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The economical and societal impact of COVID-19 has made the development

of vaccines and drugs to combat SARS-CoV-2 infection a priority. While the

SARS-CoV-2 spike protein has been widely explored as a drug target, the SARS-

CoV-2 helicase (nsp13) does not have any approved medication. The helicase

shares 99.8% similarity with its SARS-CoV-1 homolog and was shown to be

essential for viral replication. This review summarizes and builds on existing

research on inhibitors of SARS-CoV-1 and SARS-CoV-2 helicases. Our analysis

on the toxicity and specificity of these compounds, set the road going forward

for the repurposing of existing drugs and the development of new SARS-CoV-

2 helicase inhibitors.
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1 Introduction

The global coronavirus disease (COVID-19) pandemic is caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses, named after the

similarity of the viral capsid on microscopy to the solar corona (Author anonymous,

1968), are widespread and can cause mild infection similar to the common cold. In fact, all

four human coronaviruses: HCoV-OC43, HCoV-HKU-1, HCoV-299E, and HCoV-

NL63, are endemic and continuously circulate the human population (Corman et al.,

2018). Three previous coronavirus outbreaks, albeit much smaller than the COVID-19

outbreak, have been reported: SARS-CoV-1, MERS-CoV, and coronavirus HuPn-2018.

Similar to COVID-19, all of these are zoonotic diseases, initially transmitted to humans

via animal hosts (Ye et al., 2020). In contrast to previous outbreaks, COVID-19 has caused

massive disruptions to the lives of virtually every person since the emergence in late 2019.

As of 4 November 2022, COVID-19 has caused 6.60 million deaths globally (Ritchie et al.,

2020). The significant death toll and the impact on society have resulted in large-scale

campaigns to develop vaccines and antivirals to prevent and combat COVID-19.

There should be no doubt about the positive outcomes of this research effort; multiple

vaccines, e.g., AstraZeneca, Moderna, Pfizer/BioNTech, have been developed and
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deployed in many countries. The three vaccines mentioned

all target the SARS-CoV-2 spike protein, either as an mRNA

or inactivated adenovirus vaccine (Dai and Gao, 2021). Concerns

have been raised about the emergence of vaccine-resistant SARS-

CoV-2 variants, most notably the BA.4 and BA.5 omicron

subvariants (Jian et al., 2022). These strains have mutations

in the spike protein, and various sources report higher attack

rates and infectivity for these mutants. Vaccine-produced

antibodies were shown to have less neutralizing potential

against omicron as compared to alpha- and delta variants

(Andrews et al., 2022). Furthermore, vaccines may be less

effective or even dangerous for immunocompromised

individuals (Marra et al., 2022). Moreover, certain individuals

are allergic to components of vaccines (Cabanillas and Novak,

2021), and adverse events are being reported (Karlstad et al.,

2022). Lastly, with the likelihood of the virus to become, and

remain, endemic (Lavine et al., 2021), and given the range of

confirmed animal reservoirs of SARS-CoV-2 infection (Prince

et al., 2021), a variety of strategies to combat SARS-CoV-

2 infection are required.

FIGURE 1
Binding sites of SARS-CoV-Nsp13 helicase. Panel (A) Structure of SARS-CoV-Nsp13 helicase (PDB ID: 7NN0) (Newman et al., 2021). V570, the
single different residue from SARS Helicase (I570) is highlighted in red. The residues constituting the ATP binding site are shown in the enlarged
window boundwith AMP-PNP, an AMP analog. Panel (B) Possible binding pockets fromNsp13 fragment screening. Reproduced fromNewman et al.,
2021 under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
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1.1 Current antivirals

In the early days of the pandemic, there were no approved

antiviral compounds against SARS-CoV-2 (World Health

Organization, 2020). This changed in October 2020, when

remdesivir (brand name: Veklury; Gilead Sciences) was

granted emergency use authorization (EUA) by the US Food

and Drug Administration (FDA) for treatment of hospitalized

patients (World Health Organization 2020). Remdesivir was the

only approved medicine until the EUA of molnupiravir (Merck

and Ridgeback) and paxlovid (Pfizer) in December 2021 (U.S.

Food and Drug Administration, 2021).

The approved drugs have different mechanisms of action;

remdesivir, a nucleotide analogue, acts by stalling SARS-CoV-

2 RNA-dependent RNA polymerase (RdRp) (Kokic et al., 2021).

Remdesivir exhibited conflicting impact in studies, showing

improvement in time to recovery in the initial study cited

during authorization (Beigel et al., 2020), but later studies

showed either no statistically significant effect (Wang et al.,

2020), or a statistically significant but clinically minor effect

(Spinner et al., 2020). Concerns over renal toxicity (Gérard et al.,

2021;Wu et al., 2022), as well as a cardiac safety signal (Rafaniello

et al., 2021) challenge the safety of the drug. The second drug

under EUA, molnupiravir, was approved based on a study

showing a reduction in hospitalization and death (Jayk Bernal

et al., 2022). Molnupiravir, in addition to remdesivir, targets

RNA-dependent RNA polymerase and increases the frequency of

mutations during SARS-CoV-2 replication (Kabinger et al.,

2021). Concerningly, it has also been shown to induce

mutations in mammalian cells (Zhou et al., 2021). The

mechanism of action of molnupiravir is concerning as it has a

possibility of driving new variants (Kabinger et al., 2021;

Hashemian et al., 2022), as a result, its use is cautioned by the

World Health Organization (World Health Organization, 2022).

The third approved antiviral, paxlovid acts as a 3CL protease

inhibitor. 3CL protease is necessary for viral replication (Marzi

et al., 2022). Paxlovid displays a reasonable safety profile,

although patients often report a “paxlovid rebound” where

there is a resurgence of symptoms, often worse than the initial

bout (Charness et al., 2022). Moreover, drug-drug interactions

have been shown to cause adverse events (Burki, 2022). Drug

resistance is also a concern, as mutations have been characterized

which drastically reduce the effectiveness of paxlovid (Zhou et al.,

2022).

Depending on the drug target, medication is tailored for

different stages in infection. Different proteins can be targeted for

therapy depending on the stage of infection. Compounds

targeting the spike protein will inhibit entry of SARS-CoV-

2 into cells, whereas compounds targeting RNA-dependent

RNA polymerase will inhibit the replication process, but will

not prevent entry into the cell. Therefore, depending on the

clinical course, certain compounds can be used at different stages

of infection. The helicase, being a replication protein, is active in

unwinding the RNA secondary structure so that it can be either

replicated by RNA-dependent RNA polymerase or translated by

the host ribosome.

1.2 Drug repurposing

Responding to emerging and pandemic viral illnesses

requires a multifaceted approach, one strategy is drug

repurposing. Drug repurposing is the use of approved drugs

for novel targets and diseases. First, finding a useful medication

amongst already existing drugs obviates the need to create novel

drugs, thus saving time in disease response. Moreover, the side-

effects of marketed drugs, having undergone clinical trials and

prescribed use, are extensively researched and documented.

Lastly, the manufacturing process is already known, and needs

only to be scaled. Drug repurposing has previously found success,

for example in sildenafil, an angina medication, that was

successfully repurposed for erectile dysfunction as Viagra®
(Pushpakom et al., 2019).

One example of a successfully repurposed and widely

available medication for treatment of COVID-19 is

fluvoxamine, a well-tolerated and selective serotonin reuptake

inhibitor. Fluvoxamine is commonly used as an antidepressant

(Sukhatme et al., 2021). It has been shown to reduce

hospitalization in a large-scale randomized control trial (Reis

et al., 2022). Being a repurposed drug, fluvoxamine, which was

first approved by the FDA in 1994 (trade name: Luvox), has the

advantage of decades of safety data surrounding its use. Unlike

molnupiravir and paxlovid where a treatment course costs

approximately 700 and 500 USD, respectively (Goswami et al.,

2022; Morrison Ponce et al., 2022), fluvoxamine is accessible at

4 USD per course (Wang et al., 2021). Remdesivir is also

expensive at over 2000 USD per 5-day treatment course

(Carta and Conversano, 2021). The price and availability of

drugs is an important consideration, especially considering

that developing nations have far lower vaccination rates than

developed nations (Bollyky et al., 2020). As of 25 July 2022, 73.2%

of EU citizens have completed a full course with an EU-approved

vaccine1 and 55.0% have received at least one booster shot

(Ritchie et al., 2020). For comparison, in Africa 42.7% of

individuals have been vaccinated and only 2.5% have received

at least one booster shot (Ritchie et al., 2020).

Finally, other concerns shape the adoption of a particular

pharmacological compound in response to a global pandemic;

these include intellectual property concerns, current and future

availability, distribution, and (un)known side-effects. Ultimately,

1 i.e., Two doses of Moderna MRNA-1273, two doses of Pfizer-BioNTech
BNT162B2, two doses of Oxford-AstraZeneca ChAdOx1 or a single
dose of Johnson & Johnson Ad26.COV2.S.
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an effective treatment of COVID-19 is preferred, that is widely

available, inexpensive and without significant toxicity.

1.3 SARS-CoV-2 helicase (nsp13)

Drug repurposing is mostly a phenotypic approach, meaning

that protein target and mechanism of action are often unknown. In

contrast, target-based approaches seek to first identify protein targets

(chemical biology) and to subsequently develop small-molecule

inhibitors (medicinal chemistry) for the target. In principle, every

SARS-CoV-2 protein can be considered a target, but it is preferable

to target essential and/or conserved proteins. A previous review has

already reviewed and postulated the main drug targets for COVID-

19 (Gil et al., 2020), while this report focuses on the helicase of

SARS-CoV-2. The SARS-CoV-2 nsp13 gene encodes a molecular

motor, which is a 5′ to 3′-translocating helicase, belonging to

superfamily 1B. Helicases act on (deoxy)-ribonucleic acid

substrates and are fueled by (deoxy)-nucleotide triphosphates

(Figure 1A). The primary functions of helicases are in DNA

repair, replication, recombination, and transcription.

Nsp13 is one of the most conserved genes in the SARS-CoV-

2 genome, having one of the lowest mutation rates of any of the

essential SARS-CoV-2 proteins (Martin et al., 2021; Newman

et al., 2021). The SARS-CoV-2 helicase differs from the SARS-

CoV-1 helicase by only one amino acid residue, i.e., V570 in

SARS-CoV-2 helicase (Figure 1A, highlighted in red) compared

to I570 in SARS-CoV-1 helicase, allowing drugs discovered for

SARS-CoV-1 to potentially be re-used. Potential binding pockets

of Nsp13 were explored via crystallographic fragment screening

(Figure 1B), presenting a starting point for structure-based drug

discovery (Newman et al., 2021). Moreover, the helicase plays a

critical role in replication of the viral genome (Jia et al., 2019).

The combination of these two argues for the functional

importance of SARS-CoV-2 helicase and makes it an

attractive target for the development of antivirals. This is also

evidenced by an upcoming CACHE challenge2 that aims to

discover new molecules that target SARS-CoV-2 helicase.

The viral helicase is not a new target in drug discovery, for

example the helicases of herpes simplex virus and hepatitis C

virus have been targeted, as reviewed by Shadrick et al. (Shadrick

et al., 2013). More recent reports feature the helicases of

polyomaviruses, Zika virus, and MERS-CoV (Bonafoux et al.,

2016; Kumar et al., 2020; Zaher et al., 2020; Mehyar et al., 2021b).

Additionally, human helicases have also attracted research

interest, and inhibitors for DDX and BLM, among others,

have been reported (Datta and Brosh, 2018). This approach

aims to use small molecule inhibitors to sensitize cancer cells

to chemotherapy and DNA-damaging agents and/or to utilize

specific tumor backgrounds for hypersensitization of tumors to

pharmacological inhibition, a concept which is known as

synthetic lethality (Datta and Brosh, 2018).

2 Main considerations

2.1 Target stability

As previously mentioned, SARS-CoV-2 helicase is among the

most conserved proteins in the SARS-CoV-2 genome (Martin et al.,

2021; Newman et al., 2021). Throughout the pandemic, it has

remained largely stable. Phylogenetic evidence demonstrates

increasing negative, i.e., purifying, selection over time, making it

a stable target (Figure 2A). The development of drug resistance is an

issue that undermines many treatments, most notably anti-biotics.

Under the selection pressure of a drug treatment, the target protein

can mutate such that the compound no longer binds (Richman,

1994; Menéndez-Arias and Richman, 2014). It was evaluated

whether the mutations observed through genomic surveillance of

COVID-19 cases (Kumari et al., 2022) altered the initial protein

sequence (Newman et al., 2021). For a drug to retain effectiveness

over time, the major mutations would not alter binding affinity of

the drug compounds, thus maintaining drug effectiveness against

mutations. Possibly, conservation of structure may enable

production of pan-beta coronaviral inhibitors to guard against

future zoonotic coronaviral outbreaks (Li et al., 2021; Munshi

et al., 2022). This possibility is supported by the low level of

nsp13 genetic variation within beta-coronaviruses, as

demonstrated by the phylogenetic tree shown in Figure 2B.

The technique used here to identify mutations is exploratory,

in that the predicted energetic shift was used as a proxy for

conformational change. It has been assessed whether there are

any changes likely to significantly impact the structural

conformation of SARS-CoV-2 helicase. If a mutation was near

a binding site and significantly shifted the energetic stability of

the protein, it is likely that the mutation alters compound

binding. Selection was determined using the toolkit made

from the GISAID database3, for all SARS-CoV-2 genomes up

to 2 January 2022. In Figure 2C, site selection in terms of fixed-

effects likelihood (FEL) (Kosakovsky Pond and Frost, 2005) is

displayed (blue and red stem plots), FEL is a measure of selection

pressure in phylogenetic trees and is calculated by comparing the

expected number of non-synonymous mutations with the actual

observed rate. In short, observing a higher than expected

frequency of non-synonymous mutations suggests positive

selection, i.e., evolutionary pressure for the protein to change.

Observing fewer than expected non-synonymous mutations is

2 https://cache-challenge.org/competitions/competition-2.
3 https://observablehq,com/@spond/revised-sars-cov-2-analytics-

page.
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evidence of negative purifying selection, whereby mutants are not

likely to survive and reproduce.

Additionally, a color plot depicts the average change in energetic

stability of the protein resulting from the set of possible mutations at

that site (Kwasigroch et al., 2002). Most mutations result in a slight

destabilization of the helicase protein, suggesting a high level of

structural optimization.While thismakes it less likely that the protein

will develop a drug resistant mutation, it is not certain. Residues

wheremutations have a destabilizing effect aremore likely to alter the

helicase structure, which affects the binding of compounds. The

limitation of this approach is the lack of experimental data to support

the generated model. Our assessment shows potentially worrisome

loci for future drug resistance, where there is a confluence of positive

selection and an energetically destabilizing impact (upward stems in

Figure 2C). These sites should be monitored for development of drug

resistance and ideally a drug will either act on a different location, or

the destabilization is significant enough to render the protein non-

functional.

2.2 Current inhibitors: In vitro, in vivo and
in silico assessment

Having established the validity of the helicase as a drug target,

multiple methods can be applied for the discovery of inhibitors. In

silico screening is experimentally less intense, requiring mostly

FIGURE 2
Suitability of the nsp13 protein as a drug target. Panel (A) Time course of selection pressures on SARS-CoV-2 helicase from August 2020 to
January 2022. Blue lines show the extent of negative selection, defined as the number of sites under negative selection normalized by kilobase of
gene length and the internal tree length. Red lines how the positive selection force, defined as the number of positively selected sites with the same
normalization. Over the time history, more sites show negative (purifying) selection, suggesting evolutionary stability. Panel (B) Phylogenetic
tree of the coronavirus family based on nsp13 protein sequences. Legend: alpha-CoV (blue), beta-CoV (black), delta-CoV (red), and gamma-CoV
(green). Within the beta-CoVs, there is high nsp13 conservation shown by the short tree lengths. Given the low variance amongst this clade, it may be
possible that a SARS-CoV-2 nsp13 inhibitor also inhibits the other clade members. Panel (C) Energetics and selection on residues in SARS-CoV-
2 nsp13 helicase. Stem plots show positive (red) or negative (blue) selection, expressed as FEL rate. Color plot shows the average energetic change in
kcal/mol of all mutations at the site.
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computational power. This methodology requires the availability

of an X-ray or cryo-EM structures. The crystal structure for SARS-

CoV-1 helicase was solved in 2019 (Jia et al., 2019), whereas for

SARS-CoV-2 helicase structural information was first published in

2021 (Newman et al., 2021). Earlier in silico research made use of

homology models based on either SARS-CoV-1 or MERS-CoV

helicase to perform molecular modelling studies. Orthogonal to in

silico, is in vitro, the screening of compounds directly on the

protein of interest. This methodology can be low- (1–100),

medium- (100–10.000) or high- (>10.000) throughput,

depending on the equipment used and assay deployed. The

most common in vitro assay performed for helicases is an

ATP-turnover assay, there is, however, a high risk for false

positives, e.g., aggregators or DNA-binders, when running these

experiments (McGovern et al., 2003; Acker and Auld, 2014).

Another common in vitro assay for helicase activity is to

measure the unwound fraction by using a DNA construct with

a double stranded region formed by an annealed oligonucleotide. If

the helicase is active, it will separate the oligonucleotide from the

construct, and a lighter band will show up on the gel. Form the

intensity of this band, the unwound fraction and subsequent

helicase activity can be calculated (Kim and Seo, 2009).

2.2.1 SARS-CoV-1 helicase
The first reports of compounds with SARS-CoV-1 helicase

activity date back to 2005, when Tanner et al., described a group of

adamantane-derived bananins (1-4, Supplementary Table S1,

Supplementary Figure S1) with low micromolar ATPase and

helicase inhibitor activities (Tanner et al., 2005). These

pyridoxal-conjugated trioxa-adamantanes were shown to be

non-competitive inhibitors by DNA- and ATP-competition

assays and did not exhibit inhibitory activity on E. coli DnaB

helicase. To the best of our knowledge, compounds 1-4 have not

been further investigated. Structurally different Ranitidine

Bismuth Citrate (5, Supplementary Table S1) inhibits ATPase

and DNA-duplex unwinding activity, IC50 = 0.3 and 0.6 µM,

respectively (Yang et al., 2007b). Compound 5 is the most

potent from a series of bismuth complexes (Yang et al., 2007a),

whosemechanism of action involves the displacement of Zinc ions

from the ATP-binding site (Yuan et al., 2020). Furthermore,

flavonoids have been shown to inhibit SARS-CoV-1 helicase.

Myricetin (6), baicalein (7), quercetin (8), and scutellarein (9)

all are natural products that inhibit helicase and/or ATPase activity

in the low micromolar range (Lee et al., 2009b; Yu et al., 2012;

Keum et al., 2013). Flavonoids have been ascribed many potential

health benefits, including antineoplastic and antiviral. However,

there have also been multiple reports characterizing flavonoids as

false positives and protein aggregators in biological assays.

Myricetin (6) has been reported to inhibit many other targets

including E. coliDnaB helicase and DNA polymerase (Griep et al.,

2007). The activity of flavonoids on SARS-CoV-1 helicase has

further been validated by the design and synthesis of compounds

10–15 (Lee et al., 2009b; Kim et al., 2011). There is still a

requirement for further experimentation to investigate the

inhibition and selectivity of flavonoids and synthetic analogues

thereof on SARS-CoV-1 helicase. Aryl di-keto acids are derived

from flavonoids, and were also shown to inhibit SARS-CoV-

1 helicase and various other targets, e.g., hepatitis C virus RNA

polymerase (Lee et al., 2009a). Lastly, four compounds (17–20)

have been published but there was no information on related

compounds. SSYA-10–001 (18) has additionally been reported as

an inhibitor of hepatitis C virus RNA polymerase and MERS-CoV

helicase (Adedeji et al., 2012, 2014).

2.2.2 SARS-CoV-2 helicase
The first reports on inhibitors of SARS-CoV-2 helicase were

compounds that have previously been investigated for SARS-CoV-

1 helicase, namely bismuth complexes (5, 21–24) (Supplementary

Table S2, Supplementary Figure S2). Ranitidine Bismuth Citrate (5)

was validated with sub-micromolar helicase and ATPase IC50’s

(Yuan et al., 2020) and exhibited greater activity compared to

Bismuth (III) tetraphenylpoprhyrinate (23) and Bismuth (III)

tetra-4-pyridiylporphyrinate (24). Moreover, 5 relieved virus-

associated pneumonia in a golden Syrian hamster model.

Disulfiram (25) and Ebselen (26) (Supplementary Table S2) are

other Zinc-ejector drugs that have been validated on SARS-CoV-

2 helicase (Chen et al., 2021).

White et al. have identified a hit list of 368 FDA-approved drugs,

fromwhich cepharanthine (27), IC50 = 400 µM and lumacaftor (28),

IC50 = 300 µM) were confirmed in an ATPase assay (White et al.,

2020). Cepharanthine (27) has previously been reported as a SARS-

CoV-1 inhibitor, however at the time the target enzyme was not

known (Zhang et al., 2005). Vapreotide (29), grazoprevir (30) and

simeprevir (31) are other FDA-approved drugs discovered by

phenotypic screening that inhibit SARS-CoV-2 helicase in vitro.

Their activities were confirmed by a DNA-unwinding activity assay

with IC50 values of ≈10, ≈2.5, and ≈1.25 µM, respectively (Muturi

et al., 2022). All three compounds have also been reported as virtual

hits (Borgio et al., 2020; Gurung, 2020). Furthermore, a high-

throughput screening of five thousand known pharmaceuticals by

Zeng et al., mentions the inhibitory activity of FPA124 (32), IC50 =

8.5 µM) and suramin (33, IC50 = 0.94 µM). These hits were

confirmed by a fluorescence resonance energy transfer (FRET)

based helicase assay in the presence of Tween-20. Tween-20 is a

non-ionic detergent that stops potential colloid formation. Both

compounds still inhibited helicase activity in this assay at IC50 =

8.4 µM and 1.1 µM, respectively, and viral inhibition was confirmed

in vivo on Vero E6 cells (Zeng et al., 2021). SARS-CoV-1 inhibitors

myricetin (6) and SSYA-100–01 (18) were used as a comparison in

these experiments and were confirmed to be active on SARS-CoV-

2 helicase. Research from the EXSCALATE4COV (E4C)4 project on

a natural product library once more confirmed the activity of SSYA-

4 www.exscalate4cov.eu.
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100–01 (18) and identified five flavonoids with low micromolar

activity: myricetin (6), quercetin (8), kaempferol (34), flavanone (35),

and licoflavone C (36) (Corona et al., 2022). Moreover, Mehyar et al.

(2021a) report on the repurposing of sulphoxide- and sulphone-

containing FDA-approved compounds. Zafirlukast (37) was the only

compound with inhibitory activity, interestingly 37was also reported

by Zeng et al., 2021), but was not selected for further analysis (Zeng

et al., 2021). Mehyar et al. (2021a) also report SARS-CoV-2 helicase

inhibitory activity for five previously identified MERS-CoV helicase

inhibitors (37–42). Lastly, Newman et al. identified 65 fragments by

crystallographic fragment screening. Although there were no

inhibitory values published for these fragments, the crystal

structures show binding in the ATP binding site as well as the

RNA/DNA-entry tunnel. These crystal structures have been made

publicly available and can be seen as a starting point for fragment

growing (Newman et al., 2021). More recently, Romeo et al.

identified multiple inhibitors with predicted binding to the RNA/

DNA-entry tunnel in vitro. (Romeo et al., 2022).

Although in vitro and in vivo assays are the gold standard for hit

validation, virtual screening allows for rapid identification of ‘virtual’

hits. The screening of ultra-large chemical spaces in silico has greatly

increased the possibilities of modern drug discovery (Warr et al.,

2022), but biological assays are still required to validate these hits.

Not all laboratories, however, have the means to perform in vitro

assays, thus making molecular modeling a more accessible method

for initial target investigation. The SARS-CoV-2 helicase has been

screened, virtually, in many instances (Supplementary Table S3).

From our analysis it was observed that most publications have

performed virtual screening on commercially available drugs

(Balasubramaniam and Schmookler Reis 2020; Borgio et al.,

2020; Gurung 2020; Iftikhar et al., 2020; Ugurel et al., 2020;

Abidi et al., 2021; Sundar et al., 2021; Alanazi et al., 2022;

Azmoodeh et al., 2022) or natural products (Kousar et al., 2020;

Naik et al., 2020; Ahmad et al., 2021; James et al., 2021; Vivek-

Ananth et al., 2021; Bhargavi et al., 2022; Hossain et al., 2022;

Samdani et al., 2022). Other published works make use of fragments

(Freidel and Armen, 2021) or publicly available compound libraries

(Mirza and Froeyen, 2020; García et al., 2021; El Hassab et al., 2022;

Pitsillou et al., 2022). It is recognized that multi-targeted approaches

are often carried out, most notably including RNA-dependent RNA

polymerase and 3CL protease, to have dual-target SARS-CoV-

2 inhibitors. The best scoring helicase inhibitors resulting from

in silico approach, and without in vitro data, are shown in

Supplementary Table S3. One particularly large study performed

ultra-large virtual screening of one billion molecules on fifteen

SARS-CoV-2 proteins, for each target the top 1,000 and top one

million (0.1%) are publicly available online5 (Gorgulla et al., 2021).

All publications mentioned in this paragraph, however, lack the

biological validation that is required to confirm activity. The

occurrence of false positives in virtual screening is still high and

results do often not translate to in vitro assays, as was recently shown

by Cerón-Carrasco (Cerón-Carrasco, 2022). Thus, it remains critical

to validate ‘virtual’ hits and to refrain from the use of thereof in

determining structure-activity relationships.

2.3 Toxicity analysis

The potential side-effects of any treatment are a concern for

medical practitioners when making a choice of which therapy to

implement. Certainly, drugs with minimal off-target toxicity are

preferred. While toxicity information exists for some compounds

in the included tables, many have limited application as

treatments and therefore little associated data on side-effects.

Toxicity prediction applies machine learning to chemical

structures with known toxicity tests on model organisms.

Based on chemical similarities, the toxicity of untested

compounds can be predicted. Toxicity prediction is a useful

tool for evaluating potential harmful side-effects before taking

the drug through costly pre-clinical and clinical trials.

It was not possible to use the same assay or toxicity prediction

for all compounds. Individual studies often use different assays and

thus report different values. Additionally, the toxicity prediction

software was not always successful, and therefore several different

tools were used: the Quantitative Structure-Activity Relationship

(QSAR) toolbox, developed by the Organization for Economic

Cooperation and Development (OECD) (Dimitrov et al., 2016);

the Toxicity Estimation Software Tool (TEST) software developed

by the US Environmental Protection Agency (US-EPA) (Martin

et al., 2008); and the lazar toxicity prediction web server (Maunz

TABLE 1 the nine most promising SARS-CoV-2 helicase inhibitors for
further development and drug repurposing.

Name (#) Classification Reference

Bananin (4) synthetic product Tanner et al. (2005)

Ranitidine Bismuth Citrate (5) pharmaceutical drug Yang et al. (2007b)

Yuan et al. (2020)

Myricetin (6) natural product Yu et al. (2012)

Zeng et al. (2021)

Corona et al. (2022)

SSYA10-001 (18) synthetic product Adedeji et al. (2012)

Zeng et al. (2021)

Corona et al. (2022)

Disulfiram (25) pharmaceutical drug Chen et al. (2021)

Vapreotide (29) pharmaceutical drug Borgio et al. (2020)

Muturi et al. (2022)

Grazoprevir (30) pharmaceutical drug Gurung (2020)

Muturi et al. (2022)

FPA124 (32) synthetic product Zeng et al. (2021)

Epirubicin HCl (38) natural product Mehyar et al. (2021b)

5 See: https://vf4covid19.hms.harvard.edu/.
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et al., 2013). For some compounds, particularly pharmaceutical

drugs, toxicity data was accessible from public documents for their

approval by either the FDA or the European Medicines Agency.

Many of the natural products included have long histories of use in

food as well as herbal medicines (Wang and Yang, 2020, 2021;

Yang and Wang, 2021; Wang et al., 2022). Many are found in

common foods and show strong association with positive health

outcomes (Kumar and Pandey, 2013), including possible antiviral

and antineoplastic (Rodriguez-García et al., 2019) properties. Since

these products have been consumed for millennia, it is unlikely

that they exhibit toxicity, although this may of course be different

when the active compound becomes highly concentrated. The

retrieved experimental toxicities and/or the predicted toxicity

values for every compound are provided in Supplementary

Tables S1,S2,S3 for the reader’s consideration. For most assays,

acute toxicity values were reported, this certainly has its drawbacks,

as compounds may exhibit toxicity at much lower doses. These

toxicities should not be overly interpreted, since the effective IC50

doses of compounds differ, it is more beneficial to take a selective

ratio against a toxicity endpoint.

3 Discussion

In Supplementary Tables S1,S2,S3, the source information of

SARS-CoV-2 inhibitors is found, referring to where the compound

can be extracted, synthesized or otherwise procured. Three

categories are presented: Natural Products (NP), Synthetic

Products (SP) and Pharmaceutical Drugs (PD). Natural

products need only be extracted from their source organism,

typically a plant; pharmaceutical drugs are approved molecules

for the treatment of diseases, though some may be off-market.

Synthetic products are typically only produced in very specific

contexts, typically a research study. For natural products, the

source organism(s) are indicated, whereas for pharmaceutical

drugs the tradename and manufacturers are mentioned.

FIGURE 3
Structures of the nine most promising SARS-CoV-2 helicase inhibitors for further development and drug repurposing.
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Contrary to natural products and pharmaceutical drugs, synthetic

products often do not yet have a known toxicity profile.

From the compounds in Supplementary Tables S1,S2, the nine

most promising compounds for further development are shown in

Table 1 and Figure 3. They have been determined based on

inhibitory activity, number of orthogonal assays and structural

diversity. The first compound, bananin, was discovered, along

with several other related compounds, to inhibit the helicase of

SARS-CoV-1 (Tanner et al., 2005). As such, it presents a scaffold on

which lead optimization can be performed. Two other synthetic

products, SSYA10-001 and FPA124, offer promising scaffolds to

develop into pharmaceutical drugs, should they have a reasonable

biodistribution and safety profile. Ranitidine Bismuth Citrate (RBC)

is a promising compound showing inhibition in helicase unwinding

assays, as well as in vivo activity in a Syrian hamster model (Yuan

et al., 2020). RBC has a higher level of validation than the other

compounds, and its previous use as a pharmaceutical (TRITEC,

GlaxoSmithKline) make it a promising drug for repurposing. Other

pharmaceutical drugs for potential repurposing are disulfiram,

vapreotide and grazoprevir. These are distinct enough that they

can be developed as independent scaffolds. Among the natural

products, myricetin, has the lowest IC50 (0.41 µM) of flavonoid

compounds against SARS-CoV-2 (Supplementary Table S2). Its

safety, wide use, and availability make it a promising compound for

development. Another natural product, Epirubicin HCl, is included

for its low IC50 (0.31 µM), while still being distinct enough from

myricetin to develop it as a distinct scaffold.

This review summarizes and builds on the work on discovery

of therapeutics targeting SARS-CoV-2 helicase, a vital replication

protein. We demonstrate that this protein is highly conserved

and resistant to drug-inactivating mutations. Additionally, the

high degree of conservation within the coronavirus family, and

particularly the beta-coronavirus clade, make coronaviral helicases

attractive targets for future coronaviral outbreaks.

We have aimed to provide a complete overview of drugs,

natural products, and synthetic products targeting the SARS-

CoV-2 helicase, at several levels of discovery. A broad range of

compounds either computationally predicted to bind to the target

or with higher levels of validation, such as in vitro or even in vivo

assays, have been covered. Furthermore, a summary of clinical trials

for COVID-19 that involve these compounds can be found as

Supplementary Table S4. Toxicity information on compounds was

provided and predicted for those with absent literature values.

Overall, SARS-CoV-2 helicase is an attractive drug target for

COVID-19. The potential of immune escape of future SARS-CoV-

2 strains from the immunity imparted by the current vaccination

program motivates the development of backup treatment options

(Harvey et al., 2021; Lazarevic et al., 2021). Finally, while vaccines

are a preventive measure, there is still a need for acute therapeutic

interventions, for which there is currently a paucity of options.

Both targeting the SARS-CoV-2 helicase by drug repurposing or

new drug discovery may provide acute interventions for COVID-

19 in the future.
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