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We investigate knotting probabilities of long double-stranded DNA strands in a
coarse-grained Kratky-Porod model for DNA with Monte Carlo simulations. Various
ionic conditions are implemented by adjusting the effective diameter of monomers.
We find that the occurrence of knots in DNA can be reinforced considerably by high
salt conditions and confinement between plates. Likewise, knots can almost be
dissolved completely in a low salt scenario. Comparisons with recent experiments
confirm that the coarse-grained model is able to capture and quantitatively predict
topological features of DNA and can be used for guiding future experiments on DNA
knots.
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Introduction

The revelation of DNA packing and folding in the cell nucleus (Lieberman-Aiden et al., 2009;
Siebert et al., 2017; Stevens et al., 2017; Ganji et al., 2018) and the emergence of commercially
available nanopore techniques (Jain et al., 2016; Jain et al., 2018) has ushered in a new era of DNA
research in the past decade. Knots, which emerge naturally as a byproduct in long macromolecules
like DNA (Frisch andWasserman, 1961; Delbrück, 1962), may however be detrimental to biological
processes and technical applications. It is therefore of prime importance to study conditions and
length scales at which they appear in equilibrium and develop strategies to enhance (Lua et al., 2004;
Virnau et al., 2005; Tang et al., 2011; Amin et al., 2018) or suppress knotting (Di Stefano et al., 2014;
Renner and Doyle, 2014). From a technical point of view, numerical simulations are a great tool for
this task as structural and topological information are readily available. Coarse-grained models are
particularly relevant as knots appear at scales beyond the Kuhn length and models with atomistic
resolution are often poorly suited for efficientMonte Carlo algorithms required to scan configuration
space. It is therefore crucial to test and improve coarse-grained models for DNA to quantitatively
support and interpret experimental efforts.

A first link to double-stranded (ds)DNAwas already established in the first simulation paper on
polymer knots from 1974 (Vologodskii et al., 1974). In their seminal contribution, Vologodskii et al.
determined knotting probabilities of random walks and associated single segments with the Kuhn
length of DNA (100 nm)—a prediction which turns out to be surprisingly accurate as we will
demonstrate later. This basic approach has been refined further in the early 1990s in conjunction
with gel electrophoresis experiments on short DNA strands of up to 10 kbp (Rybenkov et al., 1993;
Shaw and Wang, 1994). Ideal segments were replaced by cylinders with excluded volume
interactions that depend on ionic conditions (Rybenkov et al., 1993), and it was also
demonstrated that DNA knotting probabilities vary somewhat with solvent conditions (reaching
about 4% in a high salt environment.) Higher resolution versions of this model in which one Kuhn
length is represented by several segments have been used to study the effect of confinement on short
strands in high salt conditions. Among other things, Orlandini, Micheletti and coworkers have
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demonstrated with numerical simulations that confining DNA between
plates or in nanopores increases knotting probabilities when typical
distances between plates or nanopore diameters are in the order of the
Kuhn length of DNA (Micheletti and Orlandini, 2012a; Micheletti and
Orlandini, 2012b; Orlandini and Micheletti, 2013). Alternatively, coarse-
grained bead-stick (Dai et al., 2012a; Dai et al., 2012b; Rieger and Virnau,
2016) or bead-spring (Trefz et al., 2014; Rothörl et al., 2022)
representations for DNA can be used in which the effective diameter
is adjusted to account for varying solvent conditions and which can be
adapted for molecular dynamics simulations. Of particular relevance to
our study is Dai et al. (2012b) in which the authors have studied knotting
of closed DNA rings in bulk and plate geometry and to which our results
for open strands can be compared. Variants of this model class have also
been applied to investigate, e.g., statics (Dai et al., 2015; Jain andDorfman,
2017) and dynamics of DNA knots in a nanochannel (Micheletti and
Orlandini, 2014), packing of DNA in viral capsids (Marenduzzo et al.,
2009; Reith et al., 2012) and recently for the reproduction of experimental
knotting probabilities of λ phage DNA in high salt conditions (Kumar
Sharma et al., 2019). Of course, there are also limits to this class of coarse-
grained descriptions, and higher resolutionmodels (Suma andMicheletti,
2017; Suma et al., 2018) may address questions which either require a
detailed structural description or an explicit modelling of electrostatic
interactions (Suma et al., 2018).

In this work we systematically extend previous analyses to DNA
lengths relevant to modern experiments on λ (Plesa et al., 2016; Kumar
Sharma et al., 2019) and T4 phages (Plesa et al., 2016). Our
comprehensive study also covers the full range of ionic conditions

for free DNA and DNA confined between two plates, and comparisons
with existing experimental data confirm the validity of the modelling
approach. This enables us to show, amongst others, that for the
considered strand sizes the dependence of knotting on salt
concentrations (Rybenkov et al., 1993) can be used to effectively
disentangle DNA prior to experiments where knots are undesired.

Methods

Implicit modelling of ionic solvent conditions

DNA is negatively charged, but long-range electrostatic interactions
are partially or completely screened by counterions in solution. In this
paper we follow an implicit solvent approach pioneered by Stigter
(1977) and Rybenkov et al. (1993) in which screened charges are
represented by effective excluded volume interactions. The diameter
d of a DNA chain is a parameter that quantifies the latter and can be
defined as the segment diameter of a representative chain which is
uncharged, but has the same configurational and morphological
properties as the original DNA with partial or completely screened
charges. The magnitude of the electrostatic repulsion, and consequently,
the numerical value of d, is a function of salt concentration. Stigter
(1977) modeled DNA in sodium chloride solution as charged cylinders.
Following the theory developed by McMillan and Mayer (1945) and the
calculations of Hill (Hill, 1956; Hill, 1960), Stigter carried out analytic
calculations to estimate the effective diameter of DNA as a function of
sodium chloride concentration (see Figure 1A).

Already in 1993 Rybenkov et al. (1993) were able to confirm this
approach (and Figure 1A) by representing DNA as a closed chain of
cylinders of Kuhn length 100 nm and by matching experimentally
determined knotting probabilities of a short P4 phage DNA strand (of
around 10,000 base pairs) with those obtained from Monte Carlo
simulations.

Here, we use a higher resolution variation of this ansatz whichmodels
DNA as a standard bead-stick chain and also resolves local structure at the
scale of the persistence length (which according to Kratky-Porod theory is
half of theKuhn length).We keep, however, the same effective diameter to
determine knotting probabilities in various ionic conditions for long,
experimentally relevant DNA strands (like λ phage or T4). In a previous
work (Rieger and Virnau, 2016), we have already validated this approach
by determining simulation parameters for physiological conditions
(0.15M) that reproduce experimental knotting spectra of short strands
from Rybenkov et al. (1993) and Shaw and Wang (1994) even without
making assumptions about the persistence or Kuhn length. Not only did
these simulations confirm a value for dwhich is close to the value of Stigter
(pink point in Figure 1A), they also confirmed the correct persistence
length of DNA. While we use d = 4.465 nm for physiological conditions,
values for other ionic conditions are directly taken from Figure 1A.

Bead-stick model. Simulations were performed using a discrete Kratky-
Porod model (Kratky and Porod, 1949; Dai et al., 2012b; Marenz and
Janke, 2016; Rieger and Virnau, 2016) with hard sphere interactions
between monomers and a constant distance between adjacent beads. For
simulations in slit confinement, walls are also hard and impenetrable.
Chain stiffness is implemented via a bond-bending potential:

U � κ∑
i

1 − cos θi( ) (1)

FIGURE 1
(A) Effective diameter of DNA, d as a function of NaCl concentration
as calculated by Stigter (1977) on the basis of polyelectrolyte theory. The
values for the effective diameter, d have been obtained by calculating the
interaction potentials of highly charged colloidal cylinders
representing DNA. The effective diameter value for physiological salt
concentrations 0.15 M has been taken from Rieger and Virnau (2016).
(B) Knot types considered in this paper.
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where θi for i = 1, . . . , N−1 are the angles between adjacent bond
vectors. Simulations were performed at various salt concentrations
with values for d obtained from Figure 1A. We assume a persistence
length lp of 50 nm or 150 base pairs (bp) for all considered salt
concentrations. For a Kratky-Porod chain the stiffness parameter κ for
any given effective diameter d can be computed as (Fisher, 1964; Trefz
et al., 2014; Rieger and Virnau, 2016)

κ ≈
lp · kBT

d
. (2)

In dsDNA the distance between adjacent base pairs is 1/3 nm. By
comparing the contour lengths, we conclude that a DNA strand with B
base pairs is represented by a chain of

N ≈ B · 0.3333 nm/d (3)
beads.
Several simplifications are implied in this approach. The dependence of
persistence length on ionic conditions was neglected as differences only
amount to a few percent at least in the formalism of Odijk (1977);

Skolnick and Fixman (1977). Note, however, that for small DNA strands
(up to several kilo bases) and high salt conditions the persistence length
can be significantly smaller (≈30–35 nm), (Kam et al., 1981; Manning,
1981; Post, 1983; Savelyev, 2012; Brunet et al., 2015; Rieger and Virnau,
2018) and also depends on the specific ions in the solvent (Brunet et al.,
2015) (the influence of which we neglect as well). Nevertheless, for larger
chains (such as those simulated in our paper) persistence length is
expected to increase again andmight actually be closer to 50 nm. In high
salt conditions knotting probabilities also depend little on the actual
value of the persistence length as demonstrated in Supplementary
Information, which taken together justifies our simplified assumptions.

Experiments (Plesa et al., 2016; Kumar Sharma et al., 2019) displayed
in Figure 2A use either KCl (1 and 1.5 M) or LiCl (4M) as buffer. In our
simulations we mainly study DNA strands of lengths 20,678 bp, 48,502 bp
and 165,648 bp corresponding to a linearized plasmid, λ phage DNA and
phage T4 GT7 DNA used in Plesa et al. (2016).

For comparison we have also implemented a simple random walk
which can be mapped onto DNA by setting the Kuhn length to
100 nm, which takes over the role of d from Eq. 3. Interestingly, this
simplistic model for DNA was already discussed in the first simulation
paper on polymer knots from 1974 (Vologodskii et al., 1974) and
yields, as we will see later, surprisingly reasonable results when
compared with recent experiments on long DNA strands (Plesa
et al., 2016). Of course, differences in knotting probabilities due to
varying ionic conditions are not captured in this approach, but could
in principle be included following Rybenkov et al. (1993). All chains
were simulated with a pivot Monte Carlo algorithm (Madras and
Sokal, 1988): After a pivot center is chosen at random, one arm of the
polymer is rotated by a random angle around the pivot point and the
move is accepted with the Metropolis criterion.

Knot analysis. Knots are defined only for closed chains and
characterised by the minimum number of crossings when projected
onto a two-dimensional plane (see Figure 1B) (Adams, 1994). The
simplest knot, apart from an unknotted ring which is called the unknot
(0), is the trefoil (31) with three essential crossings. Similarly, the next
knot type to follow is the figure-eight knot (41) with four crossings.
While there is only one knot with three and one knot with four crossings
(as indicated by the index), eventually the number of different knots
grows exponentially with the crossing number. In addition to prime
knots, multiple knots can also be combined on a ring to form so-called
composite knots as indicated in the right-most picture of Figure 1B.

Since we have simulated linear chains a closure to connect the two
end points of our chains needs to be defined. For this we first connect the
two termini with their centre of mass. Along these lines one can then
define a closure which emerges from one end, follows the first line,
connects to the second one far away from the polymer and ends at the
second end of the chain (Virnau et al., 2006). Once the open chain has
been closed the Alexander polynomial can be determined for which a
detailed description can be found in Virnau (2010). The size of a knot
can be determined by successively removing monomers from the two
ends of the polymer (before closure) chain until the knot type changes.

Results

First, we investigate knotting probabilities as a function of DNA
length and ionic conditions for unconfined DNA (Figure 2A). For
better clarity, we only plot fitted curves according to Deguchi and

FIGURE 2
(A) Knotting probability as a function of chain length for DNA chains
of up to 166 kbp in comparison to recent experiments (Plesa et al., 2016;
Kumar Sharma et al., 2019). Straight lines refer to simulations and data
points to experiments. Different colors represent varying ionic
conditions. (B) Knot spectrum as a function of DNA length for
simulations in a high salt solvent (4 M) scenario. Complex knots refer to
all other knots not listed here excluding the unknot.
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Tsurusaki (1997) for our simulated data. Experimental data from
recent nanopore experiments (Plesa et al., 2016; Kumar Sharma et al.,
2019) on 20,678 bp long linearized plasmids, λ phage (48,502 bp) and
T4 GT7 DNA (165,648 bp) are displayed as data points. We notice
that even in the range of 100 kbp, DNA already exhibits substantial
knotting which strongly depends on ionic conditions. Knotting

probabilities are larger in high salt scenarios and can reach up to
70% for the largest strands. Intriguingly, our coarse-grained
simulations also suggest that knotting can almost be avoided
completely in a low salt scenario. For the same 166 kbp strand
we only observe a knotting probability of 5%, which (if confirmed
experimentally) would open up new possibilities for disentangling
large DNA strands, e.g., in preparation of nanopore sequencing.
The latter may, however, prove challenging experimentally as it
becomes difficult to translocate at low ionic concentrations. These
large discrepancies are indeed surprising as prior simulations of
closed DNA rings with a similar model yielded significantly
higher knotting probabilities, particularly for the low salt
scenario (Dai et al., 2012b). Overall, agreement between
predicted and experimentally determined knotting
probabilities in medium to high salt conditions is quite good
and differences only amount to a few percent. Surprisingly,
comparisons with a simple random walk model still yield
reasonable agreement even though occurrences of knots are
overestimated systematically. At the length scales considered,
the knot spectrum is still dominated by trefoil knots as is depicted
for the high salt (4 M) scenario in Figure 2B. However, we already
observe the emergence of composite knots as demonstrated
before for even larger chains under physiological conditions in
Rieger and Virnau (2016).

In Figure 3A we show results for λ phage DNA (48,502 bp)
confined between two plates to study the interplay of ionic
conditions with confinement. As no experimental data is
available, Figure 3A only displays simulation results. The
general shape of the curves follows results for shorter chains
and high ionic conditions from Micheletti and Orlandini
(2012a), Orlandini and Micheletti (2013) and for rings in Dai
et al. (2012b): The knotting probability first increases with
increasing plate distance, reaches a maximum at around
100–150 nm before falling off and approaching the value
obtained for unconfined DNA. Here, we note again that
knotting is suppressed substantially in low salt scenarios. For all
salt concentrations, the number of knotted conformations in
comparison to unconfined DNA is roughly increased by a factor
of two at the maximum, and the position of the maximum shifts to
lower plate distances with increasing salt concentrations as noted
for closed rings in Dai et al. (2012b).

Figure 3B displays the knot spectrum as a function of plate
distance for the 4 M high salt scenario. While the amount of
complex knots decreases (and unknots thus increase) for
distances beyond the maximum, the composition of trefoil,
figure-eight and composite variants of the two only varies
slightly.

In Figure 3C, we plot the scaled trefoil knot length (which we
define as the ratio of the contour length of the trefoil knot to the
contour length of the whole chain). For all concentrations and plate
distances, a trefoil knot roughly occupies one-fifth of the chain and has
a similar size as in the unconfined scenario. For a simple random walk,
we roughly obtain the same result.

Discussion

We investigate with numerical simulations the influence of ionic
conditions on knotting of free DNA and DNA confined between two

FIGURE 3
(A) Knotting probability of λ phage DNA (48.5 kbp) as a function of
plate distance at various ionic conditions in slit-pore confinement. (B)
Knot spectrum for a salt concentration of 4 M. Complex knots refer to all
other knots not listed here excluding the unknot. (C) Average sizes
of trefoil knots.
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plates with a focus on long, experimentally relevant strands. From a
technical point of view we test and confirm a coarse-grained bead-stick
model by comparing simulations to recent nanopore experiments on
DNA knotting. The model is not only susceptible to the influence of
ionic conditions and reproduces the existing experimental knotting
probabilities for unconfined DNA, but also resolves the structure of
DNA below the persistence length. As such it is well-suited for the
numerical description of recent (Plesa et al., 2016; Kumar Sharma
et al., 2019) and ongoing DNA experiments in the range of tens to
hundreds of kilo base pairs and could be easily adapted for molecular
dynamics simulations. Extensions which account for smaller, varying
persistence lengths in small strands could be implemented as well to
study structural properties of DNA at these scales (Zoli, 2018). At
large length scales we observe a strong dependence on solvent
conditions: While knotting can be abundant in a high salt
scenario in which negative charges on DNA are completely
screened, it becomes almost negligible in low salt conditions.
Experiments on DNA dynamics (Shusterman et al., 2004) also
imply that characteristic time scales involved in these transitions
may well be below typical times required, e.g., for nanopore
sequencing even though further studies on this issue are
certainly warranted. If this drastic change is confirmed
experimentally in long strands, an adjustment of ionic
conditions could indeed be used as a switch to effectively
unknot DNA in scenarios where knots are undesired. Likewise,
such experiments could further improve coarse-grained models
by eliminating the need to assume effective excluded volume
interactions, which could be fitted to knotting probabilities
instead (Rieger and Virnau, 2016; Rieger and Virnau, 2018).
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