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Prostate cancer (PCa) is a malignant tumor with a higher mortality rate in the

male reproductive system. In this study, the hydroxyazine derivatives were

synthesized with different structure from traditional anti-prostate cancer drugs.

In the evaluation of in vitro cytotoxicity and antagonistic activity of PC-3,

LNCaP, DU145 and androgen receptor, it was found that the mono-

substituted derivatives on the phenyl group (4, 6, 7, and 9) displayed strong

cytotoxic activities, and compounds 11–16 showed relatively strong

antagonistic potency against AR (Inhibition% >55). Docking analysis showed

that compounds 11 and 12mainly bind to AR receptor through hydrogen bonds

and hydrophobic bonds, and the structure-activity relationship was discussed

based on activity data. These results suggested that these compoundsmay have

instructive implications for drug structural modification in prostate cancer.
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1 Introduction

Targeted anti-tumor drugs are the focus of modern anti-cancer research, because of

their special targeting, they can greatly reduce the toxicity to normal cells (Falciani et al.,

2010). In addition, cells in rapid division were more sensitive to the most drugs due to the

differences in cell dynamics (Tannock, 1978). Therefore, targeted antitumor drugs can

simultaneously inhibit the proliferation and differentiation of tumor cells and greatly

accelerate the death of tumor cells (Vinaya et al., 2011). Prostate cancer (PCa) is a

malignant tumor with a higher mortality rate in the male reproductive system (Greenlee

et al., 2001). Prostate cancer is driven by the androgen receptor (Yap et al., 2016; Dai et al.,

2017), and is directly associated with nuclear steroidal AR (Bentel and Tilley, 1996; Culig

et al., 2002; Gelmann, 2002). Androgens bind to the AR and form a hormone-receptor

complex, which can bind to the DNA and induce downstream biological effects (Dehm

and Tindall, 2007). This complex also induces the proliferation of prostate cells, and
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ultimately causes tumorigenesis (Heinlein and Chang, 2004).

Although some current treatments (hormonotherapy, radical

prostatectomy, chemotherapy, or local radiotherapy) can treat

androgen-dependent prostate cancer (Frydenberg et al., 1997).

However, drug resistance problems hinder its therapeutic

efficacy. Therefore, early detection and elimination of both

types of prostate cancer cells are very important for

decreasing prostate cancer-related death (Feldman and

Feldman, 2001).

Piperazine moieties play an important role in many drugs

(Chaudhary et al., 2006), and piperazine derivatives also have

exhibited biological importance, such as receptor high-affinity

properties (Leopoldo et al., 2007; Romeiro et al., 2011; Chen

et al., 2012; Ananthan et al., 2014; Baran et al., 2014) and anti-

proliferative properties (Berardi et al., 2008; Lee et al., 2010;

Abate et al., 2011; Cao et al., 2013; Liu et al., 2013; Arnatt et al.,

2014; Guo et al., 2015). Hydroxyzine (Figure 1) has

antihistamine effect and can be quickly absorbed and

distributed by oral or muscle injection. The arylpiperazine

derivatives were reported to exhibit significant antagonism

against AR with an IC50 of 0.11 μM, whereas the IC50 of

bicaluramide is 50 μM. Results of animal experiments have

shown that the mass of prostate in rats is significantly reduced,

and the concentration of serum testosterone is not

significantly changed (Kinoyama et al., 2004; Kinoyama

et al., 2005; Gupta et al., 2016). However, there have been

few studies on hydroxyzine derivatives. Based on the results of

our group’s previous anti-prostate cancer study (Chen et al.,

2016; Chen et al., 2017; Chen et al., 2018a; Chen et al., 2019a;

Chen et al., 2019b; Qi et al., 2022), we tried to design and

synthesize a series of novel hydroxyzine derivatives (Scheme

1) with 2-p-tolylethanol group instead of 2-ethoxyethanol

group in hydroxyzine. Unexpectedly, some derivatives

exhibited strong anti-cancer activities and antagonistic

FIGURE 1
Structures of hydroxyzine.

SCHEME 1
Reagents and conditions: (i) BH3.S(CH3)2, THF, 0°C for 1 h, and room temperature for 10 h; (ii) Piperazines, K2CO3, CH3CN, reflux, 16 h.
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activities. These results can provide valuable information for

further designing hydroxyzine derivatives as potential prostate

cancer therapeutics.

2 Materials and methods

2.1 Materials and instruments

Reagents and solvents were of analytical purity and dried and

using standard procedures. The melting point was measured

using the Shanghai electrical optical SGW X-4 micromelting

point instrument. The HRMS mass spectrometry was measured

using the LCQ DECA XP LC-MS. The NMR spectra were

measured using the Bruker AV-400 NB, with TMS as the

internal standard, and DMSO-d6 or CDCl3 as the solvent.

Column chromatography silica gel was the 300–400 mesh

silicone of Qingdao Marine Chemical Plant.

2.2 Synthesis of 2-[4-(bromomethyl)
phenyl]ethanol (2)

The borane–dimethyl sulfide (20.0 ml, 0.038 mol, 2 M in

THF) was added to the tetrahydrofuran (THF, 100 ml)

solution, supplemented with carboxylic acid 1 (5 g, 0.021 mol),

and stirred at 0°C for 1 h. Then stirred at r. t. for 10 h. Extracted

with ethyl acetate (100 ml) and water (20 ml). Concentrated

organic phase, the resulting residue was directly used without

further purification.

2.3 Preparation of derivatives 3–17

Piperazines (1.3 equiv), potassium carbonate (5.5 equiv),

acetonitrile (CH3CN, 10 ml), and 2 (50 mg, 0.11 mmol) were

successively added to the flask, stirred with reflux for 10 h. The

reaction solutionwas filtered and concentrated, and purified by silica

gel column chromatography (ethyl acetate/petroleum ether = 1/5).

2.3.1 2-(4-((4-benzhydrylpiperazin-1-yl)methyl)
phenyl)ethan-1-ol (3)

White solid (ethyl acetate), yield: 85% (from compound 1);

M.p. 122°C–123°C; 1H NMR (400 MHz, DMSO-d6) δ in ppm:

7.75–7.10 (m, 14H), 4.26 (br s, 2H), 3.64 (br s, 10H), 3.56 (t, J =

6.9 Hz, 2H), 2.70 (t, J = 6.9 Hz, 2H); MS (ESI, m/z): 387.1 [M+1]+;

HRMS (EI) calcd for C26H29ClN2O, 386.2358; found, 386.2354.

2.3.2 2-(4-((4-(phenyl(p-tolyl)methyl)piperazin-
1-yl)methyl)phenyl)ethan-1-ol (4)

White solid (ethyl acetate), yield: 82% (from compound 1);

M.p. 125°C–126°C; 1H NMR (400 MHz, DMSO-d6) δ in ppm:

7.80–7.11 (m, 13H), 4.27 (br s, 2H), 3.66 (br s, 10H), 3.57 (t, J =

6.9 Hz, 2H), 2.72 (t, J = 6.9 Hz, 2H); 2.34 (s, 3H), MS (ESI, m/z):

401.2 [M+1]+; HRMS (EI) calcd for C27H32N2O, 400.2515;

found, 400.2510.

2.3.3 2-(4-((4-(di-p-tolylmethyl)piperazin-1-yl)
methyl)phenyl)ethan-1-ol (5)

White solid (ethyl acetate), yield: 82% (from compound 1);

M.p. 128°C–129°C; 1H NMR (400 MHz, DMSO-d6) δ in ppm:

7.75 (br s, 4H), 7.45 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H),

7.16 (t, J = 8.1 Hz, 4H), 4.25 (br s, 2H), 3.64 (br s, 10H), 3.56 (t, J =

6.9 Hz, 2H), 2.71 (t, J = 6.9 Hz, 2H); 2.36 (s, 6H), MS (ESI, m/z):

415.1 [M+1]+; HRMS (EI) calcd for C28H34N2O, 414.2671;

found, 414.2668.

2.3.4 2-(4-((4-((4-methoxyphenyl)(phenyl)
methyl)piperazin-1-yl)methyl)phenyl)ethan-1-
ol (6)

White solid (ethyl acetate), yield: 87% (from compound 1);

M.p. 116°C–117°C; 1H NMR (400 MHz, DMSO-d6) δ in ppm:

7.76–7.13 (m, 13H), 4.25 (br s, 2H), 3.77 (s, 3H), 3.67 (br s, 10H),

3.54 (t, J = 6.9 Hz, 2H), 2.74 (t, J = 6.9 Hz, 2H), MS (ESI, m/z):

417.1 [M+1]+; HRMS (EI) calcd for C27H32N2O2, 416.2464;

found, 416.2462.

2.3.5 2-(4-((4-((4-fluorophenyl)(phenyl)methyl)
piperazin-1-yl)methyl)phenyl)ethan-1-ol (7)

White solid (ethyl acetate), yield: 87% (from compound

1); M.p. 116°C–117°C; 1H NMR (400 MHz, DMSO-d6) δ in

ppm: 7.70–7.11 (m, 13H), 4.27 (br s, 2H), 3.64 (br s, 10H), 3.57

(t, J = 6.9 Hz, 2H), 2.72 (t, J = 6.9 Hz, 2H), MS (ESI, m/z):

405.1 [M+1]+; HRMS (EI) calcd for C26H29FN2O, 404.2264;

found, 404.2260.

2.3.6 2-(4-((4-(bis(4-fluorophenyl)methyl)
piperazin-1-yl)methyl)phenyl)ethanol (8)

White solid (ethyl acetate), yield: 70% (from compound 1);

M.p. 133°C–134°C; 1H NMR (400 MHz, DMSO-d6) δ in ppm: 1H

NMR (400 MHz, DMSO-d6) δ 7.70 (br s, 4H), 7.46 (d, J = 8.0 Hz,

2H), 7.22 (d, J = 8.0 Hz, 2H), 7.18 (t, J = 8.2 Hz, 4H), 4.27 (br s,

2H), 3.66 (br s, 10H), 3.55 (t, J = 6.9 Hz, 2H), 2.68 (t, J = 6.9 Hz,

2H); MS (ESI, m/z): 423.2 [M+1]+; HRMS (EI) calcd for

C26H28F2N2O, 422.2170; found, 422.2168.

2.3.7 2-(4-((4-((4-chlorophenyl)(phenyl)methyl)
piperazin-1-yl)methyl)phenyl)ethanol (9)

White solid (ethyl acetate), yield: 75% (from compound

1); M.p. 130°C–131°C; 1H NMR (400 MHz, DMSO-d6) δ in

ppm: 7.89–7.13 (m, 13H), 4.29 (br s, 2H), 3.66 (br s, 10H), 3.57

(t, J = 6.9 Hz, 2H), 2.71 (t, J = 6.9 Hz, 2H); MS (ESI, m/z):

421.1 [M+1]+; HRMS (EI) calcd for C26H29ClN2O, 420.1968;

found, 420.1962.
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2.3.8 2-(4-((4-(bis(4-chlorophenyl)methyl)
piperazin-1-yl)methyl)phenyl)ethan-1-ol (10)

White solid (ethyl acetate), yield: 72% (from compound 1);

M.p. 127°C–128°C; 1H NMR (400 MHz, DMSO-d6) δ in ppm:

7.67 (br s, 4H), 7.42 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H),

7.16 (t, J = 8.0 Hz, 4H), 4.23 (br s, 2H), 3.68 (br s, 10H), 3.57 (t, J =

6.9 Hz, 2H), 2.66 (t, J = 6.9 Hz, 2H); MS (ESI, m/z): 455.2 [M+1]+;

HRMS (EI) calcd for C26H28Cl2N2O, 454.1579; found, 454.1575.

2.3.9 2-(4-((4-benzylpiperazin-1-yl)methyl)
phenyl)ethan-1-ol (11)

White solid (ethyl acetate), yield: 82% (from compound 1);

M.p. 119°C–120°C; 1H NMR (400 MHz, CDCl3) δ in ppm: 7.43

(d, J = 8.0 Hz, 2H), 7.32 (t, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz,

2H), 7.05 (d, J = 7.8 Hz, 2H), 6.98 (t, J = 7.6 Hz, 1H), 4.25 (s, 2H),

3.76 (t, J = 6.8 Hz, 2H), 3.62 (s, 2H), 3.54 (t, J = 5.0 Hz, 4H), 2.72

(t, J = 6.8 Hz, 2H), 2.68 (t, J = 5.0 Hz, 4H); MS (ESI, m/z):

311.1 [M+1]+; HRMS (EI) calcd for C20H26N2O, 310.2045;

found, 310.2040.

2.3.10 2-(4-((4-(1-phenylethyl)piperazin-1-yl)
methyl)phenyl)ethan-1-ol (12)

White solid (ethyl acetate), yield: 78% (from compound 1);

M.p. 114°C–115°C; 1H NMR (400 MHz, CDCl3) δ in ppm:

7.58–7.09 (m, 9H), 4.23 (q, J = 6.6 Hz, 1H), 3.64 (br s, 8H),

3.62 (t, J = 6.8 Hz, 2H), 3.55 (s, 2H), 2.68 (t, J = 6.8 Hz, 2H), 1.12

(d, J = 6.6 Hz, 3H); MS (ESI, m/z): 325.2 [M+1]+; HRMS (EI)

calcd for C21H28N2O, 324.2202; found, 324.2200.

2.3.11 2-(4-((4-(4-methylbenzyl)piperazin-1-yl)
methyl)phenyl)ethan-1-ol (13)

White solid (ethyl acetate), yield: 75% (from compound 1);

M.p. 112°C–113°C; 1H NMR (400 MHz, CDCl3) δ in ppm: 7.41

(d, J = 8.0 Hz, 2H), 7.30 (t, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz,

2H), 7.02 (d, J = 8.0 Hz, 2H), 4.27 (s, 2H), 3.74 (t, J = 6.8 Hz, 2H),

3.66 (s, 2H), 3.56 (t, J = 5.0 Hz, 4H), 2.70 (t, J = 6.8 Hz, 2H), 2.64

(t, J = 5.0 Hz, 4H); MS (ESI, m/z): 325.1 [M+1]+; HRMS (EI)

calcd for C21H28N2O, 324.2202; found, 324.2200.

2.3.12 2-(4-((4-(4-methoxybenzyl)piperazin-1-
yl)methyl)phenyl)ethan-1-ol (14)

White solid (ethyl acetate), yield: 82% (from compound 1);

M.p. 117°C–118°C; 1H NMR (400 MHz, CDCl3) δ in ppm: 7.43

(d, J = 8.0 Hz, 2H), 7.31 (t, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz,

2H), 7.00 (d, J = 8.0 Hz, 2H), 4.25 (s, 2H), 3.81 (s, 3H), 3.72 (t, J =

6.8 Hz, 2H), 3.67 (s, 2H), 3.54 (t, J = 5.0 Hz, 4H), 2.72 (t, J =

6.8 Hz, 2H), 2.62 (t, J = 5.0 Hz, 4H); MS (ESI, m/z): 341.0 [M+1]+;

HRMS (EI) calcd for C21H28N2O2, 340.2151; found, 340.2149.

2.3.13 2-(4-((4-(4-fluorobenzyl)piperazin-1-yl)
methyl)phenyl)ethan-1-ol (15)

White solid (ethyl acetate), yield: 70% (from compound 1);

M.p. 114°C–115°C; 1H NMR (400 MHz, CDCl3) δ in ppm: 7.42

(d, J = 8.0 Hz, 2H), 7.32 (t, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz,

2H), 7.03 (d, J = 8.0 Hz, 2H), 4.26 (s, 2H), 3.70 (t, J = 6.8 Hz, 2H),

3.64 (s, 2H), 3.55 (t, J = 5.0 Hz, 4H), 2.70 (t, J = 6.8 Hz, 2H), 2.63

(t, J = 5.0 Hz, 4H); MS (ESI, m/z): 329.1 [M+1]+; HRMS (EI)

calcd for C20H25FN2O, 328.1951; found, 328.1948.

2.3.14 2-(4-((4-(4-chlorobenzyl)piperazin-1-yl)
methyl)phenyl)ethan-1-ol (16)

White solid (ethyl acetate), yield: 72% (from compound 1);

M.p. 109°C–110°C; 1H NMR (400 MHz, CDCl3) δ in ppm: 7.43

(d, J = 8.0 Hz, 2H), 7.33 (t, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz,

2H), 7.01 (d, J = 8.0 Hz, 2H), 4.24 (s, 2H), 3.72 (t, J = 6.8 Hz, 2H),

3.67 (s, 2H), 3.56 (t, J = 5.0 Hz, 4H), 2.72 (t, J = 6.8 Hz, 2H), 2.66

(t, J = 5.0 Hz, 4H); MS (ESI, m/z): 345.1 [M+1]+; HRMS (EI)

calcd for C20H25ClN2O, 344.1655; found, 344.1653.

2.3.15 2-(4-((4-(9H-thioxanthen-9-yl)piperazin-
1-yl)methyl)phenyl)ethan-1-ol (17)

White solid (ethyl acetate), yield: 78% (from compound 1),

M.p. 121°C–122°C; 1H NMR (400 MHz, DMSO-d6) δ in ppm:

7.73–7.08 (m, 12H), 4.24 (br s, 2H), 3.67 (br s, 10H), 3.57 (t, J =

6.9 Hz, 2H), 2.74 (t, J = 6.9 Hz, 2H); MS (ESI, m/z): 417.1 [M+1]+;

HRMS (EI) calcd for C26H28N2OS, 416.1922; found, 416.1920.

2.4 Biological evaluation

2.4.1 Cell culture
LNCaP, PC-3 and WPMY-1 cells were cultured in Ham’s F-

12K (PM150910) supplemented with 10% FBS (164210-50) and

1% P/S (PB180120). DU145 cells were cultured in MEM

(PM150410) supplemented with 10% FBS (164210–50) and

1% P/S (PB180120). The cells were incubated at 37°C with 5%

CO2 (Qi et al., 2022).

2.4.2 Assessment of antitumor activity by CCK-8
assay

Cell proliferation was measured using the CCK-8 assay kit

(Kaspers et al., 1997; Kaspers et al., 1998; Ding et al., 2010). Cells

were seeded into 96-well plates (>5*104) with approximately

100 ul of cell suspension per well and incubated in 37°C incubator

for 4 h. Various concentrations of the compounds were then

added and incubated for a further 24 h in a 37°C incubator.

Finally, 10 ul CCK8 was added and incubated for 0.5–4 h,

absorbance at 450 nm was determined. (Guo et al., 2021; He

et al., 2022a; Hu et al., 2022).

2.5 AR reporter gene assay

Firefly and Renilla luciferase activities, were determined

using the Dual-Glo™luciferase assay kit. RLUs were

determined using the GloMax®96-Microplate Luminometer.
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IC50 was calculated using the GraphPad Prism 5.0 (He et al.,

2022b; Qi et al., 2022).

2.6 Molecular docking simulation

Binding mechanism experiments performed docking

analysis of the three active pockets (LBP, AF2 and BF3)

(Axerio-Cilies et al., 2011; Lack et al., 2011) in AR receptors

using AutoDock software (Trott and Olson, 2010). Its PDB

protein data (2OZ7, 2YHD and 2YLO) was downloaded from

the protein data bank (PDB) (Rose et al., 2011), and the proteins

were optimized by the addition of hydrogen atoms and the

removal of foreign ligands before docking. A docking space of

40 Å × 40 Å × 30 Å was constructed centered on the ligand of the

AR active pocket, with compounds 11 and 12 as template

molecules, docked into the optimized cavity and repeated

10 times to find a conformation of the one with the lowest

binding free energy.

3 Results and discussions

3.1 Chemistry

Compounds 3–17 were synthesized by the following two-

step method as depicted in Scheme 1. The compound 1 was

reduced to compound 2 with BH3.S(CH3)2. Then, the compound

2 was heated at reflux with various piperines in an alkaline

environment for 16 h.

3.2 Cytotoxic activity and AR antagonist
activity

The in vitro cytotoxic activity results of the synthesized

derivatives 3–17 against human prostate cancer lines (PC-3,

LNCaP, and DU145) and the human prostate epithelial cell

line (WPMY-1) were evaluated, as shown in Table 1.

The compounds 3–10 and 12–17 showed strong cytotoxic

activity against PC-3 cells and were more potent than finasteride;

the compounds 3–12 and 17 showed strong cytotoxic activity

against LNCaP cells; the compounds 3–11 and 17 showed strong

cytotoxic activity against DU145 cells. In addition, mono-

substituted derivatives on the phenyl group (4, 6, 7, and 9)

displayed strong cytotoxic activities against all the tested cancer

cells. And these compounds exhibited low cytotoxicity to normal

human prostate epithelial WPMY-1 cells.

Structure-activity relationship investigation was focused on

the effects of changes in different substituents on the phenyl

group. For instance, compared to compound 3, the compounds

with mono-substituted group on the phenyl group (4, 6, 7, and 9)

exhibited potent anticancer activity against LNCaP, DU145, and

PC-3 cells. However, Dimethyl-substituted derivative 5 displayed

moderate activity against PC-3 and DU145 cells, compounds 8

TABLE 1 In vitro cytotoxicity of derivatives 3–17.

Compd. IC50 (μM)a

PC-3 LNCaP DU145 WPMY-1

3 8.13 ± 0.12 6.14 ± 0.58 11.12 ± 0.76 >50
4 2.56 ± 0.32 4.67 ± 1.02 6.14 ± 0.24 >50
5 12.14 ± 0.29 3.73 ± 0.58 9.82 ± 0.24 37.51 ± 0.37

6 3.15 ± 0.48 6.17 ± 1.02 2.17 ± 0.72 >50
7 1.87 ± 0.22 5.17 ± 0.63 2.17 ± 1.12 48.26 ± 0.41

8 10.12 ± 0.08 4.92 ± 0.29 12.35 ± 0.16 35.53 ± 0.13

9 1.53 ± 0.16 4.13 ± 0.06 7.63 ± 0.12 >50
10 15.24 ± 0.14 7.14 ± 0.29 10.78 ± 1.14 >50
11 20.36 ± 0.48 11.24 ± 0.14 11.26 ± 0.27 >50
12 13.67 ± 1.12 7.76 ± 0.19 16.28 ± 0.63 >50
13 15.36 ± 0.42 22.13 ± 0.76 17.17 ± 1.02 47.14 ± 0.42

14 11.13 ± 0.67 16.16 ± 0.53 24.14 ± 0.47 >50
15 10.46 ± 1.14 18.45 ± 0.16 16.17 ± 0.62 >50
16 14.42 ± 0.35 16.41 ± 0.19 31.46 ± 1.21 >50
17 6.42 ± 0.52 5.61 ± 0.86 8.35 ± 0.28 >50
Finasteride 17.80 13.53 14.55 —

Naftopidil 42.10 ± 0.79 22.36 ± 0.61 34.58 ± 0.31 >50

aIC50 values are taken as means ± standard deviation from three experiments.

TABLE 2 AR antagonist activity of compounds 3–17.

Compd. AR antagonistic activity % (10 μM)

3 40.17 ± 0.24

4 32.46 ± 0.65

5 22.68 ± 0.72

6 30.75 ± 0.17

7 38.67 ± 0.83

8 25.16 ± 0.71

9 28.42 ± 0.25

10 20.47 ± 0.18

11 65.15 ± 0.57

12 68.62 ± 0.38

13 64.18 ± 0.45

14 58.88 ± 0.23

15 64.35 ± 0.17

16 60.25 ± 0.35

17 36.49 ± 0.79

R1881 N.Ea

Enzalutamide 84.7 ± 1.4

aN.E, no antagonistic effect.
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and 10 also had the similar properties. Moreover, compound 6

with electron-donating group also demonstrated strong cytotoxic

activities against all the tested cancer cells. In order to compare

the cytotoxic activity of compounds 3–10, the compounds 11–16

were synthesized, and the substitution of R1 and R2 groups with

two phenyl groups showed high cytotoxic activity against the

tested cancer cells. In summary, the introduction of this

piperazine moiety contributes to its activity. Both PC-3 and

TABLE 3 The binding affinities (kcal/mol) of compounds 11 and 12 in
three binding sites of AR.

Binding site Compound 11 Compound 12

LBP (PDB ID: 2OZ7) −8.1 −8.5

AF2 (PDB ID: 2YHD) −5.9 −6.0

BF3 (PDB ID: 2YLO) −6.5 −6.6

FIGURE 2
(A,B) The docking of compound 11 to the AR receptor; (C,D) The docking of compound 12 to the AR receptor.
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DU145 cells are androgen-insensitive cell lines, but the

compounds have different inhibitory activities against PC-3

and DU145 cells. The p53 is one of the most commonly

mutated genes in human cancer, and the expression of

p53 gene may be a key determinant of derivatives sensitivity

in prostate cancer DU145 cells (Liu et al., 2013b). The literatures

have reported that the p53 in DU145 cells were significantly

activated by drugs, but in PC-3 cells the expression of the

p53 gene was undetectable (Isaacs et al., 1991; Mashimo et al.,

2000). So the compounds have different inhibitory activities

against PC-3 and DU145 cells, and PC-3 cells are insensitive

to derivatives.

The antagonistic activity of these derivatives against AR was

assessed using luciferase assays (Xu et al., 2014; Xu et al., 2015;

Zuo et al., 2017; Xu et al., 2018). As shown in Table 2, the

compounds 3–10 exhibited weak antagonistic potency against

AR. However, compounds 11–16 demonstrated relatively potent

antagonistic potency (>55% inhibition).The above results were

be contrary to the tested cancer cells antiproliferation activity.

The results indicated that a small group introduction to the

piperazine ring may be helpful for antagonistic activity

against AR.

3.3 Docking study

In order to better understand the binding site of derivatives

targets, the docking simulation into the three binding sites of

AR (LBP, AF2, and BF3) of compounds 11 and 12 were

performed using AutoDock Vina software, as shown in

Table 3.

As displayed in Table 3, the binding free energies of the

compounds 11 and 12 to all three sites of the AR were calculated,

both of the LBP sites had the lowest binding free energy, as

measured at −8.1 and −8.5 kcal/mol, respectively. As shown in

Figure 2, both compounds 11 and 12 could form hydrophobic

interactions with over a dozen amino acid residues, such as

Gln711, Met745, and Ala877. More importantly, they were all

able to form hydrogen bonds with the amino acid residue

Phe697, at a distance of between 3.5 Å.

4 Conclusion

In summary, in this study a series of novel hydroxyazine

derivatives were synthesized and evaluated for antagonistic

activity against AR and cytotoxic activity against human

prostate cancer cells. The results showed that the derivative 4,

6, 7, and 9 displayed strong cytotoxic activities against the

LNCaP, DU145 and PC-3 cells, and compounds 11–16

showed strong AR antagonism (Inhibition% >55). The SAR

results suggested that mono-substituted derivatives on the

phenyl group contributed to improve the cytotoxic activity

against human prostate cancer cells. These hydroxyzazine

piperazine derivatives may be instructive for structural

modification of novel anti-prostate cancer drugs.
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