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Although, zinc oxide nanoparticles (ZRTs) as an anti-cancer agent have been

the subject of numerous studies, none of the reports has investigated the

impact of the reaction entry time of ion-carriers on the preparation of ZRTs.

Therefore, we synthesized variants of ZRTs by extending the entry time of NaOH

(that acts as a carrier of hydroxyl ions) in the reaction mixture. The anti-

proliferative action, morphological changes, reactive oxygen species (ROS)

production, and nuclear apoptosis of ZRTs on human A431 skin carcinoma

cells were observed. The samples revealed crystallinity and purity by X-ray

diffraction (XRD). Scanning electron microscopy (SEM) images of ZRT-1 (5 min

ion carrier entry) and ZRT-2 (10 min ion carrier entry) revealed microtubule like

morphology. On prolonging the entry time for ion carrier (NaOH) introduction

in the reactionmixture, a relative ascent in the aspect ratio was seen. The typical

ZnO band with a slight shift in the absorption maxima was evident with UV-

visible spectroscopy. Both ZRT-1 and ZRT-2 exhibited non-toxic behavior as

evident by RBC lysis assay. Additionally, ZRT-2 showed better anti-cancer

potential against A431 cells as seen by MTT assay, ROS generation and

chromatin condensation analyses. At 25 μM of ZRT-2, 5.56% cells were

viable in MTT test, ROS production was enhanced to 166.71%, while 33.0%

of apoptotic cells were observed. The IC50 for ZRT-2 was slightly lower (6 μM)
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than that for ZRT-1 (8 μM) against A431 cells. In conclusion, this paper presents a

modest, economical procedure to generate ZRT nano-structures exhibiting

strong cytotoxicity against the A431 cell line, indicating that ZRTs may have

application in combating cancer.

KEYWORDS

zinc oxide nanoparticles, sol-gel synthesis, malignant cell lines, MTT assay, reactive
oxygen species

1 Introduction

Nanotechnology is the science of fabrication,

characterization and application of particles with nanoscale

(1–100 nm) dimensions (Sirelkhatim et al., 2015). Elements

with atomic scale possess increased surface area-to-volume

ratio than bulk materials (Khan et al., 2019). This nano size

range drastically changes their physical, chemical and biological

characteristics, and confers different phenomena and functions

(Jiang et al., 2018). With these properties of nanomaterials,

nanotechnology has now evolved as a cutting-edge technology

with several applications in optics, electronics, agribusiness,

cosmetology, forensics, biomedical sector and many more

(Harun et al., 2017; Siddiqi et al., 2018).

Zinc is a naturally occurring micro-element found essentially

in all living organisms (Jiang et al., 2018). Zinc functions as a

cofactor for numerous enzymes involved in metabolism,

hematopoiesis, and neurobiology (Kambe et al., 2015). The

oxide form of zinc (ZnO, Zn2+) is chemically stable,

biocompatible, less hazardous to the human body (Sirelkhatim

et al., 2015; Mandal et al., 2022) exhibiting negligible hemolysis

against human red blood cells (Abbasi et al., 2019). It has been

demonstrated that ZnO-based materials are biodegradable both

in their bulk and nanoparticulate form (Kielbik et al., 2017).

Moreover, absorption of nano-form of zinc is high due to its

small unit dimension (Jiang et al., 2018). Nano-ZnO is frequently

used as an additive in numerous materials and products

including ceramics, glass, cement, rubber (e.g., car tyres),

pigments, foods (source of Zn nutrient) (Sabir et al., 2014).

Zinc oxide nanoparticles (referred here as ZRTs) possess

unique physical and chemical assets, due to its high electron

mobility, wide band-gap and elevated exciton energy

(Ruszkiewicz et al., 2017). These nanoparticles continue to be

among the most widely accepted in a plethora of fields (Akintelu

& Folorunso 2020; Berehu et al., 2021). Due to its great

biocompatibility, nanoparticulate ZRTs has been designated as

a “GRAS” (generally regarded as safe) substance (21 CFR

182.8991) by the US Food and Drug Administration (FDA)

(Khan et al., 2006). ZRTs are inexpensive, less hazardous and

better biocompatible than other metal oxide nanoparticles. They

have been utilized in a variety of medical implications such as

anti-microbial, anti-diabetic, anti-inflammatory, anti-aging

agent, as well as in healing process and bioimaging (Xiong

2013; Zhang and Xiong, 2015; Kim et al., 2017; Mishra et al.,

2017). Due to their special characteristics, ZRTs can be employed

therapeutically as anticancer agents (Wiesmann et al., 2020).

Cytotoxic activity of ZRTs has been reported against several

cancers, including triple-negative breast cancer cells (Stepankova

et al., 2021), MCF7 breast cancer cells (Motazedi, et al., 2020),

lung adenocarcinoma (Bai et al., 2017), bladder cancer (Zhang

et al., 2020), oral cancer (Wang et al., 2018) and liver cancer cells

(Rahimi Kalateh Shah Mohammad et al., 2019) as well as chronic

myeloid leukemia (Alsagaby et al., 2020).

Globally, the frequency of developing skin cancer has increased

due to prolonged exposure to radiation, environmental variations, as

well as personal reasons (Zaar et al., 2016; Veisani et al., 2017). Skin

cancers consist of cutaneous melanoma (CM) and non-melanoma

skin cancer (NMSC). Epidermoid carcinoma of the skin is a non-

melanoma malignant tumor of epidermal keratinocytes. Since

accelerated growth in epidermis may be associated with skin

cancer, the human skin epidermal squamous carcinoma cell line,

A431 has emerged as an effective candidate for assessing the anti-

cancer properties of different formulations. Several nanostructures

like silica (Ahamed, 2013), titanium (Shukla et al., 2011), nickel

(Alarifi et al., 2014), gold (Rajendran et al., 2021), and silver (Saber

et al., 2018) nanoparticles have reported cytotoxic activity against

A431 cell line. However, there are limited studies on bio-activity of

chemically synthesized ZRTs on A431 cells. Moreover, to the best of

our knowledge, none of the studies evaluated the effect of time of

addition of NaOH in the reaction mixture on the synthesis of ZRTs

and its anticancer abilities.

In our previous study, we have explored the antineoplastic

activity of ZRTs prepared by varying concentrations of sodium

hydroxide, NaOH, that act as a carrier of hydroxyl ions (OH−)

(Khan et al., 2021). In this study, we synthesized ZRTs by means

of sol-gel method using cetyl trimethyl ammonium bromide

(CTAB) as capping agent and sodium hydroxide (NaOH) as a

reducing agent as well as ion carrier, while zinc acetate dihydrate

(ZAD) behaves as a precursor for the formation of ZRTs.

Variation in the entry time of the ion carrier, NaOH resulted

in two different structures, ZRT-1 and ZRT-2. Microscopic and

spectroscopic investigations including scanning electron

microscopy (SEM), UV-visible spectroscopy, and X-ray

diffraction (XRD) confirmed the formation of ZRTs. Further,

we evaluated the cytotoxic activities of ZRTs prepared by varying

entry time of ion carrier against skin cancer cell line, A431. This

approach is simple, affordable and does not require sophisticated

instrumentation.
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2 Materials and methods

2.1 Materials

Chemicals including ZAD, NaOH, and the capping agent,

CTAB (C19H42NBr), were procured from E. Merck Ltd. (Mumbai,

India) and LobaChemie (Mumbai, India) and utilized as such with

no additional purification. Before every test, glasswares, purchased

from Borosil, India, were cleaned and sterilized. Double-distilled

(DD) water was utilized for the reaction process. Sigma-Aldrich

(US) and Hi-Media (India) supplied the chemicals, cell culture

media, and supplements used in the cell culture analysis.

2.2 Synthesis of ZRTs

The research was carried out using DD water with two separate

reactant settings. DD water (180ml) and 0.36445 g of CTAB were

added at room temperature in synthesis -Awhilemagnetic stirringwas

carefully controlled. This was followed by the addition of 10ml of

0.1M solution of ZAD (0.001mol) and the mixture was kept under

stirring for 5min. To finish, 10ml of 0.1M NaOH was added drop-

wise to the reaction system after 5min. The arrangement was kept as

such for about half an hour, until a white cloudy substance appeared.

The formulation was then washed withDDwater and absolute alcohol

to remove impurities and to obtain pure form of nanoparticles. The

suspension was put into an open petri plate to dry, after which the

residual dried material was weighed and measured. The material was

stored at −20°C until characterization was done. In synthesis - B,

identical steps were performed in formulation of another specimen

except for a change in the reaction time for addition of the ion-carriers

i.e., NaOH which was increased to 10min. The synthesized item was

stored at −20°C until further use. For the sake of simplicity and to

distinguish the zinc oxide nanostructures discussed in previous studies,

we will designate them as ZRT-1 (prepared by reaction entry of ion

carrier after 5min) and ZRT-2 (prepared by reaction entry of ion

carrier after 10min). A previously published method was employed to

measure the ZRT concentration in a suspension of liquid (McGuffie

et al., 2016). The molar concentration of ZRTs suspension was

calculated to be around 0.000328M (328 µM). Depending upon the

requirement; the stock solution (328 µM) was diluted to prepare

desired ZRT concentration.

2.3 Characterization of ZRTs

Utilizing a Bruker D8 ADVANCE (Germany) X-ray

diffractometer and an X-ray beam with Cu-Kα radiation of a

wavelength (λ) equal to 1.54178 Å, a step dimension of 0.01°,

and a scanning speed of 0.02 steps/second, the XRD of generated

ZRTs were examined. The power generation was set at 40 kV and

40 mA. The Debye-Scherer equation [D = (K.λ)/(d.cos θ)] was used
to determine the nano-particulate dimensions exploiting spectral

peaks: where, D is crystallite size, k is proportionality constant with

no dimensions and a value that is almost unity, λ is X-ray

wavelength of Cu-Kα radiation (1.54178 Å), θ is full width at half

maximum (FWHM) of XRD peaks and is Bragg’s angle. For the 2θ
horizontal axis, the position of the diffraction peak pattern on the

horizontal plane is θ; the 2θ values are evenly divided to get θ
positions (Epp, 2016). The integrated software, Diffracplus,

considerably streamlined the calculation. The twin beam

PERKIN-ELMER (US) spectrophotometer was used to conduct

UV-Visible absorption spectroscopy. The background adjustment

was performed using DD water as a reference. With the use of SEM

(JEOL JSM-6510 LV, Japan) morphological features (shape and D/L

values) of as-synthesized nanostructures were studied.

2.4 ZRT-induced red blood cells (RBCs)
hemolysis

To determine the amount of hemolysis, a known hematocrit

of red blood cells (RBCs) (about 2 × 108 cells/mL) were incubated

for 24 h with 1 ml of ZRTs at various concentrations (1, 5, 10, 50,

100, and 200 µg/ml) in a final volume of 2 ml at 37°C. After

desired incubation, the reaction mixture was centrifuged at

1,200 g, and the supernatant was collected. The absorbance

was measured at 576 nm for released hemoglobin. As a

positive control for 100% cell lysis, Triton X-100 (a nonionic

surfactant) at a concentration of 0.1% was applied. The result was

calculated using the following equation and represented visually

as a percentage of 100% cell lysis (Zia et al., 2015):

%RBC lysis � AbsT − AbsC
Abs100% − AbsC

( ) × 100

where AbsT is the absorbance of the supernatant from

samples incubated with the drugs, AbsC is the absorbance of

the supernatant from the control (PBS), and Abs100% is

absorbance in the presence of 0.1% Triton X-100. The results

are the mean of three independent experiments.

2.5 Cell lines and culture

Human epidermoid carcinoma A431 cell line and kidney

epithelial Vero cell line were purchased from the National Center

for Cell Sciences (NCCS), Pune, India. The cell lines were subcultured

in Dulbecco’s Modified Eagle Medium (DMEM)-F12 medium,

which also contained 10% (v/v) fetal calf serum (FCS), sodium

bicarbonate (NaHCO3) (1.5 g/L), and L-glutamine (2 mM).

2.6 Cell viability assay

The MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) tetrazolium] assay (an
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enzymatic reduction of MTT dye) was used to evaluate the

anti-proliferative activity of ZRTs (ZRT-1 and ZRT-2) as per

previous study (Khan et al., 2022). A 96-well culture plate with

100 µL of DMEM-F12 was seeded with about 1 × 104 cells and

incubated in a CO2 incubator overnight. To achieve the

appropriate concentrations of 5, 10, and 25 µM, a stock

suspension of ZRTs was prepared in DD water and diluted

in DMEM-F12 media. After that, cells were treated in

triplicate with various ZRT doses and incubated for 24 h.

As a control, cells were subjected to media alone. Afterwards,

10 μL MTT was added to cells from a stock solution (in 5 mg/

ml phosphate-buffered saline, PBS, pH 7.4) and plate was

incubated for specified time till color development. Next,

100 μL DMSO solution was added in each well to solubilize

blue crystals and percent viability was computed as described

previously (Khan et al., 2021):

%Cell viability � ODtreated

ODcontrol
( ) × 100

2.7 Reactive oxygen species generation

ROS intensity was measured in A431-treated cells

following published report (Jafri et al., 2019). Cells (1 ×

104/well) were cultured overnight in a 96-well cell-culture

plate before being subjected to various concentrations of

ZRTs for 12 h. After stipulated time period, the cells were

mixed with 10 μM of Dichloro-dihydro-fluorescein diacetate

(DCFH-DA) dye for 30 min in dark. PBS solution was added

twice to replenish the reaction mixture. Images of the

intracellular fluorescence intensity were captured using an

inverted fluorescence microscope (Zeiss Axio Observer

Microscope, Germany). Cells were treated for 12 h on a 96-

well black bottom culture plate for the quantitative evaluation

of fluorescence intensity. Cells were then stained with DCFH-

DA dye for 30 min. Cells were washed with PBS solution

(200 µL) to remove unwanted stain. Using a multiwell

microplate reader, the fluorescence intensity of ROS

production was measured at excitation wavelength of

485 nm with emission wavelength set at 528 nm (Omega

Fluostar). Values were expressed as a percentage of the

intensity of the fluorescence in comparison to the controls.

2.8 Fluorescent nuclear staining

The apoptotic effect of ZRTs was measured using the

fluorescent nuclear dye DAPI (4′,6-diamidino-2-phenylindole)

(Jafri et al., 2019). ZRTs were applied to A431 cells for 24 h in a

48-well plate. Cells were fixed with 4% paraformaldehyde for

10 min and permeabilized using permeabilizing solution

containing 0.5% Triton X-100 reagent and 3%

paraformaldehyde. Then, using a fluorescence microscope,

cells were stained with DAPI dye (Nikon ECLIPSE Ti-S, Japan).

2.9 Statistical analysis

The results are presented as mean ± SD of three independent

experiments (n = 3). One-way ANOVA and Dunnett’s Multiple

Comparison Test was employed for testing the significance of the

data using Graph Pad Prism (Version 5.01) software. A p-value

of ≤0.05 was considered significant.

3 Results and discussion

Various physico-chemical methods (Krol et al., 2017; Jin and

Jin, 2019); such as sol-gel (Khan et al., 2014, 2016, 2020), solution

precipitation (Thein et al., 2015), electrochemical synthesis

(Chandrappa and Venkatesha 2012), co-precipitation (Adam

et al., 2018), hydrothermal precipitation (Li et al., 2017),

sonochemical (Noman and Petrů 2020), mechanochemical

(Otis et al., 2021) microemulsions (Han et al., 2016), thermal

evaporation (Stanković et al., 2013), spray pyrolysis (Ebin et al.,

2012) and microwave-assisted methods (Shinde et al., 2014;

Wojnarowicz et al., 2020) have been implemented for the

preparation of ZRTs resulting in a wide range of shapes and

sizes of NPs. Our previous approaches used for synthesis of ZRTs

involved variation in temperatures and stirring speeds, while

avoiding sophisticated equipment. In one study, it was

demonstrated how ZRTs prepared at two distinct incubation

temperature might develop in a variety of ways. These NPs

presented the shape of nanoflowers with varied length to

diameter ratios (L/D; aspect ratios) (Khan et al., 2014). At

ambient temperature, our group also observed the impact of

mechanical agitation on ZRTs formation that featured thorn-

resembling designs (Khan et al., 2016). Additionally, NPs

synthesized at temperatures closer to room temperature

exhibited more effectiveness against microorganisms (Khan

et al., 2014). Furthermore, neither exorbitant raw materials

nor complex machinery are required. These results

encouraged us to evaluate the performance of ZnO

nanoparticles generated by delaying the entry time of ion

carriers (ZRTs) during synthesis. This chemical procedure

carried out at close to room temperature is very efficient,

economical and is easily mass scalable. We further studied the

impact of change in entry time of ion-carriers on ROS

production, nuclear condensation and apoptosis in human

epidermoid carcinoma A431 cell line.

Previously, we have observed that NaOH containing the

hydroxide ions (OH−) makes contact with the Zn2+ ions and

leads to the formation of nano-sized ZnOmaterials. Thus, during

the process of the synthesis of ZRTs, NaOH serves as a carrier of

hydroxide ions (OH−) (Khan et al., 2020). Adding NaOH to ZAD
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leads to the formation of hexagonal arrays as zincate ions slowly

convert into hydroxyl ions and zinc oxide. This happens as a

result of the ZnO crystal acting as a polar crystal and

progressively forming its crystal structure from OH− ions. The

ZnO nucleus expands and forms ZnO strands when the particles

are saturated. The initial structure arises when freshly made

strands are deposited on top of preexisting crystallites, which

later coalesces into a variety of different microtubule-like

structures (Kumar et al., 2013). The CTAB acts as a capping

agent that stabilizes the nanostructures.

3.1 Characterization of ZRTs

3.1.1 XRD analysis of ZRTs
The hexagonal peculiarities of samples of synthesized ZRTs

were demonstrated by XRD technique (Figure 1). The X-ray

diffraction (XRD) patterns for ZRT-1 and ZRT-2 were provided

in line with The International Centre for Diffraction Data

(ICDD, United States card no. 080-0075). The well-defined

peaks of the synthesized ZRTs structures are indicative of a

single phase. The synthesized structures generated significant

peaks that are suggestive of nanoscale range (Mohammadi and

Ghasemi, 2018). No additional peaks signify that the sample is

free from impurities. Moreover, the strong, narrow diffraction

peaks depict the crystalline nature of the synthesized ZRT

samples. The peaks in all XRD patterns, specifically [1 0 0], [0

0 2], [1 0 1], [1 0 2], [1 1 0], [1 0 3], [1 1 2] and [2 0 1] show

diffraction peaks for ZnO nanostructures. This led to the

identification of ZnO as an epitaxial phase with a hexagonal

lattice (Umar et al., 2022). According to our previous study, the

highest peak of 2θ occurred at 36.3°, which was reported all along
the orientation [1 0 1] (Khan et al., 2016). Additionally, the peaks

found along the orientation [0 0 2], [1 0 2], [1 1 0], and [1 0 3]

indicated that ZnO has a pure wurtzite structure (Nilavukkarasi

et al., 2020). This is in accordance with previous reports, and

corroborates its purity (Nadia et al., 2019; Naseer et al., 2020).

The Debye-Scherrer-equation was used to determine the

crystallite sizes (D) of the ZRTs from the peak with the

highest intensity [1 0 1]. The sizes of the ZRT-1 and ZRT-2

specimens were estimated to be ~800 nm and ~667 nm,

respectively. It was found that extending the time for

introduction of ion carriers into the experimental setup

resulted in smaller particles. Extending the period for ion

carrier introduction into the experimental setup was found to

have an adverse relationship with sample thickness, which

affected the average diameter of ZRT specimens (Table 1).

The experimental design allowed for postponement of ion

carrier entry, which facilitated uniform and better distribution

with the capping agent, resulting in the expansion anywhere

along longitudinal (c-axis) and a decrease in the width. This

might be the reason behind the change in the optimal aspect

ratios as the ion carriers were added more gradually into the

experiment. The nano-diameters of the ZRT specimens are also

reduced as a result. As one of the key factors of the size and shape,

delay in the introduction of ion-carriers to experimental setup

can lead to a different crystal formation. For ZRTs, it is

determined that when NaOH is added, microtubule-like

arrangement is the result of the difference in the crystal

structures (Jung et al., 2008; Kumar et al., 2013).

3.1.2 SEM analysis of ZRTs
The microtubule-like arrangement for ZRTs samples was

revealed in SEM photographs of ZRTs samples prepared at

varying introduction time of ion-carriers in the production of

ZRTs (Figure 2). SEM micrographs of ZRT-1 and ZRT-2

revealed microtubule like morphologies. Each cluster

contains a good number of the hair strands arranged in

hexagonal arrays. These fibril-like hexagonal arrays of ZRT-1

and ZRT-2 samples had average thickness of around ~556 and

~436 nm, respectively. This is in line with experimental XRD

results (Figure 1) that demonstrates that the shrinking the ZRTs

are a result of postponing the timeframe of ion carrier’s

insertion in the reaction mixture. Furthermore, the optimal

aspect ratios (L/D) ranged between ~39.0 and ~52.5,

respectively, for ZRT specimens. The ZRT-1 SEM image

reveals some agglomerated surface (Figure 2A) with no

discernible shape and uniformly scattered nanoparticle

(Bauermann et al., 2006). However, by delaying the ion

carrier introduction, the ZRT-2 sample showed less extent of

agglomeration (Figure 2B) (Khan et al, 2021).

FIGURE 1
XRD characterization of ZRT samples prepared by varying
reaction time of ion-carriers on the synthesis of zinc oxide
nanoparticles: ZRT-1 and ZRT-2.
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We have noticed that the crystal size determined by XRD and

the particle size calculated by SEM are very different. XRD

determines the mean scattering domain size, known as the

crystallite size which is distinct from the particle size

determined by SEM. The loss of the secondary electrons (SE)

(low-energy electrons belonging to sample) signals in SEM

results in an edge effect. These SE might readily be protected

by the particle’s up-and-down microstructure. Consequently, the

edge that we perceive in a SEM image is occasionally not the

particle’s actual boundary (Rao and Biswas 2009;

Bandyopadhyay and Bose 2013). Since the crystallite “size”

seen in SEM images is a two-dimensional cut through a

three-dimensional structure; the observed “particle size” is not

the real one, but a section through 3-dimensional crystal.

Therefore, it is possible that the true crystal size as calculated

by XRD is greater than the SEM image e.g. if the crystal presents

its shortest dimensional axis (Staab et al., 1999).

3.1.3 UV-visible spectroscopic analysis of ZRTs
To further elucidate the optical/structural properties, UV-

Visible absorption spectroscopy was used (Figure 3). Both

samples displayed significantly narrow absorption bands in

the UV-A region between 364 and 382 nm devoid of any

other peaks (Umar et al., 2022), signifying combined light

wave and electron vibrations of nanoparticles (Miri et al.,

2019). However, from ZRT-1 to ZRT-2, the absorption bands’

intensity enhanced slightly. The observed absorption peaks were

typical of the wurtzite hexagonal structure (Davis et al., 2019).

Additionally, it was discovered that altering the ion-carrier

introduction time during the synthesis of ZRTs led to a slight

change in the ZRTs’ absorption wavelength maxima (λmax)

(Umar et al., 2022). This red-shift to longer wavelength may

be due to the change in the aspect ratios, since the dimensions as

well as morphologies of the ZRTs impacts the spectral properties

(Basri et al., 2020; Kovács et al., 2022). As such, it has been

TABLE 1 The effect of introduction time of ion-carriers (NaOH) on the synthesis of ZRTs: ZRT-1 and ZRT-2.

ZRT samples Average nano-diameters (nm) Average aspect ratio

ZRT-1 ~556 ± 1.7 nm ~39.0 ± 0.13

ZRT-2 ~436 ± 2.3 nm ~52.5 ± 0.21

FIGURE 2
SEM image of ZRT samples prepared by varying reaction time of ion-carriers on the synthesis of zinc oxide nanoparticles (ZRTs): (A) ZRT-1 and
(B) ZRT-2.

FIGURE 3
UV-Visible spectra of ZRT samples prepared by varying
reaction time of ion-carriers on the synthesis of zinc oxide
nanoparticles: ZRT-1 and ZRT-2.
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reported that several characteristics, including crystal size,

reaction temperature, the use of an ion carrier, the

mechanism of synthesis used, the number of reacting

molecules and pH (Kavitha and Kumar 2019; Basnet and

Chatterjee 2020) affect the shape, size and spectral properties

of the ZnO nanostructures (Mohammadi and Ghasemi, 2018).

Zinc oxide presents itself in three different crystal formations,

viz wurtzite, zinc-blende, and the infrequently observed rock-salt

(Ozgur et al., 2005; Moezzi et al., 2012). The lattice spacing of the

hexagonal wurtzite structure is a = 0.325 nm and c = 0.521 nm,

where c/a is 1.6, very close to the ideal value for a hexagonal cell

(which is c/a = 1.633). In this arrangement, four oxygen atoms

surround each tetrahedral Zn atom, and vice–versa (George et al.,

2009). The structure is schematically shown as a number of

consecutive layers of Zn and an O ion piled alongside the c-axis

and is thermodynamically balanced in a micro-environment

(Sirelkhatim et al., 2015). Zinc-blende structure is metastable

and can be equilibrated via growth techniques.

3.2 Anticancer activity of ZRTs

Plenty of studies suggest that metal oxide nanoparticles can

kill cancerous cells very specifically while sparing healthy cells

(Vimala et al., 2017;Wang et al., 2020; Ahamed et al., 2021; Meng

et al., 2022). Due to their unique physico-chemical

characteristics, ZnO nanostructures in particular have

demonstrated inherent selective cytotoxic action against a

diverse range of cancer cells including ovarian (Bai et al.,

2017; Alipour et al., 2022), lung (Rajeshkumar et al., 2018)

lymphoma (Alsagaby, 2022), and laryngeal cancer (Wang

et al., 2019). On the contrary, limited reports are available

evaluating its anti-oncogenic potential towards epidermal

cancer cells. In a recent investigation, it was discovered that

ZRT prepared from aqueous extracts of Cratoxylum formosum

leaves inhibited the viability of A431 cells in a dose-dependent

manner while having no effect on healthy Vero cells

(Jevapatarakul et al., 2020).

3.2.1 Toxicity evaluation of ZRTs
Toxicity evaluation is a must for every new formulation

before introducing it into a clinical setting. Thus, we tested the

intrinsic toxicity profile of ZRTs on healthy RBCs as well as

normal mammalian Vero cell line prior to assessing its anti-

cancer property. ZRTs showed no adverse effects on human

RBC cells, even at high doses. Only 11.2 and 9.2% cell lysis

were observed at a concentration as high as 100 μM of ZRT-1

and ZRT-2, respectively (Figure 4A). Further, both ZRT-1 and

ZRT-2 displayed much lower toxicity to normal kidney Vero

cells. Cell viability was reported to be 99.40%, 98.61%, 94.41%,

92.65%, and 89.32% at a concentration of 5, 50, and 100 μM

respectively, for ZRT-1 (Figure 4B). In case of ZRT-2, the cell

viability was reported to be 99.0%, 98.8%, 94.3%, 95.6%, 94.5%

at the same concentration used. Hence, it can be concluded

that the ZRTs are safe for healthy, normal cells. Considerable

investigations have noted its non-toxic nature (Sirelkhatim

et al., 2015; Bandala & Berli, 2019; Khan et al., 2020; Singh

et al., 2020; Ahamed et al., 2021) supporting our previous

study (Khan et al., 2021). Both in vivo tests on blood, normal

tissues, and major organs, as well as in vitro evaluation of the

toxicity of ZRTs on normal and undamaged human RBCs

revealed no detrimental effects or toxicity (Vimala et al.,

2017). Additionally, no evidence of geno-toxicity,

carcinogenic effects, or reproductive toxicity in humans has

been reported (Li et al., 2012; Siddiqi et al., 2018; Khan et al.,

2020; Wojnarowicz et al., 2020). Moreover, investigations on

ZRTs bio-distribution have found that even with high dosages

(500 mg/kg), there is minimal damage to tissues (Wang et al.,

2016). Thus, it can be concluded ZRTs can eradicate cancer

cells with no or minimal harm to normal healthy mammalian

cells (Wiesmann et al., 2019).

3.2.2 Morphological alterations in cancer cells
The anti-proliferative activity of ZRTs samples against the

A431 epidermoid cancer cell lines at various dosages viz. 5, 10,

25 µM were observed (Figure 5). The untreated cells (control)

maintained their smooth, flat, uniform cellular surface,

indicating their healthy state. Contrastingly, the exposed

cancer cells displayed typical apoptotic cell death as compared

to the untreated cells. The A431 cells acquired a globular shape

showing cellular shrinkage when treated with different ZRTs.

Moreover, the number of cells with this morphology increased

when concentration of ZRTs was raised. A431 cancer cells treated

with ZRT-2 displayed a greater collection of rounded, shriveled

cell arrangements than ZRT-1 treated cells (Figures 5A,B).

Similar research has shown that ZRTs-treated cells undergo

drastic morphological changes and form clusters in the media

following their detachment from culture plates (Yadav et al.,

2021). Our results revealed that ZRTs had a dose- and size-

dependent effect on the morphology of the cancer cells. This is in

accordance with previous studies that demonstrated that smaller

particles displayed better cytotoxic activity better (Akter et al.,

2018; Penders et al., 2017).

3.2.3 MTT assay
Meanwhile, additional MTT results showed that ZRT-2

significantly reduced viability of A431 cells in comparison to

ZRT-1 (Figure 6). In accordance with the cytotoxic studies,

ZRT-1 at 5 μM concentration lowered the vitality of the cells

to about 78.98 ± 0.99% (p < 0.05) in comparison with the control.

At 10 μM and 25 μM concentration of ZRT-1, the cell viability

was significantly decreased to roughly 63.66 ± 1.88 and 34.48% ±

1.02% (p < 0.001), respectively. Likewise, 5 μM of ZRT-2

decreased the viability of the cells to about 48.32% ± 0.78%

(p < 0.05) in comparison with the control. At 10 μM and 25 μM

concentration, ZRT-2 decreased the cell viability to roughly
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7.55 ± 0.27 and 5.56% ± 0.93% (p < 0.001), respectively. ZRT-1

and ZRT-2 were shown to have IC50 values of 8 μM and 6 μM

against A431 cells, respectively. Additionally, IC50 values ZRTs

have been reported in the literature to be roughly similar or even

higher (Dobrucka et al., 2018, Dobrucka et al., 2020).

3.2.4 Effect of ZRTs on intracellular ROS
generation

ZRTs substantially increased ROS amount in A431 cells in a

dose-sensitive manner in comparison with the control (Figure 7).

Quantitative analysis of ROS disclosed that 5 μM of ZRT-1

increased ROS generation by 117.24% (p < 0.01) (Figure 7A),

while ZRT-2 at the same concentration enhanced ROS level by

129.28% (p < 0.01) (Figure 7B). Furthermore, ROS levels were

elevated by 130.00 and 143.32% (p < 0.001) than control at

10 and 25 μM concentration of ZRT-1, respectively. Likewise,

similar concentration of ZRT-2 led to the increase in ROS

production by 152.82 and 166.71% (p < 0.001) respectively,

against control (Figure 7C).

3.2.5 Effect of ZRTs on chromatin condensation
Upon treatment with 10 μM of ZRTs, the chromatin

condensation inside A431 cells increased significantly when

compared with the control cells. Also, maximum

condensation was seen at 25 μM concentration of ZRTs

(Figures 8A,B). With ZRT-1, 10.2% and 20.67% apoptotic

cells were observed; while, approximately 16.3% and 33.0% of

apoptotic cells were observed for ZRT-2 at 10 and 25 μM

FIGURE 4
(A) Hemolytic activity of ZRTs nanoparticles: The extent of damage caused to red blood cells by the ZRT was measured as percent lysis of total
erythrocytes used in the individual sample. (B): In vitro cytotoxicity assay: Dose–response effects of ZRTs nanoparticles on cytotoxicity against Vero
cells.

FIGURE 5
(A,B) Morphological view of live and dead cells of human epidermoid carcinoma A431 cell lines treated with control, 5 μM, 10 μM and 25 μM
concentration of zinc oxide nano-particles, ZRT-1 and ZRT-2, respectively.
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concentration, respectively (Figure 8C). The abridged nuclei in

A431 cells are suggestive of cell killing by apoptosis.

Although the exact mechanism(s) underlying the cytotoxicity

of ZRTs are still being investigated, it is widely accepted that the

generation of reactive oxygen species (ROS) is a significant

contributing component. Thus, it can speculated that the

primary cause of ZRTs’ cytotoxicity for cancer cells is their

unique capability to cause oxidative stress in cancer cells. This

typical feature stems from its semiconductor behavior. When the

antioxidant capacity of the target cell is surpassed, ZRTs increase

the production of ROS, which causes oxidative stress and

ultimately cell death (Bisht and Rayamajhi, 2016).

Broadly speaking, moderate quantities of ROS are required

for essential cellular functions, such as cellular growth and

differentiation; nonetheless, vast amounts of ROS constitute a

serious hazard that may ultimately result in DNA damage leading

to untimely induction of programmed cell death (PCD) (Huang

et al., 2019). The diverse pathways by which carcinoma cells

perish in response to elevated levels of ROS seriously damages the

protein, DNA, and RNA components in the process (Ott et al.,

FIGURE 6
MTT assay: Percent cell viability of human epidermoid
carcinoma A431 cells at 24 h. Values are expressed as mean ± SEM
of at least three independent experiments, *p < 0.05 as compared
with their respective control.

FIGURE 7
(A,B): Photomicrographs showing intra-cellular ROS generation in human epidermoid carcinoma A431 cell lines induced by control, 5 μM,
10 μM, and 25 μM concentration of zinc oxide nano-particles, ZRT-1 and ZRT-2, respectively after 12 h incubation and stained with DCFH-DA. (C)
Graph showing extent of ROS generation expressed as the percentage of fluorescence intensity relative to the control. Values are expressed as
mean ± SEM of at least three independent experiments, *p < 0.05 as compared with their respective control.
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2007; Kao et al., 2017). It was found that ZRT-2 generated a little

bit more ROS than ZRT-1, suggesting that ZRT-2 was slightly

more efficient at causing oxidative stress to kill A431 cells.

Previous researchees have demonstrated a connection between

the emergence of oxidative stress in several cancer cell lines

including Hep-2, A549, BEAS-2B and lung cancer cells and the

killing nature of diverse nanostructures (Manke et al., 2013).

4 Conclusion

This work discusses the fabrication of ZRTs by altering the

entry time of ion-carriers to the experimental setup. XRD results

confirmed the wurtzite crystalline nature of ZRTs, while SEM

and UV-visible spectroscopy illustrated size and shape

differences between ZRT-1 and ZRT-2. A shift in spectrum

behavior was also seen when the ion-carriers’ introduction

time was prolonged. This also led to changes in anti-

proliferative behavior of ZRT specimens. Our finding was that

ZRT-2 had a more severe impact against the human epidermoid

cancer cells as compared to ZRT-1. ZRT-2 samples exhibited

elevated ROS production and enhanced nuclear condensation,

which in turn caused cell death and nuclear apoptosis. Our study

opens new vistas for the application of ZRTs as

chemotherapeutic drugs. Further in vivo studies should be

performed to ascertain its full anticancer potential.
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