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Reactions of PtX+ (X = F, Cl, Br, I) with methane have been investigated at the

density functional theory (DFT) level. These reactions take place more easily

along the low-spin potential energy surface. For HX (X = F, Cl, Br, I) elimination,

the formal oxidation state of the metal ion appears to be conserved, and the

importance of this reaction channel decreases in going as the sequence: X = F,

Cl, Br, I. A reversed trend is observed in the loss of H2 for X = F, Cl, Br, while it is

not favorable for PtI+ in the loss of either HI or H2. For HX eliminations, the

transfer form of H is from proton to atom, last to hydride, and the mechanisms

are from PCET to HAT, last to HT for the sequence of X = F, Cl, Br, I. One reason

is mainly due to the electronegativity of halogens. Otherwise, the mechanisms

of HX eliminations also can be explained by the analysis of Frontier Molecular

Orbitals. While for the loss of H2, the transfer of H is in the form of hydride for all

the X ligands. Noncovalent interactions analysis also can be explained the

reaction mechanisms.
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1 Introduction

Catalysts that can convert methane directly into higher-value-added commodities

have long been sought, but breaking the thermodynamically strong, kinetically inert C-H

bonds in a controlled way under mild conditions remains a central challenge (Geng et al.,

2017). Reactivity studies of transition-metal ions in the gas phase, and, in particular,

aspects related to the ongoing challenge of selective activation of inert C-H and C-C

bonds, have been studied intensely over the past decades (Howell and Burkinshaw, 1983;

Dubois, 1989; Eller and Schwarz, 1991; Balcells et al., 2010; Dobereine and Crabtree, 2010;

Roithova and Schröder, 2010; Jana et al., 2011). In recent years, how ligation affects the

electronic structure at the transition-metal center has been systematically investigated

(Howell and Burkinshaw, 1983; Dubois, 1989; Schlangen et al., 2007; Schlangen et al.,

2007; Schlangen and Schwarz, 2008; Dede et al., 2009; Li et al., 2016a; Sun et al., 2016;

Zhou et al., 2016; Zhou et al., 2017a; Zhou et al., 2017b; Zhou et al., 2017c; Schwarz et al.,

2017; Schwarz et al., 2017; Yue et al., 2017). The ligand can change the electronic structure

of the metal center through a shift in the electronic state, or provide a more efficient

reaction center, so the addition of a single ligand to a metal center has been widely used to
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prepare reactants for C-H bonds activation (Chen et al., 1997;

Rodgers et al., 2000; Li et al., 2009).

Irikura and Beauchamp (Irikura and Beauchamp, 1989;

Irikura and Beauchamp, 1991a; Irikura and Beauchamp,

1991b) discovered that Pt+ as a 5d transition metal

dehydrogenates methane to yield the corresponding carbene

complexes Pt (CH2)
+. Bare Pt+ also has been found to catalyze

the reaction of methane with molecular oxygen in the gas phase

to produce methanol, formaldehyde and other oxidation

products (Wesendrup et al., 1994). Subsequently, a series of

activation studies around transition metal Pt+ were carried out

(Achatz et al., 2000; Wheeler et al., 2016). Recently, it has been

reported that Pt− is able to selectively activate one C-H bond in

methane, which represents the first example of methane

activation by atomic anions (Liu et al., 2019).

Open-shell ligands X form a covalent bond with the metal

cation and thereby increase the formal oxidation state, for

example, X = F, Cl, Br, I, OH, NH, O (Schlangen et al., 2007;

Dede et al., 2009), which often increases reactivity. For example,

bare Cr+ is one of the least reactive transition metal cations,

whereas CrCl+ is significantly more reactive (Mandich et al.,

1986). Clearly, this example demonstrates that an appropriately

chosen ligand can enhance the selectivity of a reagent at the

expense of reactivity (Schlangen et al., 2007). Similarly, the naked

cations M+ (M = Fe, Co, Ni, Ru, Rh, Pd) do not bring about

thermal C-H bond activation of methane (Halle et al., 1982;

Tolbert and Beauchamp, 1986; Tolbert et al., 1986; Schultz et al.,

1988; Musaev et al., 1993; Musaev and Morokuma, 1994;

Westerberg and Blomberg, 1998), but the corresponding MH+

cations (Schilling et al., 1986; Elkind and Armentrout, 1987;

Schilling et al., 1987; Schilling et al., 1987; Ohanessian et al., 1990;

Zhang and Bowers, 2004; Li et al., 2009; Wang and Andrews,

2009) give rise to efficient H/CH3 ligand switches.

It is not surprising that the nature of the ligand X controls the

outcome of a given ion-molecule reaction, as, for example,

demonstrated in a systematic investigation of FeX+ cations

with acetone (Schröder et al., 1993). The number of ligands

also affects the reaction activity. With respect to the activation of

methane, CrF+ is not sufficient, and CrF2
+ does not react with

CH4, whereas CrF3
+ and CrF4

+ are able to activate the C-H bonds

of methane (Mazurek et al., 1998).

Schlangen et al. have reported the studies on ligand and

substrate effects in gas-phase reactions of NiX+/RH couples (X =

F, Cl, Br, I; R = CH3, C2H5, n-C3H7, n-C4H9) (Schlangen et al.,

2007). The results indicate that NiF+ is the only NiⅡ halide

complex that brings about thermal activation of methane to

eliminate HF, whereas the nickel-halide cations NiCl+, NiBr+,

and NiI+ react only with large alkanes. In the elimination of HX

(X = F, Cl, Br, I), the formal oxidation state of the metal ion

appears to be conserved, and the importance of this reaction

channel decreased in going fromNiF+ to NiI+. A reversed trend is

observed in the losses of H2, which dominate the gas-phase ion

chemistry of NiI+/RH couples. Schröder and Schwarz (2005)

reported the reactions of methane with PtX+ (X = H, Cl, Br and

CHO) using mass spectrometry and found that these species are

able to activate methane.

Here, we report our calculated results for the PtX+/CH4 (X =

F, Cl, Br, I) systems. The key issues for our study are the

mechanistic details of methane catalyzed by ligated transition

metal PtX+/CH4 (X = F, Cl, Br, I).

2Computational and technical details

Full optimization of geometries for all stationary points

involved in methane dehydrogenation by PtX+ (X = F, Cl, Br,

I) has been calculated using the density functional theory (DFT)

method based on the hybrid of Becke’s three-parameter exchange

functional and the Lee, Yang, and Parr correlation functional

(B3LYP) (Becke, 1988; Lee et al., 1988; Becke, 1993), Becke

hybrid with correlation functional Perdew (B3P86) (Perdew,

1986a; Perdew, 1986b; Michael et al., 2008) and M06-2X

(Zhao and Truhlar, 2008; Zhao and Truhlar, 2008). For

carbon and hydrogen, also for F, Cl, and Br, the large 6-

311+G** basis set is applied. The Stuttgart/Dresden relativistic

effective core potentials (ECP) of SDD were adopted to describe

the metal Pt and the halogen I (Andrae et al., 1990). For each

optimized stationary point, vibrational analysis was performed at

the same level with the geometry optimizations to determine its

character (minimum or saddle point). Unscaled harmonic

frequencies were employed to obtain entropy corrections and

the zero-point vibrational energy (ZPVE) which is included in all

relative energies. Furthermore, intrinsic reaction coordinate

(IRC) calculations (Gonzalez and Schlegel, 1989) were

performed to confirm that the optimized transition states

correctly connect the relevant reactants and products. Energies

were corrected for (unscaled) zero-point vibrational energy

contributions and were given relative to the separated reactant

couples PtX+/CH4 in the most stable spin state of PtX+ (Ye and

Neese, 2010; Lawson Daku et al., 2012; Vargas et al., 2013).

Between two different potential energy surfaces (PES), a

configuration that structures are similar with almost the same

energy was found, which is called minimum energy crossing

point (MECP) (Poli and Harvey, 2003; Harvey, 2007). All

computations reported are carried out using the GAUSSIAN

09 program suit (Frisch et al., 2009). The topological parameters

of electron density(ρ), its Laplacian (▽2ρ), and energy density at

the bond critical point (BCP) were analyzed with the

AIM2000 program (Bader, 2000). The molecular electrostatic

potentials (MEP) of the various monomers were calculated on

the 0.001 a. u. isodensity surfaces using the wave function

analysis–surface analysis suite (WFA-SAS) program (Bulat

et al., 2010).

The geometries were optimized using density functional

theory with B3P86, B3LYP, and M06-2X functional. The

comparisons show that the results obtained by the three
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methods are very similar in terms of geometric optimization,

energy, and potential energy surfaces. The data are shown in

Table 1 and the Supporting Information. Among them, B3LYP

shows a more systematic process in a high-spin state and is also

more resource-efficient. Otherwise, we also calculated the single

point energy of the reaction at the CCSD(T)/aug-cc-pVTZ (PP)

level. The trend of the single point energy is similar to the

previous potential energy surface except for the energy of 1Pt

(CH3)
+ in the last step, which is inconsistent with the

experimental results (Schröder and Schwarz, 2005). So, all the

data used are obtained based on the B3LYP method.

3 Results and discussions

In this section, we discuss the reactivity of the PtX+ (X = F, Cl,

Br, I) in the activation process of CH4 and present a brief

discussion of the most abundant or interesting processes for

the PtX+/CH4 systems. Both low- and high-spin states have been

considered. The potential energy surfaces of the reaction PtX+ +

CH4 in the low- and high-spin states are summarized in Figure 1

and Figure 4, and the energetics (in kcal/mol) of the

intermediates and transition states, relative to the ground state

PtX+ plus CH4 have been summarized in Table 2. Geometries of

FIGURE 1
Potential energy surfaces of the reaction PtF+ + CH4 in the low- and high-spin states. The structure is the minimum energy crossing point
(MECP).

TABLE 1 Calculated relative energies (kcal/mol) of stationary points on the potential energy surfaces of the reaction PtF+ and CH4 in the singlet and
triplet states in three methods.

Singlet Triplet

B3P86 B3LYP M06-2X B3P86 B3LYP M06-2X

PtF+ 0.00 7.48 32.14 1.22 0.00 0.00

PtF(CH4)
+ −50.97 −36.92 −48.70

TS1 −37.08 −22.90

PtHF(CH3)
+ −62.23 −48.54 −57.00 −36.98 −23.01 −31.09

TS2 −42.49 −28.17 −39.15 −10.02 −13.73

Pt (CH3)(HF)+ −75.64 −63.91 −89.29 −60.40 −81.57

Pt (CH3)
++HF −58.27 −47.61 −71.10 −45.93 −40.14

TS2-H2 −58.17 −42.28 −46.81 −12.36 2.83 −0.25

PtH2F(CH2)
+ −58.00 −42.43 −46.39 −13.00 1.81 −0.56

TS3-H2 −54.65 −39.28 −42.92 −11.46 3.24 1.13

PtF(CH2)(H2)
+ −54.72 −40.16 −44.52 −14.75 −3.78 −7.71

PtF(CH2)
++H2 −22.32 −12.79 −18.97 −5.80 2.89 −2.22
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these structures, including bond distances and bond angles, are

summarized in the Supporting Information.

The reactions observed in Figure 1 can be classified into two

different categories: 1) reactions involving Pt-X bond cleavage,

namely, the expulsions of HX and 2) bond activation of CH4

without obvious occurrence of Pt-X bond cleavage, that is, the

loss of H2 (summarized in Eq. 1 and 2).

PtX+ + CH4 → Pt(CH3)+ +HX, (1)
PtX+ + CH4 → PtX(CH2)+ +H2, (2)

For the sake of simplicity, each species is labeled with its spin

multiplicity as a superscript preceding the formula.

3.1 PtF+ + CH4

For PtF+, the ground electronic state has been found to be a

triplet, and the singlet electronic excitation state of 1PtF+ has a

relative energy of 7.48 kcal/mol. The reaction starts with the

formation of a methane complex PtF(CH4)
+. Based on Figure 1,

the spin-conserving dehydrogenation of CH4 along the ground

state route 3PtF+ + CH4 → 3PtF(CH2)
+ + H2 is endothermic by

2.89 kcal/mol and cannot occur for the high efficiency of the

reaction. So, the reaction would obtain HF through the ground

route or would be a two-state reaction scenario (TSR) (Roithova

et al., 2010).

In the triplet state, the relative energy of the complex
3PtF(CH4)

+ is −36.92 kcal/mol and is found to have a η2
coordination, the θC-Pt-F = 179.89°, which indicates that the

carbon atom attacks to Pt along the Pt-F axis. Then, Pt

inserts into one of the C-H bonds of methane, resulting in a

hydridomethyl complex 3PtHF(CH3)
+, which has an energy

of −23.01 kcal/mol. TS1 is the transition state of the oxidative

addition of the first C-H bond on the reaction path. On the 3TS1,

the activated C-H bond is almost broken with the C-H bond

length of 1.775 Å and the Pt-H bond is nearly formed with the Pt-

H bond length of 1.565 Å, indicating that 3TS1 is a typical three-

centered late transition state, which is 14.02 kcal/mol above the

encounter complex 3PtF(CH4)
+ but only 0.11 kcal/mol above the

3PtHF(CH3)
+.

The low-spin 1PtF+ with methane tends to form
1PtHF(CH3)

+ intermediate directly. No activation transition

state has been found on the singlet surface. The results

indicate that the first C-H bond is activated spontaneously on

the singlet surface. Energetically, the 1PtHF(CH3)
+ is 25.53 kcal/

mol lower than that of the triplet 3PtHF(CH3)
+. A curve crossing

is required from the triplet state to the singlet state via an MECP.

As shown in Figure 1, due to the higher energies of the triplet-

spin state in the process of the expulsions of HF, and the

processes in the triplet-spin state being similar to the singlet-

spin paths, later, the triplet surface is not considered in the

expulsion of HF.

In the following pages of this section, we will first discuss the

process of the expulsions of HX, namely, HF. On the singlet

surface, the next step is a reductive elimination step to form an

HF molecule complex; that is, the H and F rearrange to form an

HF molecule electrostatically bound to Pt to obtain the 1Pt

(CH3)(HF)+ with a barrier of 20.37 kcal/mol. In the last step,

HF can be eliminated in an exothermic reaction by 17.98 kcal/

mol. This last step leaves 1Pt (CH3)
+ in its ground singlet state.

For the elimination of H2, a migration of hydrogen from CH3

to Pt, leading to 1PtH2F(CH2)
+ with an energy barrier of

6.26 kcal/mol. The transition state 1TS2-H2 (it represents the

transition state in the process of the elimination of H2) is a

TABLE 2Calculated relative energies (kcal/mol) of stationary points on the potential energy surfaces of the reaction PtX+ (X = F, Cl, Br, I) andCH4 in the
singlet and triplet states.

Species X = F X = Cl X = Br X = I

Singlet Triplet Singlet Triplet Singlet Triplet Singlet Triplet

PtX+ 7.48 0.00 16.40 0.00 23.90 0.00 22.34 0.00

PtX (CH4)
+ −36.92 −30.57 −26.39 −23.15

TS1 −22.90 −18.07 −13.60 −11.62

PtHX (CH3)
+ −48.54 −23.01 −41.73 −18.43 −35.59 −14.02 −30.93 −12.21

TS2 −28.17 −10.02 −29.62 −2.10 −23.70 0.57 −15.54 6.21

Pt (CH3)(HX)+ −63.91 −60.40 −41.05 −27.47 −31.71 −15.00 −22.80 −4.92

Pt (CH3)
++HX −47.61 −45.93 −10.45 −8.77 7.12 8.81 21.18 22.86

TS2-H2 −42.28 2.83 −26.52 8.85 −17.20 13.15 −8.94 12.57

PtH2X (CH2)
+ −42.43 1.81 −26.61 8.57 −15.00 12.76 −9.11 11.28

TS3-H2 −39.28 3.24 −23.51 11.88 −14.42 16.47 −6.04 16.25

PtX (CH2)(H2)
+ −40.16 −3.78 −24.84 7.28 −15.84 10.29 −7.56 11.15

PtX (CH2)
++H2 −12.79 2.89 −6.69 10.86 −0.74 14.78 3.97 16.85

Frontiers in Chemistry frontiersin.org04

Zhao et al. 10.3389/fchem.2022.1027465

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1027465


three-centered late transition state. Then, the two hydrogens

rearrange easily to form the 1PtF(CH2)(H2)
+. Afterward, the

molecule H2 is eliminated. The calculated dissociation energy of

H2 to
1PtF(CH2)

+ is 27.38 kcal/mol.

Generally, the energy barrier controls the reaction rate in a

channel. Comparing the above two reaction channels, the energy

barrier of H2 elimination is 14.11 kcal/mol lower than that of the

HF expulsions. However, in the subsequent steps, the calculated

ligand dissociation energy of H2 to
1PtF(CH2)

+ is much higher

than any energies of the complexes in the path to produce HF.

Namely, the favorable path for the reaction of PtF+ + CH4 is the

channel of the elimination of HF.

For the overall process, the energetically most favorable route

involves a two-state reactivity scenario. The favorable route is the

elimination of HF via the route 3PtF+ + CH4 → 3PtF(CH4)
+ →

MECP → 1PtHF(CH3)
+ → 1TS2 → 1Pt (CH3)(HF)+ → 1Pt

(CH3)
++ HF.

3.2 PtX+ (X = Cl, Br, I) + CH4

As to the CH4 activation on PtX+ (X = Cl, Br, I), the

mechanisms are very similar to those on PtF+, as discussed

earlier. Indeed, the critical geometrical parameters in the

intermediates and transition state are all very similar to the

corresponding structures in the case of PtF+, as can be seen

clearly by comparing the figures in the Supporting Information.

Therefore, we shall not discuss their geometries in further detail

but show some differences and their characteristics.

For PtX+ (X =Cl, Br, I) with CH4, as calculated by the results, the

ground low-lying state is all the triplet state. The excitation energies

to the excited singlet state are 16.40, 23.90, and 22.34 kcal/mol,

respectively, for PtX+ (X = Cl, Br, I). The low-spin 1PtX+ with

methane tends to form a 1PtHX (CH3)
+ intermediate directly. No

activation transition state has been found on the singlet surface. The

results are similar to the PtF+-CH4 system and indicate that C-H is

activated spontaneously on the singlet surface. Energetically, the
1PtHX (CH3)

+ is lower than the triplet 3PtHX (CH3)
+. Since the

triplet state is the ground state of PtX+, the methane activation

starting from the ground state again requires an intersystem crossing

as described in the case of PtF+ via a minimum energy crossing

point, as shown in Figures 2–4.

Different from PtF+, as for the other three PtX+ (X = Cl,

Br, I), on the singlet surface, the next step is the

rearrangement of hydrogen and halogen to obtain HX,

which has an activation energy of 12.11, 11.89, and

15.39 kcal/mol, respectively, for PtX+ (X = Cl, Br, I). This

activation energy is 3.10, 6.50, and 6.60 kcal/mol lower than

that in the path of the elimination of H2.

For PtCl+, HCl can be eliminated in an exothermic reaction

by 10.45 kcal/mol. Due to the path of the expulsions of H2

always being high-lying compared with the process of

elimination of HCl, it is an unfavorable path. Namely, the

favorable path of PtCl+/CH4 is the process of HCl elimination.

This result is in good agreement with the experimental results as

reported by Schröder and Schwarz (2005). They reported the

branching ratio of HCl is 100%. For PtBr+/CH4, the favorable

path is the process of the elimination of HBr, but the calculated

ligand dissociation energy of HBr to 1Pt (CH3)
+ is 38.83 kcal/

mol, different from PtF+, the energy difference between the two

processes of the products are only 7.86 kcal/mol, which is lower

than others. The activation energy to obtain 1Pt (CH3)(HBr)+ is

6.50 kcal/mol lower than to obtain 1PtH2Br(CH2)
+. Due to the

lower activation energy, the favorable path of the reaction of

PtBr+/CH4 probably is the elimination of HBr, but also has

some ratio of H2 in the products, as mentioned in the earlier

discussions. As reported by Schröder and Schwarz (2005), the

branching ratio of HBr:H2 is 85:15. As for PtI+, although the

FIGURE 2
Potential energy surfaces of the reaction PtCl+ + CH4 in the low- and high-spin states. The structure is the minimum energy crossing point
(MECP).

Frontiers in Chemistry frontiersin.org05

Zhao et al. 10.3389/fchem.2022.1027465

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1027465


energies in the potential energy surfaces before the loss of HI

are lower than that of H2, the elimination of HI needs much

more energy than H2, and it is endothermic at 43.98 kcal/mol,

which is not favorable to occur. In the process of the loss of

H2, there is a barrier height of 21.99 kcal/mol on the singlet

state to form the intermediate 1PtH2I(CH2)
+. After

overcoming a small barrier of 3.07 kcal/mol, the complex
1PtI(CH2)(H2)

+ is formed. The low-spin species 1PtI(CH2)
+

has an association energy of 11.53 kcal/mol. This reaction is

endothermic of 3.97 kcal/mol, which is also not favorable

thermodynamically.

In summary, in the elimination of HX (X = F, Cl, Br, I), the

formal oxidation state of the metal ion appears to be conserved,

and the importance of this reaction channel decreases in going as

the sequence: X = F, Cl, Br, I. A reversed trend is observed in the

loss of small closed-shell molecule H2 for X = F, Cl, Br, while it is

not favorable for PtI+ in the loss of either HI or H2. The reason for

the reactivity along with the abovementioned trends can be

explained by the electronegative character of X; on the other

hand, by the corresponding reaction enthalpies, which are mostly

related to the formation of HX, that is to say, the halogens are

heavier the bond-dissociation energies are much lower (Dede

et al., 2009). The results can also be seen by the Natural Bond

Orbital (NBO) populations and Natural population analysis

(NPA) charge, as shown in the Supporting Information, and

the results of part of the key structures are shown in Table 3. The

FIGURE 3
Potential energy surfaces of the reaction PtBr+ + CH4 in the low- and high-spin states. The structure is the minimum energy crossing point
(MECP).

FIGURE 4
Potential energy surfaces of the reaction PtI+ + CH4 in the low- and high-spin states. The structure is the minimum energy crossing point
(MECP).
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electronegativity of the halogens decreases gradually from F to I,

and the donor properties increase gradually from F to I, so F

forms a strongly polarized covalent bond to Pt, and F increases

the formal oxidation of Pt.

3.3 Mechanism discussions

Reaction mechanisms of these reactions are elucidated by

detailed NPA charge and the Frontier Molecular Orbitals

(HOMO and LUMO) of the key structures in the rate

controlling step.

In the elimination of HF, as shown in Table 3, the F atom

carries a significant negative charge, serving as a good proton

acceptor, in which the electron is accepted by the metal center,

thus, the NPA charge decreases in Pt. This process can be

classified as a conventional proton-coupled electron transfer

(PCET (Li et al., 2016b)) mechanism. For HCl and HBr

eliminations, the charges of all atoms did not change during

hydrogen transforms, and the mechanism can be judged as

hydrogen atom transfer (HAT (Dietl et al., 2012)), while for I

ligand, the NPA charge of I atom increases and that of H atom

decreases, and it can be determined that the process is hydride

transfer (HT (Li et al., 2016c)) mechanism.

The mechanisms of HX eliminations also can be explained by

the analysis of Frontier Molecular Orbitals, which are shown in

Figure 5. In the HOMO orbital, the σ(dx2-y2) of Pt and σ(py) of X
occupied the main contribution in Pt-X molecular orbital. The

coefficient of Pt (σ(dx2-y2)) becomes smaller and X (σ(py)) increases
in the sequence of F < Cl < Br < I. From 1PtHX (CH3)

+ to 1TS2, the

increase of electron density (φ2) on Pt is consistent with the decrease

of NPA charge. The decrease of electron density on X also

corresponds to the increase of NPA charge. It also can be seen

from the LUMOorbital graph of C (σ(py))-Pt (σ(dxy))-X (σ(pX)) that
the φ2 of Pt increase and the φ2 of C and X decrease.

In the course of the formation of H2, the positive charge of

H diminishes, indicating that it may be an HT mechanism.

Corresponding to this, electron density has been transferred

from methane to hydrogen, as shown in the HOMO orbital

graph in Figure 5. As the transferred electron density takes

the same route as that of the concurrently transferred

hydrogen atom, it can be described as a hydride transfer

mechanism. For different halogens, the change of charges is

the same, that is to say, in terms of rate controlling step,

different halogen ligands have no significant effect on the

process of elimination of H2.

In sum, in the eliminations of HX, the mechanisms are

different. The transfer form of H is from proton to atom, last

TABLE 3 Valence NBO populations for the 6s/5d/6p orbitals of Pt and the natural population analysis (NPA) charge of the related atoms in part of the
key structures in the reaction of PtX+ (X = F, Cl, Br, I) + CH4 in the singlet state.

PtF+ PtCl+ PtBr+ PtI+

NBO

TS2 0.42/8.73/0.01 0.43/8.93/0.01 0.41/9.01/0.01 0.42/9.07/0.02

Pt (CH3)(HX)+ 0.15/9.01/0.01 0.36/9.03/0.01 0.41/9.05/0.01 0.44/9.09/0.02

TS2-H2 0.67/8.52/0.03 0.72/8.69/0.02 0.73/8.72/0.03 0.76/8.77/0.03

PtX (CH2)(H2)
+ 0.57/8.57/0.02 0.62/8.71/0.02 0.64/8.74/0.01 0.67/8.82/0.02

NPA Charge

Pt F C Pt Cl C Pt Br C Pt I C

TS2 0.85 −0.40 −0.52 0.64 −0.02 −0.52 0.57 0.12 −0.54 0.50 0.32 -0.55

Pt (CH3)(HX)+ 0.84 −0.54 −0.54 0.60 −0.02 −0.55 0.53 0.13 −0.56 0.46 0.34 -0.56

TS2-H2 0.79 −0.52 −0.13 0.56 −0.25 −0.15 0.51 −0.15 −0.17 0.42 −0.01 -0.19

PtX (CH2)(H2)
+ 0.84 −0.55 0.07 0.64 −0.26 0.02 0.59 -0.16 -0.004 0.48 −0.01 -0.06

Pt F C H Pt F C H Pt F C H Pt F C H

PtHX (CH3)
+ 0.99 −0.38 −0.52 0.21 0.68 −0.08 −0.52 0.21 0.53 0.13 −0.56 0.20 0.50 0.17 −0.54 0.19

TS2 0.85 −0.40 −0.52 0.38 0.64 −0.02 −0.52 0.22 0.57 0.12 −0.54 0.19 0.50 0.32 −0.55 0.10

PtH2X (CH2)
+ 0.80 −0.55 −0.10 0.26 0.58 −0.28 −0.12 0.26 0.53 −0.19 −0.14 0.25 0.45 −0.05 −0.18 0.24

TS3-H2 0.80 −0.54 0.02 0.14 0.58 −0.27 −0.02 0.14 0.53 −0.18 −0.05 0.14 0.46 −0.06 −0.08 0.13
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to hydride. The reason is mainly due to the electronegativity of

halogens, while for the loss of H2, the transfer of H is in the form

of hydride for all the X ligands.

3.4 Analysis of interaction between
complexes

To further investigate the mechanisms, the interactions between

the complexes in the reactions were also discussed. The MEP

diagrams of singlet and triplet PtX+ on the 0.001 a. u. isodensity

surface are displayed in Figure 6. Since the complexes have positive

charge, the overall electrostatic potential is in the red region. There is a

deep red region (σ-hole) along the Pt-F axis around the Pt+, which

correspond to the site where carbon atoms attack PtX+. It is consistent

with the previously optimized structure. In addition, the σ-hole
strength decreases in the order PtF+> PtCl+> PtBr+> PtI+ owing to

the different electron-withdrawing ability among the halogen.

FIGURE 5
HOMO/LUMO orbital graphs in part of the structures of rate controlling step in the reaction of PtX+ (X = F, Cl, Br, I) + CH4 in the singlet state.

FIGURE 6
Molecular electrostatic potential (MEP) maps on the 0.001 a. u. isodensity surface of the monomers.

TABLE 4 Electron density (ρ, a.u.), Laplacian (▽2ρ, a.u.), energy density
(H, a.u.), intermolecular distance (R, Å), and charge transfer (CT, e)
at the XPt-CH4 (X = F, Cl, Br, I) complexes.

Complexes ρ ▽2ρ H R CT

FPt-CH4 0.0690 0.2009 −0.0143 2.305 0.2101

ClPt-CH4 0.0727 0.1943 −0.0163 2.284 0.2111

BrPt-CH4 0.0685 0.1886 −0.0140 2.315 0.1927

IPt-CH4 0.0671 0.1888 −0.0133 2.327 0.1764
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In the AIM theory, electron density at the bond critical point

(BCP) is one of the indicators of interaction strength. The

electron density, Laplacian, and total energy density at the

XPt-CH4 (X = F, Cl, Br, I) complexes are listed in Table 4.

The values of the density at the BCP lie in the range around

0.07 a. u., Laplacian is positive and energy density is negative in

the methane complexes, which indicates that there exhibits a

property of a partially covalent interaction. The charge transfer

from CH4 to PtX+ decreases in the order PtF+> PtCl+> PtBr+>
PtI+, which is consistent with the σ-hole strength of PtX+. The

charge transfer and the interaction energy of methane complexes

in the potential energy surface have similar changes.

Table 5 shows the electron density, Laplacian, and total

energy density at the complexes before the expulsions of HX

or H2. It is generally believed that the greater the electron density

between two atoms in a composite, the more concentrated the

charge between the two atoms, which also means that the bond

between these two atoms has a stronger tendency (Kraka and

Cremer, 1990; Alkorta et al., 1998). As shown in Table 5, for all

the complexes before dissociating the H2 or HX molecule,

Laplacian is positive and energy density is negative, indicating

that there exists a partially covalent interaction between H2 or

HXmolecule and Pt atom. For the same complex, the values of ρ,

▽2ρ, and energy density are obviously stronger in the singlet state

than those in the triplet state, indicating a stronger interaction

between the Pt and the H2 or HX molecule in the singlet state,

and more energy is required to expel H2 or HX, which is

consistent with the energy barrier of the reaction in the

potential energy surfaces. Through the analysis of the

interaction between atoms in the transition metal–ligand

complex, the reaction path can be better explained.

From Table 5, one also can see that for the complexes before

H2 was removed, the values of charge transfer (CT) are between

0.17 e and 0.21 e, and the differences between PtXCH2-H2 (X = F,

Cl, Br, I) are small. However, for the complexes before HX was

expelled, the values of charge transfer increased from PtCH3-HF

to PtCH3-HI, which was generally consistent with the interaction

energy. Namely, the complexes before the expulsions of HI had

larger interaction energy than the others.

3.5 Comparisons with the reactions of
NiX+ (X = F, Cl, Br, I) + CH4

The reactions of NiX+ (X = F, Cl, Br, I) and methane have

been investigated at the B3LYP level of theory by Schlangen et al.

(Schlangen et al., 2007; Schlangen and Schwarz, 2008). They

reported that NiF+ is the only nickel-halide complex capable of

activating methane for NiX+ (X = F, Cl, Br, I). The driving force of

the reaction NiF+ with methane is provided by the exceptionally

high stability of HF (Schlangen et al., 2007). In the present study,

we found that the PtX+ (X = F, Cl, Br) can bring about thermal

activation of methane to loss HX decreasing in going as the

sequence X = F, Cl, Br, and to loss H2 increasing in the reverse

sequence.

The reactions of NiF+ and their third-row congeners PtX+ with

methane have many features in common; whereas, fundamental

differences exist with regard to the details of the potential energy

surfaces and, thus, to actual reaction mechanisms. As reported by

Schlangen and Schwarz (2008), for the NiF+ and methane systems

studied, the energetically most favored variant corresponds to an σ-
complex-assisted metathesis (σ-CAM). First, the reactions start with

the formation of the encounter complex NiF(CH4)
+, and then, the

molecule HF is directly eliminated via a multicenter transition state

to obtain the product complex, Ni(CH3)(HF)
+. However, in the

PtX+/CH4 systems, oxidative addition/reductive elimination (OA/

RE) is operative. After the formation of the complex PtX (CH4)
+, the

next step is the cleaving of the C-H bond (oxidative addition),

TABLE 5 Electron density (ρ, a.u.), Laplacian (▽2ρ, a.u.), energy density (H, a.u.), and charge transfer (CT, e) in the PtXCH2-H2 and PtCH3-HX (X = F, Cl,
Br, I) complexes.

ρ ▽2ρ H CT ρ ▽2ρ H CT

Singlet Triplet

PtFCH2-H2 0.1221 0.3547 −0.0499 0.2136 0.0683 0.2060 −0.0122 0.1537

PtClCH2-H2 0.1088 0.3689 −0.0362 0.1873 0.0720 0.2209 −0.0141 0.1451

PtBrCH2-H2 0.1037 0.3555 −0.0325 0.1749 0.0621 0.2265 −0.0094 0.1081

PtICH2-H2 0.1120 0.3126 −0.0402 0.1923 0.0691 0.2589 −0.0121 0.1132

PtCH3-HF 0.0496 0.2738 −0.0004 0.0655 0.0404 0.2029 0.0002 0.0486

PtCH3-HCl 0.0833 0.2468 −0.0198 0.2990 0.0536 0.1550 −0.0082 0.2091

PtCH3-HBr 0.0866 0.1773 −0.0269 0.3817 0.0574 0.1281 −0.0118 0.2550

PtCH3-HI 0.0690 0.0774 −0.0210 0.4690 0.0489 0.0739 −0.0099 0.3503
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resulting in the insertion product PtHX (CH3)
+, and then a reductive

elimination step to form an HX molecule complex is obtained, that

is, the H and X rearrange to form an HX molecule electrostatically

bound to Pt to obtained the 1Pt (CH3)(HX)
+.

Another difference in the reaction mechanisms is the potential

energy surfaces. In the NiF+/CH4 system, the exothermic ligand

exchange proceeds adiabatically only on the one potential energy

surface, whereas the reaction of PtX+/CH4 needs a curve crossing,

that is to say, it is a two-state reactivity. Otherwise, the NiF+/CH4

system proceeds on the high-spin ground triplet state, while the

reaction of PtX+ withmethane takes placemore easily along the low-

spin potential energy surface. As for the reasons for the differences,

Schlangen and Schwarz (2008) have reported that the strongly

electron-withdrawing F substituent reduces the electron density

at the Ni-center and, thus, decreases the repulsive interaction;

therefore, the reaction can proceed on the high-spin ground

state. Based on this point, we calculated the Mullikan charges of

the M-atom (M = Ni, Pt) in the systems MX+/CH4. The results

indicate that the Mullikan charges of the Ni-atom in the NiF+/CH4

system increase 0.198, while the Pt-atom in the reaction PtF+/CH4

increases only 0.082.

4 Conclusion

The gas-phase ion-molecule reactions of PtX+ cations (X = F,

Cl, Br, I) with methane have been investigated theoretically at the

DFT (B3LYP) level, considering both the low- and high-spin

potential energy surfaces. All reactions fall into two major

categories: 1) reactions involving Pt-X bond cleavage to

expulse HX and 2) bond activation of CH4 without obvious

occurrence of Pt-X bond cleavage to loss H2. In the elimination of

HX (X = F, Cl, Br, I), this reaction channel decreases in going as

the sequence: X = F, Cl, Br, I. A reversed trend is observed in the

losses of small closed-shell molecule H2 for X = F, Cl, Br, while it

is not favorable for PtI+ in the loss of either HI or H2. The reason

for the reactivity along with the abovementioned trends can be

explained by the electronegative character of X.

In the eliminations of HX, the transfer form of H is from proton

to atom, last to hydride, and the mechanisms are from PECT to

HAT, last to HT for the sequence of X = F, Cl, Br, I. One reason is

mainly due to the electronegativity of halogens. Otherwise, the

mechanisms of HX eliminations also can be explained by the

analysis of Frontier Molecular Orbitals, while for the loss of H2,

the transfer of H is in the form of hydride for all the X ligands.

The charge transfer from CH4 to PtX+ decreases in the order

PtF+> PtCl+> PtBr+> PtI+, which is consistent with the σ-hole
strength of PtX+. For the same complex, the values of ρ, ▽2ρ,
and energy density are obviously stronger in the singlet state than

those in the triplet state, indicating a stronger interaction between

the Pt and the H2 or HX molecule in the singlet state, and more

energy is required to expel H2 or HX, which is consistent with the

energy barrier of the reaction in the potential energy surfaces. The

differences in charge transfer between PtXCH2-H2 (X = F, Cl, Br, I)

for the complexes before H2 is removed are small. However, for the

complexes before HX is expelled, the values of charge transfer

increase from PtCH3-HF to PtCH3-HI, namely, the complexes

before the expulsions of HI have larger interaction energy than

the others. Through the analysis of the interaction between atoms in

the transition metal ligand complex, the reaction path can be better

explained.
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