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Water electrolysis is one of the attractive technologies for producing clean and

sustainable hydrogen fuels with high purity. Among the various kinds of water

electrolysis systems, anion exchangemembrane water electrolysis has received

much attention by combining the advantages of alkaline water electrolysis and

proton exchange membrane water electrolysis. However, the sluggish kinetics

of the oxygen evolution reaction, which is based on multiple and complex

reaction mechanisms, is regarded as a major obstacle for the development of

high-efficiency water electrolysis. Therefore, the development of high-

performance oxygen evolution reaction electrocatalysts is a prerequisite for

the commercialization and wide application of water electrolysis systems. This

mini review highlights the current progress of representative oxygen evolution

reaction electrocatalysts that are based on a perovskite structure in alkaline

media. We first summarize the research status of various kinds of perovskite-

based oxygen evolution reaction electrocatalysts, reaction mechanisms and

activity descriptors. Finally, the challenges facing the development of

perovskite-based oxygen evolution reaction electrocatalysts and a

perspective on their future are discussed.
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Introduction

Hydrogen is considered as a clean and sustainable energy source that can replace the

fossil fuel-based energy currently in use (Momirlan and Veziroglu, 2002; Wang et al.,

2019). There are several methods to produce hydrogen, but the most of hydrogen is

currently produced by a gas reforming process that has the disadvantage of producing

carbon dioxide (Han et al., 2020; Kwon et al., 2020; Tian et al., 2020). In order to overcome
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this disadvantage, water electrolysis has received much attention

as an environmentally friendly method for hydrogen production

(Xie et al., 2019; Huang et al., 2020; Tian et al., 2021).

The water electrolysis system can be roughly classified into

three types according to the pH of the electrolyte and the system

configuration (Figures 1A–C) (Li et al., 2020). Alkaline water

electrolysis (AWE) is composed of inexpensive transition metal

electrocatalysts (Figure 1A), and generally operates in a high

concentration alkaline electrolyte (e.g., 20%–40% KOH) (Liu

et al., 2020; Jang et al., 2021; Yang et al., 2021). AWE is a well-

established mature technology and has been commercialized

with a wide range of applications. However, AWE has the

disadvantage of low energy efficiency and current density

(0.2–0.4 A cm−2 in a voltage range of 1.8–2.4 V) (Carmo

et al., 2013; Yu et al., 2018). In addition, undesired gas

crossover and/or corrosion of components by the

concentrated alkaline electrolyte can occur (Solmaz and

Kardaş, 2009; Ahn et al., 2014).

Proton exchangemembrane water electrolysis (PEMWE) is one

of the promising technologies that will appear in the near future

(Figure 1B) (Jang et al., 2021). PEMWE can produce high-purity

hydrogen with high energy efficiency and current density

(0.6–2.0 A cm−2 at a voltage of 1.8–2.2 V) (Carmo et al., 2013;

Manna et al., 2021). The design and operating conditions of

PEMWE can be easily controlled. Although recent efforts are

being made to produce hydrogen using PEMWE, it still requires

a large amount of noble metal-based electrocatalysts (e.g., Pt and Ir)

in both electrodes (Lee et al., 2020; Oh et al., 2021), and the oxygen

evolution reaction (OER) electrocatalysts suffers from dissolution at

a high operating voltage with an acidic environment. Thus, the high

cost and low durability of the system lower the economic efficiency

and hinder the wide application of PEMWE (Kwon et al., 2020).

Anion exchange membrane water electrolysis (AEMWE) is

attracting attention as a system for hydrogen production that

combines the advantages of AWE and PEMWE (Figure 1C)

(Shirvanian et al., 2021). Since the system mainly operates in a

low concentration alkaline electrolyte (e.g., 0.1–1.0 M KOH),

high-purity hydrogen can be produced using inexpensive

transition metal-based electrocatalysts with high current

density (0.2–1.4 A cm−2 at the voltage of 1.6–1.8 V) (Kim

et al., 2015; Lee et al., 2021; Yang et al., 2021). However,

AEMWE is still in the early stages of research and there are

many problems to be solved, such as low electrocatalytic activity

and ionic conductivity.

FIGURE 1
Schematic illustration of (A) AWE, (B) AEMWE, and (C) PEMWE systems. (D) Scheme of typical ABO3 perovskite structure. (E) A map of the
elements in the periodic table that can be used for A- and B-sites of the ABO3 perovskite structure.
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Although the theoretical voltage required for the water

electrolysis system is 1.23 V (Kauffman et al., 2016; Chang

et al., 2020), the overpotential results from variable resistance

elements such as kinetic and ohmic losses (Rheinländer and

Durst, 2021). Mainly because the reaction rate and complicated

reaction path of the OER that is based on a 4-electron reaction

than that of the hydrogen evolution reaction (HER), which is

based on a 2-electron reaction, the overpotential for kinetic loss

mainly occurs in the OER at the anode (Xie et al., 2019; Youk

et al., 2019; Park et al., 2020; Xia et al., 2020). Therefore, in order

to improve the efficiency of the water electrolysis system, it is very

important to reduce the overpotential through the development

of a high-performance electrocatalyst in the OER.

In AEMWE, inexpensive transition metal-based

electrocatalysts such as Ni, Co, Fe, and Mn have been

attracting attention as OER electrocatalysts (Kim et al., 2015;

Kauffman et al., 2019; Zhu et al., 2020b; Deng et al., 2020; Teng

et al., 2020; Diao et al., 2021; Huang et al., 2022), and various

kinds of transition metal-based OER electrocatalysts such as

metal (oxy)hydroxides (Ahn et al., 2022; Li et al., 2022),

spinel (Maiyalagan et al., 2014; Bao et al., 2015) and

perovskite (Fabbri et al., 2017; Zhu et al., 2017; Ramesh et al.,

2018; Guo et al., 2019) structured metal oxides have been widely

investigated. Among these electrocatalysts, perovskite-based

metal oxides provide improved OER activities, mainly due to

the many advantages resulting from various transition metal

combinations, defect engineering, etc. (Wang et al., 2019; She

et al., 2019; Zhang et al., 2019; Antipin and Risch, 2020; Zhu et al.,

2021a; Zhu et al., 2021b; She et al., 2021). In this mini review, we

focus on the recent research trends of perovskite as an

electrocatalyst in the OER and discuss the reaction

mechanisms and activity descriptors.

Research on perovskite OER
electrocatalysts

Characteristics of perovskites

Perovskite is a type of metal oxide that has the chemical

structure of ABO3 (Figure 1D) (Jonker and Van Santen, 1950;

Nkwachukwu and Arotiba, 2021). Rare Earth or alkaline Earth

metals, which have a relatively large ionic radius, are in the A-site,

and transition metals, which have a relatively small ionic radius,

are in the B-site (Yoon et al., 2014a). The stability and distortion

of the perovskite crystal structures in various combinations can

be defined by considering Goldschmidt’s tolerance factor (t)

(Nkwachukwu and Arotiba, 2021).

t � rA + rO
�

2
√ (rB + rO) (1)

In Eq. 1, rA, rB, and rO are the ionic radius of A, B cations, and

anions (usually oxygen), respectively. If the value of t is between

0.9-1, the structure of the perovskite has an ideal cubic structure,

but if the value of t is between 0.71 and 0.9, it has an orthorhombic

or rhombohedral structure (Li et al., 2016). Therefore, according to

each ionic radius, the elements that can be used at each perovskite

metal site are determined. La, Sr, Ba, Ca, etc. are mainly used for

the A-site, and Cr, Mn, Fe, Co, Ni, etc. are mainly used for the

B-site (Figure 1E) (Sun and Zhou, 2021). Various combinations of

perovskite are possible from these diverse A- and B-site metal

cations, and moreover partial substitution of a metal cation is

possible for each site (e.g., AxA′1-xBO3-δ and AByB′1-yO3-δ) (Yoon

et al., 2014b; She et al., 2022). Therefore, infinitely many new

perovskite OER electrocatalysts can be developed through various

metal combinations in the future.

Oxygen evolution reaction mechanisms
for perovskites in alkaline media

Research on the OER mechanisms of perovskite electrocatalysts

operating in alkaline media has been actively conducted to date

(Rossmeisl et al., 2007; Grimaud et al., 2017; Yoo et al., 2018). In

general, the OER occurs via an adsorbate evolution mechanism

(AEM). Firstly, OH is adsorbed to the active site (transition metal

site) of perovskite, and the O intermediate is produced by

deprotonation of OH. Then OOH is generated by OH

adsorption at the O site. Finally, O2 is generated by the second

deprotonation of OOH (Figure 2A). In AEM, the minimum

overpotential is theoretically limited to 0.3–0.4 V due to the

scaling relationship between the adsorption energies of the

intermediates. Recently, it was reported that some perovskite

OER electrocatalysts delivered overpotentials lower than the

theoretical overpotential. Therefore, it was recognized that a new

OERmechanismmay exist, which led to the discovery of a newOER

mechanism called the lattice oxygen oxidation mechanism (LOM).

A key feature of the LOM is the participation of lattice oxygen

in the perovskite for the OER, which was revealed by DFT

calculations and isotope experiments (Wang et al., 2020).

Previous reports classified the LOM as the M-LOM (metal is

an active site) and O-LOM (lattice oxygen is an active site)

depending on the active site of perovskite. In the M-LOM, OH is

first adsorbed at the metal site of perovskite, followed by

deprotonation of OH to form an OO intermediate with lattice

oxygen. In this process, the lattice oxygen vacancy is formed and

this vacancy is in an unstable state. Therefore, the OH fills the

vacancy site and oxygen is produced. After that, another OH is

bonded to the metal site again, and then deprotonation occurs.

Finally, the active site of the perovskite electrocatalyst returns to

its initial form and the reaction continues (Figure 2B).

Shao-Horn et al. proposed that the active site in perovskite

can be the lattice oxygen site rather than the metal site in the

O-LOM (Figure 2C) (Rao et al., 2020). In the O-LOM, the OH is

adsorbed to the activated lattice oxygen site to form OOH. Next,

the OO is produced by deprotonation of OOH. This process
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releases O2 from the structure and creates oxygen vacancies in its

place. Then OH fills the oxygen vacancy site and deprotonation

occurs. Therefore, the OERmechanism between theM-LOM and

the O-LOM is clearly different owing to the different active sites

of the perovskite. In addition, it should be noted that a rational

design of the perovskite electrocatalysts for using the LOM is very

important because it is more advantageous for enhancing OER

activity compared to the AEM.

Oxygen evolution reaction activity
descriptors for perovskites

The activity of the OER can be explained from various

descriptors that are factors for the material properties related

to OER activity (Figure 2D). To take advantage of the OER

mechanism of perovskite, researchers have proposed several

descriptors for electrocatalyst design. Bockris et al. (Bockris

FIGURE 2
Schematic illustration of OERmechanisms involving (A) AEM, (B)M-LOM, and (C)O-LOM. (D) Various descriptors related to the perovskite OER
activity. (E) The relation between theOER activity and the eg orbital occupancy, reproducedwith permission from (Suntivich et al., 2011). (F) The trend
of the iR-corrected potential vs. the O p-band centre relative to EF (eV), reproduced with permission from (Grimaud et al., 2013). (G) Cyclic
voltammetry data of LSNO films normalized by the specific area, reproduced with permission from (Liu et al., 2019). (H) LSV curves of various
LaNiO3 electrocatalysts normalized by ECSA, reproduced with permission from (Wei et al., 2022).
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and Otagawa, 1984) first reported that the OER performance of

LaMO3 (M = transition metals) was related to the 3d electron

number of bulk transition metal ions.

Afterwards, Nørskov et al. (Man et al., 2011) reported that

the activity of various perovskite OER electrocatalysts can be

predicted by expressing the correlation between the B-site

transition metal and oxygen binding energy in a volcano plot

using ΔG0
O* − ΔG0

OH*. This is because given a constant difference

between HOO and HO adsorption energy levels, the

overpotential (ηOER) is determined by the O adsorption

energy. The perovskite on the left branch of the volcano plot

indicates that the OER is limited by the O→HOO step due to the

strong oxygen adsorption energy. In contrast, the perovskite on

the right branch indicates that the OER is limited by the HO→O

step due to the weak oxygen adsorption energy. Although the

adsorption energy is a powerful descriptor in explaining the

activity trend of known perovskites, a more intuitive descriptor is

required to develop new perovskite electrocatalysts.

Shao-Horn et al. (Suntivich et al., 2011) reported that eg
orbital occupancy of the surface transition metal in perovskite

can have a significant effect on OER performance. This is because

the eg orbital of the surface transition metal ions directly interacts

with oxygen intermediates adsorbed on the metal surface

through σ bonding. The OER activities of the perovskites

showed a volcano plot with the occupancy of the eg orbital,

and the electrocatalysts have better activity when the number of

eg electron is close to 1 (Figure 2E).

The metal d-band center and oxygen p-band center can also be

activity descriptors for the OER (Grimaud et al., 2013). The band

center energy level is closely related to the adsorption energy of the

intermediates, and the energy difference between the center of theM

nd and O 2p bands can change the metal-oxygen hybridization and

charge transfer barrier between the transition metal and oxygen. In

addition, the position of the O 2p band center relative to the Fermi

level can be directly used to predict the performance of the

perovskite electrocatalysts. If the O 2p band center is close to the

Fermi level, oxygen vacancies are generated and metal-oxygen

covalency is increased, resulting in improved OER performance.

However, if the O 2p band center becomes too close to the Fermi

level, the activity and stability are decreased by the rapid

amorphization in the near surface. Therefore, the perovskite

electrocatalyst has high activity and stability when the O 2p

band center is neither too far nor too close to the Fermi level

(Figure 2F).

Recent development of perovskites for
oxygen evolution reaction

There are various methods for synthesizing perovskites,

such as solid-state, citric acid assisted sol-gel, hydrothermal,

and electrospinning (Jin et al., 2013; Kim et al., 2017; Zhen et al.,

2017; Sun et al., 2019). The solid-state reaction method is the

most widely used synthetic method for perovskites based on

high temperature calcination. However, the synthesized

perovskites by solid-state reaction method exhibited

extremely low surface area due to the high temperature. To

overcome this disadvantage, the researchers employed the citric

acid as a complexion agent to chelate with metal cations, and

thereby reduce the synthetic temperature. Therefore, the high

surface area from porous nanostructure can be achievable in

perovskites synthesized by the method. In addition to this,

substantial efforts have been devoted to develop the appropriate

synthesis methods for OER electrocatalysts. Furthermore,

many researchers conducted various studies to improve

activity and stability through substitution at the A-site or

B-site (to change composition, and defect engineering),

morphology/nano engineering and facet control, crystal

structure change, complex perovskite, and perovskite hybrid

through various synthetic methods.

Du et al. (Liu et al., 2019) suggested that the OER activity was

improved by substituting Sr for the A-site of LaNiO3. The

synthesized sample was named La1-xSrxNiO3 (LSNO), and

when x = 0.5, the current value at 1.6 V (vs. RHE) was

5 times higher than that of the pristine LaNiO3 (Figure 2G).

The higher Ni oxidation state induced by the substitution of Sr

resulted in the increase of Ni 3d-O 2p hybridization. The increase

in hybridization causes an increase of the O 2p band upward and

a move closer to the EF, which as a result increases the OER

activity from the promoted electron transfer in oxygen. Li et al.

Sun et al. (2020) reported that V-doped LaCoO3 can improve

electrocatalytic activity and stability by d-band center location for

optimized intermediate adsorption. The LaCo0.8V0.2O3 required

only a 306 mV overpotential to reach 10 mA cm−2 (LaCoO3 was

430 mV) in 1.0 M KOH, and the Tafel slope was only 49 mV

dec−1. Therefore, the A- or B-site substitution strategy in

perovskite affects the adsorption energy change of the OER

intermediate, which is helpful in improving the OER

performance.

Zhou et al. (Li et al., 2021) synthesized ultra-thin LaMnO3

nanosheets with different crystal structures (orthogonal,

tetragonal, and hexagonal). The orthogonal LaMnO3

nanosheets (o-LMON) had the smallest overpotential at

10 mA cm−2
disk, and the onset potential was also 200 mV

smaller than that of IrO2. In addition, the specific activity

calculated by the BET surface area was almost 10 times higher

than that of IrO2. If the center of the d-band is too far/close to the

EF, the binding of the oxygenated adsorbed species is too weak/

strong, and it may interfere with the adsorption/desorption

process, thereby reducing OER activity. o-LMON was

evaluated to have the best activity because it is an

electrocatalyst in the optimal state for this adsorption/

desorption process. Shao et al. (Dai et al., 2019) synthesized

3D ordered macroporous structured LaFe0.8Co0.2O3 (3DOM-

LFC82). In 0.1 M KOH solution, the mass activity of 3DOM-

LFC82 was 44 A gox
−1 while that of bulk LaFeO3 was only 13 A
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gox
−1 at 400 mV of overpotential. This result indicates that a high

surface area and good charge and mass transport ability can

improve OER activity of the electrocatalyst.

The effect of surface engineering on OER catalytic activity

has also received much attention. Chueh et al. (Baeumer et al.,

2021) reported that the surface termination of LaNiO3 can be

well controlled with Ni, which creates excellent OER

performance. Therefore, LaNiO3 is still attracting attention as

a perovskite electrocatalyst with appropriate surface engineering

for an alkaline OER with superior activity. Zhao et al. (Zhao et al.,

2019) synthesized an amorphous layer on the surface of

La0.8Sr0.2Co0.8Fe0.2O3-δ (LSCF-2) by the surface reconstruction.

LSCF-2 provided 248 mV of overpotential at 10 mA cm−2 in

1.0 M KOH. The Tafel slope was 51 mV dec−1, and it showed

better stability than the RuO2 electrocatalyst. It has been reported

that this activity and stability are due to the improved ionic

conductivity as the oxidation state of Co is changed during the

surface reconstruction process.

Recently, a method for constructing the artificial

heterostructure of synthesized perovskite in a different way

has been studied. OER activity and stability can be improved

by heat-treated perovskite in a reductive atmosphere at high

temperature to exsolve the B-site transition metal from the

perovskite structure. Yan et al. (Wei et al., 2022) reported that

LaNiO3 could intentionally create a La deficiency and thereby

NiO could be exsolved from the parent matrix to form an

interface between the perovskite and the NiO, thereby

resulting in enhanced OER activity (Figure 2H). The exsolved

NiO at the interface was converted to a NiOOH layer during the

OER, and exhibited dynamic surface evolution characteristics.

Therefore, formation of the interface achieves greater structural

flexibility by optimizing the O 2p level of the electrocatalyst,

which promotes surface reconstitution with the highly active

NiOOH phase to improve OER activity and stability.

In addition, Ruddlesden-Popper (RP) electrocatalysts, which

are a type of perovskite structure, have received a lot of attention

(Zhu et al., 2020a; Zhu et al., 2020c). Wang et al. synthesized RP

Sr3(Co0.8Fe0.1Nb0.1)2O7-δ (RP-SCFN), and reported that it

exhibited improved OER activity with overpotential of 334 mV

to reach 10 mA cm−2 at 0.1 M KOH. They suggested that the high

Co4+ content of RP-SCFN resulted in a high covalent oxide,

induced high activity as the center of the O 2p band

approached the Fermi level. Furthermore, they synthesized an

RP/perovskite hybrid electrocatalyst (RP/P-LSCF) composed of a

main RP phase (LaSr3Co1.5Fe1.5O10-δ, RP-LSCF) and second

perovskite phase La0.25Sr0.75Co0.5Fe0.5O3-δ (P-LSCF), which has

an overpotential of 324 mV under the same conditions. It was

reported that this hybrid structure has better performance and

stability than RP-LSCF and P-LSCF from the strong metal-oxygen

sharing and high oxygen-ion diffusion rate due to the phase

mixture. In addition, complex perovskites such as double and

triple perovskites are being studied in various ways (Kim et al.,

2018; Wang et al., 2018; Zhu et al., 2019).

The perovskite/carbon hybrid electrocatalysts were also

studied to solve the low electrical conductivity of perovskite

(Wu et al., 2018; Lin et al., 2021). Shao et al. reported the in situ-

introduced carbon nanotubes (CNTs) on the perovskite surface

through chemical vapor deposition (CVD) in order to improve

the activity and stability of OER. This electrocatalyst showed

superior activity than physically mixed perovskite and carbon

black, and a perovskite without carbon.

Conclusion and outlook

Many studies have been conducted on the water electrolysis

system, which is an eco-friendly hydrogen production process.

Among them, the development of an electrocatalyst for the OER,

which requires more overpotential compared to the HER in the

system, is a very important research topic. Perovskite

electrocatalysts have been studied for their superior activity

through various combinations and active site control. Various

combinations of perovskite and electrocatalysts using various

methods of synthesis, substitution, and exsolution have been

reported. These electrocatalysts can enhance the active site

through composition engineering, morphology control,

hybridization, and etc., highlighting that the development of

perovskite electrocatalysts is limitless. Descriptors that can

explain and understand the excellent OER performance of

perovskite have been discovered by many researchers. In

addition, not only the OER mechanism based on the

transition metal in perovskite, but also a new reaction

mechanism in which lattice oxygen in perovskite participates

in the reaction is being studied, and based on this, new

combinations of various perovskite OER electrocatalysts are

being developed.

However, there are still problems to be solved. Perovskite is

mainly synthesized at high temperature, and therefore the

specific surface area of the electrocatalyst is significantly low.

It can be considered that the active site area of the electrocatalyst

is low, and it is necessary to increase the surface area for higher

activity. In addition, there is a problem in that the stability of the

electrocatalyst is decreased due to the dissolution problem of

metal ions inside of the perovskite. Moreover, critically, the

perovskite-based electrocatalysts have a disadvantage in that

the electrical conductivity is too low, and larger scale synthesis

of them should be proved for practical AEMWE applications

based on perovskite OER electrocatalysts. Up to now, there are

only reports for synthesizing perovskite-based electrocatalysts at

the level of lab scale, but it is not clear whether the perovskite can

be synthesized well even at a synthesis level of pilot scale or more.

Numerous perovskite electrocatalysts have been published, but

methods for preparing perovskite electrocatalysts with better

stability/activity should be sought. To this end, a method to

improve the activity and stability of the electrocatalyst by making

a new active site interface different from the existing mechanism
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is being studied, and the corresponding descriptor should also be

developed.
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