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Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising
candidates to replace expensive and scarce platinum-based electrocatalysts commonly
used in polymer electrolytemembrane fuel cells. MOFs contain ordered connections between
metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped
carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR).
Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being
active as well. Thus, a carbon material with Co-N-F doping could possibly be even more
promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two
polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-
imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the
mechanochemical formation revealed a direct conversion of starting materials to the
products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F
containing carbons, which are active toward electrochemical ORR.
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INTRODUCTION

Polymer membrane fuel cells (PMFCs) are of significant interest as a device for clean energy
conversion. Their broad commercial application is currently limited by the inefficient oxygen
reduction reaction (ORR). The slow kinetics of the ORR makes catalysis essential. State-of-the-art
catalyst are currently based on platinum group metals (Gasteiger et al., 2005; Wu and Yang, 2013;
Evers et al., 2019; Jiang et al., 2021; Zhang et al., 2021), but with their high price and scarcity, they
limit a large-scale application. Therefore, low-cost and readily available alternatives are sought for.
Reportedly, metal and nitrogen doped carbons (M-N-Cs) show high ORR activity, following the
order M = Fe > Co >Mn > Cu >>Ni (Masa et al., 2014; Peng et al., 2014). The origin of the catalytic
activity is speculated as M-N4 centers (M = Fe, Co) in a graphene matrix. However, Fe-based
catalysts tend to produce Fe2+/3+ that can react with the ORR possible byproduct H2O2 generating
hydroxyl and hydroperoxyl radical species. This mixture, known as Fenton’s reagent (Kang and
Chang, 1997; Walling, 2002), can decompose organic matter, such as the proton conducting
membrane of PMFCs. Alternatively, Co-based catalysts, showing similar performance as Fe-
based catalysts without the risk of Fenton’s reaction, can be used.
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Zeolitic imidazole frameworks (ZIFs) (Park et al., 2006), a class of
metal organic frameworks (MOFs), consisting of metal nodes, linked
by imidazole-based linkers can serve as templates, which can be
converted in to M-N-C ORR catalysts by pyrolysis. ZIF materials are
commonly used for gas storage (Eddaoudi et al., 2002) and separation
(Keskin et al., 2010), oil spill cleaning (Mondal et al., 2017), catalysis
(Farrusseng et al., 2009; Hu et al., 2020), sensing (Chapartegui-Arias
et al., 2019; Zhang et al., 2020), and drug delivery (Hao et al., 2021;
Ibrahim et al., 2017; Nirosha Yalamandala et al., 2021), as precursors
for electrocatalysis (Li et al., 2016;Wang et al., 2014; Zhao et al., 2014)
and as stimuli-responsive materials (Iacomi and Maurin, 2021). The
crystal structures of these porous coordination polymers are based on
the topology nets of zeolites. Furthermore, the metal-
imidazolate–metal bond angles in ZIFs resemble the Si-O-Si bond
angles in zeolites, as well as the tetrahedral coordination of metal
centers by imidazolate ligands (Figures 1A,B). ZIFs have a broad
variety of possible structures, depending on how the
metal–imidazolate–tetrahedrons are interconnected (Schröder et al.,
2013). In thewell-studied compoundZIF-8, where zinc is tetrahedrally
coordinated by 2-methylimidazolate linkers, the tetrahedral units form
sodalite cages (SOD) (Figure 1C), resulting in a porousmaterial (Park
et al., 2006). Other ZIFs can form dense topologies, which resemble α-
quartz (qtz).

Ma et al. showed that Co-based ZIFs can be easily pyrolyzed
into Co-N-C catalysts for ORR by pyrolysis. (Ma et al., 2011). The
resulting catalysts show high activity in alkaline media (Chao
et al., 2015; Chen et al., 2015; Wang et al., 2016) but lower activity
under acid conditions (Wang et al., 2014; You et al., 2015). Direct
pyrolysis of cobalt 2-methylimidazolate (ZIF-67) leads to a
porous carbon material with aggregated cobalt nanoparticles,
resulting in a loss of active Co-N4 species and therefore ORR
activity (Ma et al., 2011; Xia et al., 2014; Wang et al., 2016). Using
zinc-based ZIFs with low amounts of cobalt results in a porous
carbon material with uniformly distributed Co-N4 sites and no
metallic cobalt particles, showing excellent ORR activity (Wang
et al., 2016). Furthermore, doping of carbons with heteroatoms
can yield ORR active materials. In case of N-, F-doping, a

cooperative N and F polarization of carbon is speculated as
the mechanism (Lv et al., 2017).

Different synthesis routes were established for ZIFs, including
microwave-assisted (Bux et al., 2009), sonochemical (Son et al., 2008;
Yang et al., 2012), electrochemical (Martinez Joaristi et al., 2012) and
solvothermal methods (Palaniselvam et al., 2013), or crystal growth
from solution (Venna et al., 2010). Most of these methods involve
solvents such as N,N-dimethylformamide, N-N-diethylformamide,
or methanol (Huang et al., 2006; Park et al., 2006; Cravillon et al.,
2009; Kukkar et al., 2021). Mechanochemistry, as an alternative
green and solvent-freemethod, has been established for severalMOF
synthesis including ZIF-8 (Pichon et al., 2006; Klimakow et al., 2010;
Batzdorf et al., 2015; Chen et al., 2019; Szczęśniak et al., 2020).

Here, we present the mechanochemical synthesis of fluorine-
substituted ZIF-8 frameworks including Co-doping. We figured a
Co-doped Zn(CF3-Im)2 could be a promising precursor for a
highly active ORR catalysts, combining positive effects of both
CoN4-clusters and N-F-doping.

The samples were thoroughly characterized by X-ray diffraction
(XRD), nitrogen sorption, transmission electronmicroscopy (TEM),
and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the
formation process in the ball mill was followed by time-resolved in
situ synchrotron XRD, gaining insights in the formation process of
the compounds. The two polymorphs of Zn0.9Co0.1(CF3-Im)2 were
pyrolyzed, and the carbonous materials’ chemical composition was
analyzed by X-ray photoelectron spectroscopy (XPS). Furthermore,
both pyrolyzed qtz- and SOD-Zn0.9Co0.1(CF3-Im)2 were shown to
be active toward ORR.

EXPERIMENTAL SECTION

Materials
The following chemicals were used: zinc oxide (ZnO, ACS reagent;
Acros Organics, USA), 2-methylimidazole C4H6N2 (≥98%;
Sigma–Aldrich, Germany), cobalt (II) acetate tetrahydrate
(Co(CH3COO)2 · 4 H2O; Baker analyzed, J. T. Baker, USA), zinc

FIGURE 1 | (A) The bond angle in zeolitic imidazolate frameworks (ZIFs) is similar to the Si-O-Si bond angle in zeolites. (B) In ZIF-8, each Zn2+ ion is tetrahedrally
coordinated by four 2-methylimidazolate linkers. (C) View along the b axis of the crystal structure of ZIF-8. The top left unit is shown completely, the rest as a reduced net
of Zn2+-ions, revealing the porous nature of the component.
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acetate (Zn(CH3COO)2 · 2 H2O; >98% ACS Reagent, Fluka;
Honeywell International Inc.), basic zinc carbonate
Zn5(CO3)2(OH)6 (>97%, Thermo Fisher Scientific, USA), 2-
trifluoromethyl-1H-imidazole C4H3N2F3 (>95%; Fluorochem,
United Kingdom), potassium hydroxide KOH (Sigma–Aldrich),
perchloric acid HClO4 (Bernd Kraft, Germany) and isopropanol
(Sigma–Aldrich). Nafion was purchased from Sigma–Aldrich. All
chemicals were used without further purification.

Synthesis of ZIF-8 and Zn0.9Co0.1(2Me-Im)2
Zinc oxide (0.337mmol, 27.4mg), zinc acetate dihydrate (10mol% of
total metal content, 0.037 mmol, 8.2mg), 2-methylimidazole (0.748
mmol, 61.4mg), andNH4NO3 (0.748mmol, 3.0mg) were placed into
a custom-made milling jar (PMMA, 5mL) (Lampronti et al., 2021).
After adding one stainless-steel milling ball (7-mm diameter) and
methanol (15 µL), the jar was closed and mounted into a vertical ball
mill (Pulverisette 23; Fritsch GmbH, Idar-Oberstein, Germany). The
mixture was ground for 15min at a frequency of 50Hz. The product
was obtained as a white voluminous powder.

For Co-doping, the zinc acetate dihydrate was replaced by
cobalt acetate tetrahydrate (10 mol% of total metal content,
0.037 mmol, 9.2 mg), which was added to the milling jar
(PMMA, 5 mL), along with ZnO (0.333 mmol, 27.1 mg), 2-
methylimidazole (0.740 mmol, 60.7 mg), NH4NO3 (0.037 mmol,
3.0 mg), methanol (15 µL), and a stainless-steel grinding ball (7-
mm diameter). The mixture is ground for 15min at a frequency of
50 Hz, and a purple voluminous powder is obtained.

Synthesis of qtz-Zn(CF3-Im)2 and
qtz-Zn0.9Co0.1(CF3-Im)2
In a typical experiment, hydrozincite (Zn5(CO3)2(OH)6, 0.052
mmol, 28.8 mg) and 2-trifluoromethyl-1H-imidazole (0.524
mmol, 71.3 mg) are weighed out and alongside a stainless-steel
milling ball (7-mm diameter) are placed into a custom-made
milling jar (PMMA, 5 mL). After adding methanol (15 µL), the jar
was closed and mounted into a vertical ball mill (Pulverisette 23;
Fritsch GmbH. The mixture was ground at a frequency of 50 Hz
for 15 min. The product was obtained as a yellow–brown powder.

For Co-doping, the desired molar percentage of metal is
replaced by cobalt acetate tetrahydrate. In a typical experiment
with 10 mol% Co-doping, hydrozincite (Zn5(CO3)2(OH)6, 0.046
mmol, 25.0 mg), cobalt acetate tetrahydrate (10 mol% relative to
total metal amount, 0.025 mmol, 6.2 mg), and 2-trifluoromethyl-
1H-imidazole (0.505 mmol, 68.7 mg) are weighed out and placed
into a custom-made milling jar (PMMA, 5 mL). After adding one
stainless steel milling ball (7-mm diameter), the jar is closed and
mounted into a (Pulverisette 23; Fritsch GmbH) vertical ball mill.
The mixture was ground for 15 min at a frequency of 50 Hz. The
product was obtained as a purple–brown powder.

Synthesis of SOD-Zn(CF3-Im)2 and
SOD-Zn0.9Co0.1(CF3-Im)2
To obtain SOD-Zn(CF3-Im)2 the reactant masses are kept
constant (Zn5(CO3)2(OH)6: 0.052 mmol, 28.8 mg; 2-
trifluoromethyl-1H-imidazole: 0.524 mmol, 71.3 mg), one

stainless-steel milling ball (5-mm diameter) and DMF (20 µL)
were used. The mixture was ground for 7 min at 50 Hz, and a
damp brown powder was obtained. After completely drying the
powder, it is washed three times with methanol (20 mL) and
air dried.

Zn0.9Co0.1(CF3-Im)2 can be obtained when Zn5(CO3)2(OH)6
(0.046 mmol, 25.0 mg), cobalt acetate tetrahydrate (0.025 mmol,
6.3 mg), and 2-trifluoromethyl-1H-imidazol (0.505 mmol,
68.8 mg) are placed alongside a single grinding ball (5-mm
diameter, stainless steel) into a custom-made milling jar
(PMMA, 5 mL). The mixture is ground at 50 Hz for 8 min,
yielding a damp purple–brown solid. After drying at air, the
solid is finely ground in a mortar and washed with methanol
(20 mL) three times and then dried at air.

Preparation of Electrocatalysts
To prepare the electrocatalysts, the carbonous residue after
carbonization was loaded on glassy carbon (GC) rotating disk
electrode (RDE) according to the procedure described by
Kocha et al. (2017). The method involved initial
preparation of a stock solution with 10 mL isopropanol
(Sigma–Aldrich), 0.2 mL of 5 wt% Nafion ionomer solution
(Sigma–Aldrich) and 39.8 mL of deionized water (0.055 μS/
cm, Evoqua, , United States). To prepare catalytic inks from the
powder samples, 1.3 mg of the compound was mixed with
1 mL of the stock solution. The inks were homogenized for
45 min in an ultrasonic bath at 80 Hz. Afterward, the
dispersion (10 µL) was deposited on a clean GC electrode
and spun at 900 revolutions/min (rpm) until the liquid was
evaporated.

Electrochemical characterizations of the heterogeneous
catalyst powders were conducted using a three-electrode setup
with a Gamry Reference 600 + potentiostat (Gamry Instruments,
United States). Before each measurement, the electrolyte was
degassed for 30 min with nitrogen and oxygen, respectively. All
measurements were performed in 0.1 M KOH or in 0.1 M HClO4

by using a Pt counter electrode and an Ag/AgCl (3 M NaCl)
reference electrode. Linear sweep voltammetry experiments were
performed in a potential range of +1.1 V to −0.3 V in acidic media
and +0.5 V to −0.8 V in alkaline media at a scan rate of 20 mV s−1,
whereas the RDE was operated at rotation speeds of 600, 900, and
1,600 rpm. All potentials were reported with respect to the
standard hydrogen electrode (SHE). The surface area of the
GC electrode was 0.126 cm2. Prior to use, the GC electrode
was polished with 0.3 and 0.05 mm alumina powder followed
by sonicating and rinsing with deionized water after each
polishing step for 5 min to remove the alumina and abraded
particles.

Powder XRD
Powder XRD data were collected using a Bruker D8 Advance
diffractometer (Bruker AXS, Germany) in Bragg-Brentano-
Geometry with a Lynxeye-detector using Cu-Kα radiation
(λ = 1.542 Å) over a range of 2θ = 5°–60° with a step size of
0.02°. The time per step was 0.6 s. The finely ground dried
sample was packed onto a standard PVC sample holder,
which was mounted into the diffractometer.
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Synchrotron XRD
The in situ XRD experiments were performed at the μSpot
beamline (BESSY II, Helmholtz Centre Berlin for Materials
and Energy). The used beam diameter was 100 μm at a
photon energy of 16.576 keV using a double crystal
monochromator (Si 111). To minimize double reflections, the
beamwas positioned inside of themilling jar, by scanning the wall
of the jar and then moving approximately 50 µm inside. The
sample detector distance was 229.70 mm. Scattered intensities
were collected with a two-dimensional X-ray detector (Eiger
9M, HPC 3,110 × 3,269 pixels, pixel size 75 × 75 µm) and a time-
resolution of 30 s. The obtained scattering images were
processed using an algorithm of the computer program
DPDAK (Benecke et al., 2014). The resulting patterns (q/
nm−1 vs. intensity/a.u.) were analyzed, processed, and plotted
using Origin (Version 2020; OriginLabs Corporation,
Northampton, MA, United States). For comparison, the
theoretical XRD patterns of the starting materials and final
products were retrieved from crystallographic databases ICSD
or CCDC and simulated using Mercury (version 4.3.0, CCDC)
(Macrae et al., 2020). All XRD plots are background corrected
by a custom-made python script.

Differential Scanning Calorimetry–TGA
Thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC) was performed simultaneously on dry
powders (~10 mg) using a heat flux TGA-DSC 3+ (Mettler-
Toledo). All measurements were carried out under a
continuous nitrogen flow of 10 mL/min. As a reference, an
empty α-Al2O3 corundum crucible was used. The samples
were heated with a heating rate of 10 K/min from room
temperature to 900°C and held for 1 h. Subsequently, the
samples were allowed to cool down under continuous nitrogen
gas flow.

X-Ray Photoelectron Spectroscopy
All measurements were performed with an AXIS Ultra DLD
photoelectron spectrometer manufactured by Kratos Analytical
(Manchester, United Kingdom). XPS spectra were recorded using
monochromatized aluminum Kα radiation for excitation, at a
pressure of approximately 5 × 10−9 mbar. The electron emission
angle was 0°, and the source-to-analyzer angle was 60°. The
binding energy scale of the instrument was calibrated
following a Kratos Analytical procedure, which uses ISO
15472 binding energy data. Spectra were taken by setting the
instrument to the hybrid lens mode and the slot mode providing
approximately a 300 × 700-μm2 analysis area. Furthermore, the
charge neutralizer was used. Survey spectra were recorded with a
step size of 1 eV and a pass energy of 80 eV; high-resolution
spectra were recorded with a step size of 0.1 eV and a pass energy
of 20 eV. Quantification was performed with Unifit 2021 using
Scofield factor, the inelastic mean free pathway, and the
transmission function for the normalization of the peak area.
For peak fitting, a sum Gaussian–Lorentzian function was used.
As background, a modified Tougaard background was used.
Measurement uncertainties are ±0.2 eV with a confidence
interval of 95% for binding energies at high-resolution spectra.

Elemental quantification has a relative uncertainty of ±20%with a
confidence interval of 95%.

Transmission electron microscopy and
Energy dispersive X-Ray Spectroscopy
TEM images were obtained in a Talos F200S Microscope
(Thermo Fisher Scientific) by using a 200-kV microscopy
technique in which a beam of electrons is transmitted through
a specimen to form an image. The specimens were prepared by
dropping sample solutions (1 mg/mL in water/solvent) onto a 3-
mm copper grid (lacey, 400 mesh) and leaving them to air-dry at
room temperature. To determine the elemental composition of
the ZIF-8 and Zn0.9Co0.1 (2Me-Im)2 specimen, EDX with two
silicon drift detectors (SDD) was used. Counting time for X-ray
spectra was 60 s.

Gas Sorption
Nitrogen gas sorption at 77 K was performed on an ASAP 2020
(Micrometrics) and was used to calculate the specific surface area
from a multipoint adsorption isotherm with the BET
(Brunauer–Emmit–Teller) calculation model (relative pressure
range, 0.0012–0.0298) according to DIN ISO 9277:2014
(Brunauer et al., 1938).

RESULTS AND DISCUSSION

Co-Doping of ZIF-8 by Acetate Ionic and
Liquid-Assisted Grinding Route
Scheme 1 details the synthesis strategy to obtain ZIF-8 and SOD-
Zn0.9Co0.1 (2Me-Im)2. We used a modified synthesis combining
ionic and liquid-assisted grinding (ILAG) conditions (Friščić
et al., 2010) and an acetate route described by Imawaka et al.
(2019), Tanaka et al. (2017). Both ZIF-8 and SOD-Zn0.9Co0.1
(2Me-Im)2 were obtained phase pure and identified by XRD
(Figure 2). All synthesis procedures were analyzed via time-
resolved in situ XRD to analyze the reaction mechanism and
potential phase transformations. These reactions were performed
in a custom-built PMMA milling jar (Lampronti et al., 2021).

The SOD-Zn0.9Co0.1 (2Me-Im)2 powder was examined by
TEM (Supplementary Figure S1) and EDX to assess its
elemental composition. The Co content of 7.85% is close to
the expected value of 10% of total metal content. Together
with the XRD results, these data indicate the successful
introduction of cobalt into the parental ZIF-8 structure
(Supplementary Figure S2). Furthermore, the surface area of
ZIF-8 and SOD-Zn0.9Co0.1 (2Me-Im)2 powders synthesized by
the acetate ILAG route was studied after an activation protocol by
nitrogen sorption at 77 K using the Brunauer–Emmett–Teller
theory (Supplementary Figure S3). The samples exhibited type I
isotherms with BET-surface areas of 1,695 m2/g (ZIF-8) and
1,554 m2/g (SOD-Zn0.9Co0.1 (2Me-Im)2), which are
comparable to literature reports (Park et al., 2006; Kaur et al.,
2016).

The synthesis of the ZIF structures was investigated by time-
resolved in situ XRD. In agreement with previous in situ studies,
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the parent structure ZIF-8 formation proceeds rapidly indicated
by the appearance of first ZIF-8 reflections after 30 s (Batzdorf
et al., 2015). The ZnO reflections gradually decrease until
disappearing completely after 7 min, leaving ZIF-8 as the
single product phase. Continued milling does not change the
composition and crystallite size (Supplementary Figure S4). For
SOD-Zn0.9Co0.1 (2Me-Im)2, the time-resolved in situ XRD data
(Figure 3) follow a comparable mechanism, with slightly
different detection phases of the reactant (cobalt acetate
tetrahydrate visible until 30 s and zinc oxide until
approximately 6 min). The data suggest that the formation of
SOD-Zn0.9Co0.1 (2Me-Im)2 starts within the first 20 s and
continues until it reaches completion after approximately 3 min.

Zn(CF3-Im)2 by Ball Mill Grinding;
Polymorphic Control by Choice of Grinding
Liquid.
Fluorinated MOFs are of great interest because of their improved
properties compared with their nonfluorinated counterparts. The
increased hydrophobicity raises the performance in gas
separation (Mondal et al., 2017; Cheplakova et al., 2018), gas

storage (Zhang et al., 2013), or in the cleanup of oil spillages
(Yang et al., 2011). Metal-free carbon materials with heteroatom-
doping (F, N) show electrocatalytic ORR activity (Lv et al., 2017).
Furthermore, with higher hydrophobicity in an ORR catalyst
prepared from a fluorinated ZIF, we would expect a more efficient
transport of water away from the active oxygen reduction site,
resulting in improved kinetics for the ORR. Therefore, Zn(CF3-
Im)2 was chosen as fluorinated analog to ZIF-8 and as a host
material for Co-doping. As Zn(CF3-Im)2 can crystallize in two
polymorphic crystal structures (Arhangelskis et al., 2019), the
goal was to prepare both the quartz (qtz) and sodalite (SOD)
topologies of the material, as well as achieving Co-doping in both
of them (Schröder et al., 2013).

The synthesis of the dense qtz-Zn(CF3-Im)2 polymorph was
easily achieved by ILAG of zinc oxide and H-CF3-Im, using
NH4NO3 and methanol (Scheme 2), which is in good agreement
with the literature (Arhangelskis et al., 2019). The preparation of
SOD-Zn(CF3-Im)2 by ILAG from zinc oxide as a starting material
seems not straightforward, as SOD-Zn(CF3-Im)2 is an
intermediate in the formation of qtz-Zn(CF3-Im)2. As opposed
to the literature, the ethanol assisted grinding of Zn5(CO3)2(OH)6
with H-CF3-Im did not yield phase pure SOD-Zn(CF3-Im)2, but a
mixture of the qtz and SOD polymorphs. The mechanochemical
Zn(CF3-Im)2 formation by MeOH-assisted grinding of
Zn5(CO3)2(OH)6 with H-CF3-Im was studied by time-resolved
in situ XRD. After a short induction period (0–1 min), an interval
with no detectable diffraction signals (1–5 min) is observed. From
5 min on the (100) and (101), reflections of qtz-Zn(CF3-Im)2 are
detectable. The intensity of these reflections increases, and further
reflections of qtz-Zn(CF3-Im)2 appear. Against our preliminary
results and literature records (Arhangelskis et al., 2019), no
intermediate phase of SOD-Zn(CF3-Im)2 was found. Instead, a
direct conversion of starting materials into qtz-Zn(CF3-Im)2 can
be observed (Supplementary Figure S5).

The in situ data show that under the chosen milling conditions,
the reaction mechanism does not include the formation of the SOD
polymorph. In a parameter study, varying milling frequency (15, 30,
50 Hz), milling ball size (3, 5, 7 mm), and added grinding liquid
(MeOH, EtOH, DMF), we identified the milling conditions for the
porous SODpolymorph. DMF-assisted grinding with a single 5-mm
steel ball at 50 Hz yielded the SOD-Zn(CF3-Im)2, whereas MeOH
ILAG leads to qtz-Zn(CF3-Im)2 (Figure 4). The milling conditions
leading to both polymorphs are summarized in Scheme 3.

The mechanochemical synthesis of SOD-Zn(CF3-Im)2 was
monitored by in situ XRD to gain insights in the formation

Scheme 1 | Scheme of the acetate ILAG route to obtain Zn (2Me-Im)2 (ZIF-8) and SOD-Zn0.9Co0.1 (2Me-Im)2, depending on the added metal acetate salt. The
reaction conditions are summarized above the reaction arrow after ref. (Michalchuk et al., 2021).

FIGURE 2 | XRD patterns of as-synthesized ZIF-8 and SOD-Zn0.9Co0.1
(2Me-Im)2 by the acetate ILAG route (both black), bothmatching the simulated
pattern of ZIF-8 (green).
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process. The in situ plot shows the one-step formation of SOD-
Zn(CF3-Im)2 under LAG with DMF (Supplementary Figure S6).
The intensity of starting materials reflections ((200) of
Zn5(CO3)2(OH)6 and (021) of H-CF3-Im) decreases over time,
with increasing intensity of the (110) reflection of the SOD
polymorph of Zn(CF3-Im)2. After approximately 6 min, the
intensities of the present phases reach a plateau with little
variance, correlating to the sample amount in the beam.
Moreover, no conversion of the SOD polymorph into the qtz
polymorph can be observed within the observed time frame.

Co-Doping of Zn(CF3-Im)2 by Acetate ILAG/
LAG Route
To achieve Co-doping into the Zn(CF3-Im)2, we modified the
synthesis, replacing 10 mol% of the total metal amount with

cobalt acetate tetrahydrate, while keeping the milling conditions
of the undoped -Zn(CF3-Im)2 (Scheme 4). Both polymorphs of
Zn(CF3-Im)2 were successfully prepared by the herein presented
route, in 100-mg as well as 1-g scale (Figure 5).

FIGURE 3 | In situ XRD plot of the formation of SOD-Zn0.9Co0.1 (2Me-Im)2 (center). For comparison, the simulated XRD patterns of starting materials (bottom) and
the product (top) are shown, as well as the intensities of selected reflections of each present phase.

Scheme 2 | ILAG of ZnO with H-CF3-Im, leading to the dense qtz
polymorph of Zn(CF3-Im)2.

FIGURE 4 | XRD of as-synthesized powders by DMF LAG and MeOH
ILAG (both black) and simulated diffractograms of SOD-Zn(CF3-Im)2 (green)
and qtz-Zn(CF3-Im)2 (red), indicating full conversion by ball milling.
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XRD was also performed for the MeOH-ILAG route to qtz-
Zn0.9Co0.1(CF3-Im)2. The data in Figure 6 can be divided into
several phases. In the first phase until 1 min, the intensity of

starting material rises, due to more powder being in the beam.
Furthermore, the (110) reflection of SOD-Zn0.9Co0.1(CF3-Im)2
appears but stays weak. Afterward, the intensity of starting
materials and SOD-Zn0.9Co0.1(CF3-Im)2 decreases, until three
minutes of milling time, where no crystalline phase is present any
longer. From 5 min on the crystallization of qtz-Zn0.9Co0.1(CF3-
Im)2 begins, visible by the rising of its (100) reflection. The single
product’s maximum intensity is reached at 6.5 min, and no
further changes in sample composition can be detected; thus,
full conversion is reached.

As the DMF LAG conditions produce the pure SOD-polymorph
of Zn0.9Co0.1(CF3-Im)2 we also investigated the formation process by
in-situ XRD. In a first phase until 30 s milling time, only the starting
materials can be observed. In the second phase, their reflection
intensities rise, as the milling process provides more powder into
the beam. Furthermore, the (110) reflection of SOD- Zn0.9Co0.1(CF3-
Im)2 appears, and its intensity rises until 1 min milling time, where it
reaches a first plateau. The following phase is characterized by the
gradual decrease of starting materials reflections and increase of the
reflections of SOD-Zn0.9Co0.1(CF3-Im)2. After 6 min milling time, all
starting materials reflections are disappeared, and after 7 min the
(100) reflection of SOD- Zn0.9Co0.1(CF3-Im)2 plateaus a second time.
This indicates the completion of the reaction, as no further changes,
the conversion into the qtz-polymorph, can be observed (Figure 7).

Carbonization of ZIFs is known as a method to produce
nitrogen, and metal-doped carbon material (NMC) that can be
applied is ORR electrocatalysis. The herein presented MOFs

Scheme 3 | Synthesis scheme of both polymorphs of Zn(CF3-Im)2. Depending on the grinding conditions the product can be obtained as dense qtz- or porous
SOD polymorph.

Scheme 4 | Modified synthesis route for Co-doping of both polymorphs of Zn0.9Co0.1(CF3-Im)2 by ball mill grinding.

FIGURE 5 | XRD data of as-synthesized powders of Zn0.9Co0.1(CF3-
Im)2, in 100-mg and 1-g scale (all black) prepared by Scheme 5, with the
respective goal structures SOD-Zn0.9Co0.1(CF3-Im)2 (green) and qtz-
Zn0.9Co0.1(CF3-Im)2 (red).
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FIGURE 6 | In situ XRD plot of the formation of qtz-Zn0.9Co0.1(CF3-Im)2 (center). For comparison, the simulated XRD patterns of starting materials (blue, bottom)
and the products (green, top) are shown. The intensities of chosen reflections of the present phases are plotted on the right.

FIGURE 7 | In situ XRD of Zn5(CO3)2(OH)6, Co(OAc)2 · 4 H2O, and H-CF3-Im under DMF LAG conditions, yielding (center). For comparison, the simulated XRD
patterns of starting materials (blue, bottom) and the product (green, top) are shown. The intensities of chosen reflections of the present phases are plotted on the right.
XPS studies on pristine and carbonized MOFs.
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were therefore carbonized in a thermoscale with literature-
known parameters. The samples are heated under a nitrogen
atmosphere from room temperature to 900°C, where they are
kept for 1 h, followed by a natural cool-down. Ex situ XPS was
performed at the pristine MOFs and the pyrolysis products to
obtain the elemental composition. As a surface-sensitive
technique, XPS provides information about the outermost
10 nm of the samples. As a clear trend, it could be found
that the amounts of nitrogen, fluorine, and zinc decrease, most
likely due to these elements leaving by decomposition
processes of the materials. As a direct consequence, the
relative amount of carbon and oxygen rises. All Co-
containing samples retain it in the same order of magnitude
(Figure 8, 9).

The data of the fluorinated samples show for the carbonized
materials the presence of two types of fluorine, metal-bound
inorganic fluorine, and carbon-bound organic fluorine. In the
carbonized Zn0.9Co0.1(CF3-Im)2, the organic fluorine outweighs
the inorganic with a ratio of 9:1.

The high-resolution spectra of Co2p photoelectron show a Co
2p3/2 peak at 780.5 eV and the satellite structure typical for Co2+

(Biesinger et al., 2011). For Zn, the Zn 2p3/2 peak at 1,022 eV was
observed, which can be explained with bivalent Zn (Biesinger
et al., 2010). For the pyrolyzed samples, some graphitization was
observed indicated by the appearance of the typical shake up peak
related to the π → π * transition at 292 eV (see Supplementary
Figures S9–S11).

Electrochemical Investigations, Oxygen
Reduction Reaction Catalysis
The performance of the ORR of pyrolyzed qtz-Zn0.9Co0.1(CF3-
Im)2 and SOD-Zn0.9Co0.1(CF3-Im)2 was evaluated using the
RDE. Figure 10 presents the ORR polarization curves measured

in O2-saturated 0.1 M KOH and 0.1 M HClO4 electrolytes. In
HClO4, both pyrolyzed Co-doped ZIFs exhibit a similar ORR
activity with an onset potential of 0.67 V versus SHE for
pyrolyzed qtz-Zn0.9Co0.1(CF3-Im)2 and a higher onset
potential of 0.70 versus SHE for pyrolyzed SOD-
Zn0.9Co0.1(CF3-Im)2 (Figure 10A). The half-wave potential
gap between them was 22 mV, revealing a slightly higher
activity of pyrolyzed SOD-Zn0.9Co0.1(CF3-Im)2. In 0.1 M
KOH, the pyrolyzed SOD-Zn0.9Co0.1(CF3-Im)2 shows again a
better activity toward the ORR in comparison to pyrolyzed qtz-
Zn0.9Co0.1(CF3-Im)2. The onset potential of pyrolyzed SOD-
Zn0.9Co0.1(CF3-Im)2 was found to be 0.12 V versus SHE with a
half-wave potential of 0.0 V, whereas pyrolyzed SOD-
Zn0.9Co0.1(CF3-Im)2 exhibits a lower onset potential of
0.06 V versus SHE with a half-wave potential of −0.11 V. The
half-wave potential gap between both systems was 0.10 mV.
Furthermore, ORR polarization curves were measured under
different rotation speeds and are presented in Supplementary
Figure S8. The electrocatalytic activity in O2-saturated
electrolytes was decreasing with the decrease in rotation rate,
whereas almost no activity was observed in N2-saturated
electrolytes. Our results indicate that both materials show
electrocatalytic activity for ORR; however, no significant
performance improvement was evident, depending on the
polymorph of Zn0.9Co0.1(CF3-Im)2 precursor.

Summary
In this work, we present the synthesis of the first Zn0.9Co0.1(CF3-
Im)2 frameworks by ball milling. Optimizing the grinding
parameters allowed us to selectively produce polymorphs of
Zn0.9Co0.1(CF3-Im)2. Moreover, the formation was monitored
in situ by synchrotron XRD measurements along with the
formation of ZIF-8, Zn0.9Co0.1 (2Me-Im)2, and Zn(CF3-Im)2
frameworks. In Figure 11, a summary of milling times and
conversion rates for the synthesis of ZIF-8, Zn0.9Co0.1 (2Me-
Im)2, and Zn(CF3-Im)2 and Zn0.9Co0.1(CF3-Im)2 (both in qtz-

FIGURE 8 | Relative elemental composition of pristine ZIFs (red) and
after pyrolysis (grey). Due to decomposition the amount of N, F and Zn
decrease, while C and O rise. All Co-containing samples retain Co in the same
order of magnitude.

FIGURE 9 | Fluorine content of pristine (red) and carbonized (grey)
Zn0.9Co0.1(CF3-Im)2 in qtz- (left) and SOD- (right) topologies.
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and SOD-topologies, respectively) is given. The data showed for
all the reactions one-step transformations from starting materials
into products.

Furthermore, we investigated the chemical composition
after carbonization of the prepared ZIFs, finding residue
fluorine, mostly of organic nature. The pyrolyzed
Zn0.9Co0.1(CF3-Im)2, both in qtz and SOD topology, was
successfully used as ORR electrocatalysts in acidic and
alkaline media. However, no significant differences in ORR
activity for both polymorphs of pyrolyzed Zn0.9Co0.1(CF3-
Im)2 could be observed.
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