator strengths for MADBA crystal and the doped system. (D) Proposed transfer pathway between the guest and host after doping.
(Reproduced with permission from Lei et al. (2021) Copyright 2021 The Royal Society of Chemistry).
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the corresponding normal-mode displacement ΔQ is also
regularly shortened, consecutively (Figure 6C). The
quantum efficiency (VP) of RTP is quantitatively analyzed
by the equationVP ≈ kp/(kp + knr); the results indicate that the
calculated kp of T1→S0 decreases about one order of
magnitude in cocrystal, more importantly, knr of T1→S0 is
largely reduced by 3−6 orders of magnitude from 1.87 × 106 to
5.51 × 103 s−1 to 6.03 s−1, leading to an efficientVP (20.76%) in
cocrystal relative to the extremely low VP in the amorphous
and crystal, and finally inducing a bright and long-lived RTP
(Figure 6D). Therefore, both the decreased ξ(T1, S0) and the
decreased λ of the C�O stretching vibration contribute to the
sharply decreased knr, but the decoupling of the electron
vibration from C�O plays the primary role in decreasing
of knr.

Organic Aggregates Doping Trace Amounts
of Host Molecules
Although a variety of doped organic systems with room
temperature phosphorescence have been reported (Chen
et al., 2021; Ning et al., 2021; Yan et al., 2021), the specific
configuration and molecular packing of the guest molecules
in the host matrix are still unknown. For example, we recently
found that pure TPA crystalline powder only exhibits weak
fluorescence, while the doping TPA matrix with no more than
0.1% guest molecule (MADBA, Scheme 1) simultaneously
shows strong fluorescence, thermally activated delayed
fluorescence, and efficient room temperature
phosphorescence (Lei et al., 2021). We further setup a
MADBA/TPA doping model with the molar ratio of 1: 190
by replacing two TPA molecules with a single large-sized
MADBA molecule (Figure 7A). Then, MD simulations were
performed to simulate the doped configurations and spatial
molecular packing of the guest molecule in the host TPA
matrix. To the best of our knowledge, this is the first use of
MD simulations to study doped materials. The QM/MM
model was further setup based on the equilibrated MD
conformation of the doped system to study the
photophysical properties. Since the larger volume of
MADBA than that of the TPA molecule, the
intermolecular distances between MADBA and
surrounding TPA molecules are reduced with the
intermolecular C–H. . .π interactions enhanced, indicating a
more rigid environment of MADBA in the doping system.
After doping, the structural changes of MADBA from S0 to T1

in the doped state become smaller than those in the solution
state. In addition, it is found that the energy gap (ΔEST)
between S1 and T1 of MADBA is 0.98 eV, which is not
facilitating the intersystem crossing (ISC) process
(Figure 7B). The host TPA with a similar molecular
structure shows higher T1 energy (2.80 eV) than MADBA;
therefore, the T1 of TPA could act as a bridge to narrow the
ΔEST from 0.98 to 0.31 eV to facilitate the ISC process of
MADBA, namely, the intermediate T1 of TPA is beneficial for
the energy transfer from the T1 of the host TPA to guest
MADBA. Compared to pure MADBA crystal, the smaller

ΔEST and larger ξ between S1 and low-lying triplet states also
support the easier ISC process in the doped MADBA/TPA
system than that in the pure MADBA crystal (Figure 7C).
Therefore, matching the energy levels between host and guest
molecules could effectively bridge the energy transfer process
of the low-lying triplet states and facilitate the ISC process,
which will make room temperature phosphorescence more
efficient in the doping system (Figure 7D). Therefore, doping
trace amounts of MADBA is beneficial to promote ISC of
excitons, thereby leading to phosphorescence emission in the
host matrix.

CONCLUSION AND OUTLOOK

In this review, we summarize recent works on studying the
structure–property relationships of organic aggregates at
different aggregated states using multiscale modeling
protocol, combining the molecular dynamics (MD)
simulations and quantum mechanics/molecular mechanics
(QM/MM) calculations. We conclude that 1) the FQE of a
nano-sized aggregate is size-independent, and the embedded
molecules dominate the fluorescent intensity of amorphous
aggregates; there exists a linear relationship between the
fluorescent intensity and aggregate size; 2) the dense
molecular packing of non-typical AIEgens (annulene-based
eight-member ring COTh) at the crystalline state can
effectively suppress the aromatic reversal process and block
the non-radiative decay channels, leading to the fluorescent
emission in the crystal; 3) for the supramolecular host–guest
complex, the aggregation effect coupled with non-covalent
interaction–induced host–guest interactions can significantly
retard the non-radiative decay channels of excited state
energy and make the supramolecular host–guest complex
emit light at both monomer and aggregated states; 4) host
and guest molecules could effectively bridge the energy
transfer process of the low-lying triplet states and facilitate
the ISC process, thereby leading to phosphorescence
emission. It is obvious that the multiscale modeling
approach combining MD simulations and QM/MM
calculations is applicable to simulate the
structure–property relationship of complex systems in
experiments and provide a direct explanation for the
complex experimental phenomenon.

It is still a great challenge for simulating the conformations
and photophysical properties of organic aggregates at various
biological environments (such as the lipid membrane, lipid
droplet, mitochondria, and so on) and providing a useful clue
in the rational design of organic luminescent materials for
bio-imaging and multi-modality theranostics. The influence
of various external forces (shear, grinding, or hydrostatic
pressure) on the photophysical properties of organic
aggregates is still rarely investigated. In addition, the
electron–density change in MM polarization of the QM/
MM model also needs to be considered. And, only
considering one QM molecule sometimes is not enough for
systems with charge transfer or exciton interactions.

Frontiers in Chemistry | www.frontiersin.org January 2022 | Volume 9 | Article 8089579

Zhao and Zheng Multiscale Modeling of Molecular Aggregates

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Therefore, there is still a longstanding challenge for us, and
we are actively addressing them.
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