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Bacterial infections have always been a threat when it comes to public health

accounting for increased morbidity and mortality rates around the world. For

the first time, Polydopamine is often used as an ocular surface drug delivery

medium to treat some ocular surface diseases based on its good tissue affinity.

Mesoporous polydopamine nanospheres (MPDA NPs) under photothermal

therapy (PTT) are demonstrated as efficient therapeutic nanoplatforms for

Staphylococcus aureus (S. aureus) infection and wound healing. MPDA NPs

were found to exhibit excellent photothermal performance, significantly

causing an increase in temperature within a short period of NIR-I exposure

(808 nm, 1 W cm−2, 6 min). The MPDA NPs under the NIR irradiation remarkably

eliminated S. aureus in vitro. Moreover, these synergistic effects turnouts to be

phenomenal in vivo, effectively killing and healing S. aureus-infected abscesses

inmice. These revealed the combined effect of the intrinsic antibacterial activity

of MPDA NPs enhanced upon NIR-I exposure. Hence, MPDA NPs under NIR-I

could prove excellent therapeutic nanoplatforms for bacteria-related infections

and other biomedical applications.
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1 Introduction

In recent years the topic of the ineffectiveness of traditional antibiotics has emerged to

be a great concern, although attributed to their misused and over-usage. The other

growing concern around the globe concerning this development is the drug resistance of

bacteria strains (Wright, 2015; Brown and Wright, 2016; Satpathy et al., 2016). This has
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amounted to severally associated bacterial infections with others

even proving strong tolerance due to their association with

biofilms (Blaser, 2016; Zhao et al., 2018; Atkins and He,

2019). A show of a real progressive threat to the public health

sector currently and in the years to come, if causative agents are

not rapidly dealt with to mitigate their effect. The mention of the

chemotherapeutic approach also raises the question of safety and

efficacy (Geller et al., 2017; Sougiannis et al., 2019). Thus, the

effort to develop alternative means aside from

chemotherapeutics, light-activated therapy such as

photothermal therapy opens the door of hope and has

recently emerged as a promising strategy (Castano et al., 2006;

Lucky et al., 2015; Zheng et al., 2016; Li et al., 2023). Under the

PTT, bacteria pathogens are rapidly eradicated via localized

hyperthermia (conversion of laser energy to heat) (Cheng

et al., 2014; Abbas et al., 2017; Li et al., 2018). Several

nanomaterials could effectively be employed under the PTT,

as photothermal agents. However, the single employment of this

therapy arouses environmental and public concerns (Xia et al.,

2008; Liu and Hurt, 2010; He et al., 2022a). Promotions of

versatile nanoplatforms by nanotechnology present the

potential of complete combat of this bacteria menace (Liu

et al., 2009; Yang et al., 2014; Wang et al., 2015). Hence the

construction of biodegradable nanoplatforms with excellent

photothermal conversion ability for effective antibacterial

therapy remains to be tackled. Polydopamine (PDA) is a kind

of biopolymer, a similitude to the natural melanin which has

emerged as a photothermal agent. PDA has good adhesion to

biological tissues, can effectively adhere to bacteria, etc., and can

achieve highly efficient thermal sterilization. PDA has gained

attention for its superior NIR absorption property, excellent

biocompatibility, stability, mild synthesis process, the presence

of functional groups such as catechol and amino groups favorable

for modification and excellent biocompatibility essential for in

vivo experiments, excellent pH sensitivity, etc. (Zhang et al., 2015;

Farokhi et al., 2019; Wang et al., 2019; Xing et al., 2019; Wang

et al., 2021). Mesoporous polydopamine (MPDA) nanoparticles

(NPs) have also demonstrated great potential as a therapeutic

agent (Huang et al., 2022; Xie et al., 2022), but at present, the

photothermal effect, biocompatibility, in vitro and in vivo

antibacterial effect, and the healing of bacterial-infected

wound have rarely been reported.

Based on the aforementioned consideration, in this work,

MPDA NPs were used to target Staphylococcus aureus (S.

aureus) under NIR-I irradiation. First MPDA NPs were

fabricated and characterized. Then their photostability and

photothermal efficiency were confirmed. The antibacterial

effect in vitro and in vivo with possible wound healing of S.

aureus infected abscess, biocompatibility, and their degradation

were speculated. Taken together, our study indicated that

MPDA may be a potential therapeutic platform for the

clinical treatment and rapid healing of S. aureus-infected

wounds.

2 Materials and methods

2.1 Materials

1,3,5-trimethylbenzene (TMB), Dopamine hydrochloride,

and ethanol was purchased from Aladdin Bio-Chem

Technology Co. Ltd. (Shanghai, China) Pluronic F-127, and

ammonia solution was purchased from Sigma Aldrich. The

working solutions were used in their original state with other

preparations made from deionized water.

2.2 Synthesis of MPDA NPs

Using the emulsion-induced interface polymerization as

reported by (Zhang et al., 2019; Ni et al., 2021; Li et al.,

2022). 0.5 g of Pluronic F-127 and 0.8 g of TMB were

dissolved in a mixed solvent of water (25 ml) and ethanol

(25 ml). 0.6 g of dopamine hydrochloride was added and

ultrasonicated until an emulsion solution (milky white) was

obtained. Next 2 ml of ammonia was added followed by

stirring at 1,000 rpm for 2 h at room temperature. The

suspension was further centrifuged at 12,000 rpm for 10 min,

precipitates were collected and washed three times with ethanol

and water (1:1, v/v). Finally, ethanol and acetone (2:1, v/v) were

used to remove the emulsion template, precipitates were dried to

give MPDA NPs. The black powder MPDA NPs is obtained by

vacuum drying.

2.3 Characterization of MPDA NPs

The morphology, pore characters, and elemental

mapping distributions were observed with transmission

electron microscopy (TEM). Talos F200S, Thermo Fisher

Scientific (United Stated) operated under 200 kV via

dropping of relevant solutions on a carbon-coated

copper grid.

2.4 NIR-induced photothermal
performance of MPDA NPs

The photothermal performance and efficiency of MPDANPs

suspension of series of concentration (0–300 μg ml−1) were

investigated with an 808 nm-laser light source of power

density 1 W cm−2 for 6 min. Photothermal stability was

investigated by five heating and cooling cycles. An infrared

thermal imager was used to monitor, record, and take pictures

of the temperature changes within a determined time point. The

photothermal conversion efficiency was calculated according to

previous reports (Roper and Ahnand W Hoepfner, 2007; Younis

et al., 2019).
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FIGURE 1
Microscopy characterizations of mesoporous polydopamine particles (MPDA). (A) TEM image showing an individual particle with radially
oriented mesochannels. (B–F) Corresponding EDX mapping of C, N, and O element signals of MPDA.

FIGURE 2
Photothermal properties of MPDA. (A) UV-vis-NIR absorption spectra of MPDA dispersions at different concentrations. (B) Photothermal
heating curves of MPDA dispersions at different concentrations under 808 nm laser irradiation (1 W cm−2). (C) Infrared thermal images of water and
MPDA (200 μg ml−1) under irradiation (808 nm, 1 W cm−2). (D) Photothermal stability (five ON/OFF laser cycles) of MPDA dispersion (200 μg ml−1). (E)
Linear fitting plots of time versus ln θ during the cooling period. (F) The photothermal effect of MPDA dispersions (200 μg/ml, red line) under
irradiation (808 nm, 1 W cm−2, 6 min) and then switched off the laser (black line is pure water as the control).
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2.5 In Vitro antibacterial assay

The in vitro antibacterial effect of MDPA NPs against S.

aureus was evaluated. 50 µL of S. aureus suspension (O.D600 =

0.05) was incubated with 200 μg ml−1 of MDPA NPs suspension

at 37°C, for 30 min. After the coincubation, the mixture was

exposed to laser irradiation (808 nm, 1 W cm−2) for 6 min.

Finally, the treated bacteria suspension was serially diluted

and 100 µL plated on a sterile LB plate. Samples were

incubated at 37°C for 12 h. The quantification of the bacterial

cells was done by counting colonies (CFU ml−1) to determine the

survival rate.

2.6 In Vivo antibacterial assay

Evaluation of the in vivo antibacterial effect of MPDA NPs

was done by creating a subcutaneous abscess on the BALB/c mice

(7 weeks) by first shaving and disinfecting the area with (75%

ethanol) immediately after anesthesia 50 µL (1 × 108 CFU ml−1)

was subcutaneously injected on the back to create abscess which

was visible within 48 h. Mice were divided into two groups: PBS

(control group) MPDA NPs + NIR (treatment group), with each

group containing five mice. PBS and MPDA NPs suspension

were later injected into the abscess. The treatment group was

exposed to irradiation (808 nm, 1 W cm−2, 6 min). An infrared

thermal imager was used to monitor and record the temperature

changes within the specified time. The infected tissues were

isolated, crushed, and cultured in the medium, and the

bacteria were counted by the plate method. Animal

experiments were performed according to the protocols

approved by the Animal Ethics Committee of Provincial

Hospital Affiliated to Shandong First Medical University.

2.7 Toxicological analysis of tissue

The abscess progress and wound healing was monitored for

14 days. Mice were sacrificed at the end of the 14th day. The skin

tissues and the major organs harvested were fixed with

paraformaldehyde solution (4%) for hematoxylin and eosin

(H&E), Gram, Masson staining and immunofluorescence

analysis, TGF-β/CD206 and TNF-α/CD86 primary antibodies

with their corresponding antibodies were employed in the

process. Mice were carefully discarded in strict accordance

with the protocol. Immunofluorescence images were obtained

from fluorescence microscopy (Olympus, Japan).

2.8 Statical analysis

Data were expressed as mean ± standard deviation, and

analysis among groups was determined for statistical

significance with a standard Student t-test using the graph

pad prism 9.0. Data are presented as mean ± SD (n = 3),

***p < 0.001.

3 Result and discussion

3.1 Preparation and characterization of
MPDA NPs

MPDA was synthesized via emulsion-induced interface

polymerization as outlined in the experimental section. As

shown in Figure 1A, images of transmission electron

microscopy (TEM) displayed homogenous spheres with

uniform distribution of particle size of the mesoporous

structure with pore sizes of approximately 15–17 nm. Next,

the images of elemental mapping illustrated that MPDA was

made up of carbon, nitrogen, and oxygen, Figures 1B–F, an

indication of the perfect distribution of elements within the

MPDA and the maintenance of its structure.

FIGURE 3
Antibacterial activity of MPDA in vitro. Typical agar plate
photographs of bacterial colony formed by S. aureus after
processing by MPDA (200 μg ml−1) with and without NIR-I
(808 nm, 1 W cm−2, 6 min). Corresponding quantitative data
of S. aureus survival rate after different treatments determined by
standard plate countingmethod. Data are presented asmean ± SD
(n = 3), ***p < 0.001.
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3.2 Photothermal property of MPDA

Excellent photothermal absorption and conversion efficiency

are key when it comes to photothermal agents (Wang et al., 2017;

He et al., 2022b). The UV-vis-NIR absorbance of MPDA NPs

increased linearly upon concentration increase demonstrating

MPDA NPs could absorb the NIR-I light energy, Figure 2A. To

evaluate the photothermal effect, a series of concentrations of

MPDA NPs suspension (0–300 μg ml−1) were irradiated with a

NIR-I laser (808 nm, 1 W cm−2) for 6 min Figure 2B. Upon

irradiation, MPDA NPs suspension exhibited a remarkable

linear temperature rise, particularly when the concentration

was 300 μg ml−1, the temperature rise was 65°C, Figures 2B, C.

The photothermal effect was concentration and time-dependent.

As shown in Figure 2D, MPDA NPs temperature under five

heating and cooling cycles displayed no significant attenuation

which indicated good photothermal stability. The photothermal

conversion efficiency was determined to be 28.9% Figures 2E, F,

which surpassed that of traditional nanoparticles such as

Prussian blue, Au nanorods, Pt NPs, etc., (Manikandan et al.,

2013; Zeng et al., 2013; Liu et al., 2018). These results suggested

that MPDA NPs could serve as good photothermal agents for

NIR-I-induced antibacterial activity.

3.3 In Vitro antibacterial activity assay

Fascinated by the photothermal results, the in vitro

antibacterial performance of MPDA NPs against S. aureus was

evaluated by employing the standard spread plate method.

Following the treatment of the S. aureus membrane with

200 μg ml−1 of MPDA NPs suspension under (808 nm,

1 W cm−2,6 min), compared to the control group without

NIR-I irradiation, MPDA + NIR-I displayed an enhanced

antibacterial efficacy with no effect in the control group

Figure 3. PDAs can block bacteria’s nutrient supply and

FIGURE 4
Anti-infective therapy of MPDA in vivo with subcutaneous abscess model. (A) Representative photographs of the mice with subcutaneous
abscesses on the 0, 3rd, 7th, and 14th day post-treatment. Scale bar, 2 mm. (B) Corresponding quantitative analysis of the infected area with various
therapies. (C) Representative photographs of the bacterial colony from bacteria-infected tissues with various therapies on the 14th day. (D)
Corresponding quantitative analysis of the number of bacterial colonies from bacteria-infected tissues with various therapies on the 14th day.
Data are presented as mean ± SD (n = 3), ***p < 0.001.
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growth-acting barriers and the dopamine benzene ring and some

active groups of bacteria to induce toxicity (Waite and Tanzer,

1981; Lee et al., 2006; Ji et al., 2016; Zhao et al., 2022). Though it

was obvious that the NIR could equally kill the S. aureus the

temperature of the NIR-I alone and the time of exposure would

not have been enough to cause such an effect. This antibacterial

efficiency can therefore be ascribed to the synergistic effect of the

MPDA NPs and the NIR-I irradiation. The NIR-I activity could

easily impede processes of the bacterial activity which can easily

permit the effective action of the MPDA NPs, blocking growth

activities and inducing selective toxicity via surface active groups.

3.4 In Vivo antibacterial performance

Upon MPDA NPs achieving excellent antibacterial

performance in vitro, a mice model of S. aureus injected

subcutaneous abscess (deep bacterial infection model) was

employed to evaluate the effect in vivo. 200 μg ml−1 of PBS and

MPDA NPs suspension were subcutaneously injected into the

S. aureus abscess, and the treatment group was exposed to

(808 nm, 1 W cm−2, 6 min). As shown in Figure 4A, from Day

0 to day 7 scars appeared in all groups with the scars becoming

dark as time progressed. Following treatment for 14 days, the

scar rate of MPDA NPs + NIR-I was significantly reduced and

better compared to the control group after Day 14, with the

scar of the MPDA NPs + NIR-I group almost completely

vanishing Figure 4B. The MPDA NPs + NIR-I combination

significantly eradicated S. aureus and healed the S. aureus

infected abscess wound with an insignificant number of

bacteria present at the infected sight Figures 4C, D. These

results demonstrated that the MDPA NPs under NIR-I could

effectively eradicate wound infections and at the same time

enhance wound healing.

FIGURE 5
Histological analysis of abscess recovery process.
Representative photographs of H&E, Gram, and Masson staining
on the 14th day.

FIGURE 6
Immunofluorescence analysis of abscess recovery process. Representative photographs of immunofluorescence staining of (A) TGF-β/CD206
and (B) TNF-α/CD86 on the 14th day.
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3.5 Histopathological analysis

Further analysis of the synergistic effect of MPDA NPs and

NIR-I for the treatment of S. aureus infected abscess was assessed

using H&E, Gram, and Masson staining. As shown in Figure 5,

an abundant neutrophil indicated the accumulation of

inflammatory cells as a result of the induced infection.

However, MPDA NPs + NIR-I remarkably showed re-

epithelization with almost intact epidermal layers which

indicated good therapeutic efficacy. Also, almost all S. aureus

in the MPDA NPs + NIR-I group was completely eradicated

based on the Gram staining, Figure 5. Additionally, massive

collagen deposition was evident in the MPDA NPs + NIR-I

group, an indication of the reconstitution and remodeling of

tissues of the skin. The results of Masson staining analysis

showed that obvious collagen fibers and a large number of

hair follicle structures appeared after treatment, indicating

that the skin healing was accelerated. These results displayed

FIGURE 7
H&E staining images of major organs (heart, liver, spleen, lung, and kidney) of healthy mice after subcutaneous injection of PBS and MPDA +
NIR-I on the 14th day after different treatments. Scale bars: 100 μm.

FIGURE 8
Biosafety evaluation of MPDA. (A–D) Blood biochemistry and (E–L) blood routine analysis of healthy mice after subcutaneous injection of PBS
(Control) and MPDA (day 1 and day 14).
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the MPDA NPs under photothermal therapy as a good

therapeutic agent. Furthermore, as the healing process of an

infected would involve stages (anti-infection, anti-inflammation,

and tissue regeneration), the inflammation changes of the wound

were evaluated after 14 days of treatment. Immunofluorescence

was used to analyze the expression of pro-inflammatory and anti-

inflammatory cytokines. As shown in Figure 6A, TGF-β and

CD206 expression in MPDA NPs + NIR demonstrated a bright

fluorescence which depicted an enhanced expression.

Meanwhile, TNF-α and CD86 expression were significantly

reduced, which indicated the remarkable inflammatory

reaction Figure 6B. The reason for the above results is mainly

attributed to the highly effective antibacterial activity of MPDA

NPs, which can quickly remove bacteria from infected tissues

through thermal effect, to reduce inflammation and accelerate

wound healing. These results confirm that the combination of

MPDA NPs + NIR can induce an anti-infection and anti-

inflammatory action for the effective healing of a bacteria-

infected wound.

3.6 Biosafety evaluation of MPDA NPs

To investigate the in vivo biosafety H&E staining was used to

confirm the toxicity of MPDA NPs + NIR to the mice, Figure 7.

The histological study revealed no obvious pathological

abnormalities in the main organs (heart, liver, spleen, lungs,

and kidney) proving the biocompatibility of the MPDANPs even

under NIR-I. Also blood chemical indicators: aminotransferase

(ALT), blood urea nitrogen (BUN), aspartate aminotransferase

(AST), and alkaline phosphatase (ALP) showed no obvious blood

toxicity Figures 8A–D. Similarly, blood routine examination:

white blood cell (WBC), red blood cell (RBC), mean platelet

volume (MPV), mean corpuscular hemoglobin (MCH), platelet

count (PLT), mean corpuscular volume (MCV), hematocrit

(HCT) and hemoglobin (HGB) exhibited no significant

abnormality Figure 8E–L. These results proved the negligible

toxicity induced by the MPDA NPs under NIR-I, demonstrating

good biocompatibility.

4 Conclusion

In summary, MPDA NPs were fabricated via emulsion-

induced interface polymerization. The activity of MPDA NPs

was efficiently enhanced under NIR-I by this property theMPDA

via effective thermal-killing eradicated the S. aureus in vitro.

Notably, this synergistic therapeutic effect was proven in S.

aureus-infected abscesses in vivo, eliminating bacterial

infections with subsequent wound healing. MPDA NPs’

intriguing property which spans from good biocompatibility

to good photothermal performance present it as a new

platform promising for antibacterial activity, wound healing,

and future biomedical application.
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