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Chemical reactions are responsible for information processing in living organisms, yet
biomimetic computers are still at the early stage of development. The bottom-up design
strategy commonly used to construct semiconductor information processing devices is
not efficient for chemical computers because the lifetime of chemical logic gates is usually
limited to hours. It has been demonstrated that chemical media can efficiently perform a
specific function like labyrinth search or image processing if the medium operates in
parallel. However, the number of parallel algorithms for chemical computers is very limited.
Here we discuss top-down design of such algorithms for a network of chemical oscillators
that are coupled by the exchange of reaction activators. The output information is
extracted from the number of excitations observed on a selected oscillator. In our
model of a computing network, we assume that there is an external factor that can
suppress oscillations. This factor can be applied to control the nodes and introduce input
information for processing by a network. We consider the relationship between the number
of oscillation nodes and the network accuracy. Our analysis is based on computer
simulations for a network of oscillators described by the Oregonator model of a
chemical oscillator. As the example problem that can be solved with an oscillator
network, we consider schizophrenia diagnosis on the basis of EEG signals recorded
using electrodes located at the patient’s scalp. We demonstrated that a network formed of
interacting chemical oscillators can process recorded signals and help to diagnose a
patient. The parameters of considered networks were optimized using an evolutionary
algorithm to achieve the best results on a small training dataset of EEG signals recorded
from 45 ill and 39 healthy patients. For the optimized networks, we obtained over 82%
accuracy of schizophrenia detection on the training dataset. The diagnostic accuracy can
be increased to almost 87% if the majority rule is applied to answers of three networks with
different number of nodes.
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1 INTRODUCTION

It is known that chemical reactions are responsible for acquiring
information, transmitting it, and decision-making in living
organisms. However, the number of man-written algorithms
that can be efficiently executed using a chemical medium
Adleman, (1994); Kuhnert (1986), Kuhnert et al. (1989);
Steinbock et al. (1995); Agladze et al. (1997); Vazquez-Otero
et al. (2012) is quite limited. We believe that the difficulties in
practical applications of chemical computers are mainly caused
by the fact that an efficient strategy for signal coding using a
chemical medium has not been developed yet. The most popular
approach to chemical computing imitates information processing
with semiconductor devices. In semiconductor devices,
information is binary coded in different values of electric
potentials.

The success of semiconductor technology came as the
consequence of the highly efficient realization of
semiconductor binary logic gates. Such gates are characterized
by a long time of error-free operation. The semiconductor gates
can be assembled together inside an integrated circuit, producing
more complicated information processing devices. The bottom-
up design strategy Feynman et al. (2000) perfectly matches the
technology; complex devices are made as a concatenation of
simpler ones. On the contrary, chemical logic gates Toth and
Showalter (1995); Steinbock et al. (1996); Sielewiesiuk and
Gorecki (2001); Adamatzky et al. (2002) are not small nor
fast. The time of their reliable operation is measured in hours,
not in years. It seems very hard to make a chemical medium
where millions of gates are combined together and work as
planned for a long time.

Here we describe and discuss an example of chemical
computation based on non-binary information coding. The
presented results are based on numerical simulations of the
time evolution of the considered computing medium. Such an
approach has been motivated by similarities between nerve
signals and propagating pulses in a spatially distributed
medium in which Belousov-Zhabotinsky (BZ) reaction
proceeds Gorecki (2015). The BZ-reaction is catalytic
oxidation of an organic substrate in an acidic environment
Belousov (1959); Zhabotinsky (1964); Field and Burger (1985);
Epstein and Pojman (1994). Two stages of BZ reaction can be
visually identified. One of these stages is the fast oxidation of the
catalyst. The other is a slow reduction by an organic substrate.
The color of the solution of BZ-medium reflects concentrations of
catalyst in the oxidized and reduced forms. Therefore, the
nonlinear behavior of the medium as oscillations between
reduced and oxidized states, propagation of the region
characterized by a high concentration of oxidized catalyst, or
appearance of spatio-temporal patterns can be easily observed. In
a spatially distributed medium, where BZ-reaction proceeds, a
local excitation corresponding to the high concentration of
HBrO2 can propagate in space in the form of the concentration
pulse. This type of behavior resembles the propagation of
nerve impulses in living organisms. As a result, the BZ-
reaction has attracted attention as a medium for
experiments with neuron-like chemical computing

Adamatzky et al. (2005); Gorecka and Gorecki (2006).
Within the most popular approach to chemical computing
with BZ-medium, it is assumed that information is transmitted
by propagating pulses of the oxidized form of catalyst. For a
binary coding, the presence of a pulse represents the logic
TRUE state, and the state with a low concentration of the
catalyst in the oxidized form is the logic FALSE state Field and
Burger (1985); Epstein and Pojman (1994).

If the ruthenium complex (Ru(bpy)2+3 ) is used as the reaction
catalyst, then BZ-reaction becomes photosensitive Kadar et al.
(1997). Oscillations can be inhibited by light. For the same initial
concentrations of reagents, the medium can oscillate at dark and
show an excitable behavior at a low light intensity. And it
converges to a steady-state when it is strongly illuminated.

In a medium with photosensitive BZ-reaction excitable
channels in which signals can propagate can be formed by
specific illumination of a spatially distributed medium. Using a
suitable geometry of excitable and non-excitable channels, one
can force an appropriate type of interactions between excitations
and, for example, make a signal diode Agladze et al. (1996), a
memory cell, or logic gates Adamatzky et al. (2005); Yoshikawa
et al. (2009). However, in typical applications, such gates are big
(with an area of about 1 cm2), and a single operation takes more
than 10 s Epstein and Pojman (1994). Therefore, the bottom-up
approach from gates to complex information processing tasks
does not look promising if the binary is used with BZ-medium.

Recent studies have demonstrated that an oscillating BZ-
reaction can be efficiently applied for information processing
Smelov and Vanag (2018); Vanag VK. (2019); Proskurkin et al.
(2020); Egbert, (2019); Duenas-Diez and Perez-Mercader (2019);
Duenas-Diez and Perez-Mercader (2020). For example, it has
been shown that a network of interacting chemical oscillators can
be trained to perform classification tasks with a reasonable
accuracy Gruenert et al. (2015); Gizynski and Gorecki (2017a).
To illustrate the problem, let us consider a databaseDA composed
of N records:

DA � p1
n, p

2
n, . . . , p

k
n, qn( ), n � 1, N{ } . (1)

The records have a form of (k + 1) tuples (p1
n, p

2
n, . . . , p

k
n, qn),

where the first k elements are predictors and the last element (qn)
is the discrete record type. A classifier of DA is supposed to return
the correct data type if the predictor values are used as the input.

We can easily define the predictor values and the corresponding
record type for many life-inspired classification problems, but usually
we do not know how to relate both quantities. For example, the needs
of medical diagnostic belong to such class of problems. The input
information (the predictor values (p1

n, p
2
n, . . . , p

k
n)) are collected from

severalmedical tests on the patient #n.On this ground,we are expected
to conclude if the patient is healthy or not (the value of qn). Our
knowledge of the relationship between input (results of medical tests)
and output (patient’s health condition) is based on previously
accumulated examples. For such problems, the top-down design
strategy Gizynski et al. (2016) of a chemical computing medium
seems to be more beneficial than the bottom-up one.

Let us assume we have selected a classification problem to
be solved. In the following text, it is the determination if a

Frontiers in Chemistry | www.frontiersin.org February 2022 | Volume 10 | Article 8486852

Bose and Gorecki Computing With Chemical Oscillators

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


patient has schizophrenia or not. To apply the top-down
strategy, we should decide about the medium that is
supposed to perform the classification. Here we assume that
a network of interacting chemical oscillators can
approximately solve the determination of schizophrenia
problem. We do not know which network is the best for
this task, so we considered a few simple networks illustrated
in Figure 2. We selected these particular networks because our
previous studies indicated that for a fixed number of modes, a
large number of connections in increases the accuracy. All
networks can include nodes (oscillators) of two types Gizynski
and Gorecki (2017a); Gizynski et al. (2016); Gizynski and
Gorecki (2016). The input nodes belong to the first type.
They are used to introduce the values of predictors into the
network. If a node is assigned as the input of the ith predictor,
then its oscillations are suppressed for the time interval of
length related to the value of pi. There are also so-called normal
oscillators that are inhibited for a fixed time that is not related
to the predictor value. These normal oscillators moderate
interactions between oscillators in the medium and
optimize the network to solve a specific problem. The time
intervals during which their activity is suppressed do not
depend on the input. These time intervals define the
program executed by the network. For the analysis
presented below, we assume that the output information is
coded in the number of oscillation cycles observed on a given
node. The choice of the output oscillator follows directly from
the network optimization. The complete definition of a
computing network includes the number of oscillators in
the network, their types, locations, the information about
the time intervals they are active, and the information
about interactions between oscillators.

Obviously, a network with randomly selected parameters
has a small chance to work as a good classifier. We have to
optimize its parameters (i.e., to teach a network) to perform
the selected function. Teaching means that we need a teacher,
and in our optimization, it is a specific database TA that

contains diagnostic results and information if a patient is ill
or healthy EEG (n. d.). In the following, we do not change the
number of oscillators in a network nor modify the geometry of
interactions between them.

The application of the top-down strategy to the considered
networks means that the parameters such as locations of the input
and normal oscillators, inhibition times for the normal oscillators,
the method for inputting the values of predictors, or the
parameters of reactions responsible for interactions between
oscillators are the subjects of optimization. The optimization is
supposed to achieve the best match with a representative
(training) dataset of cases TA. We have found Gruenert et al.
(2015); Gizynski and Gorecki (2017a); Gizynski et al. (2016);
Gizynski and Gorecki (2016) that evolutionary optimization
oriented on obtaining the best classifier for a representative
training dataset of the problem can lead to a computing
network that performs the anticipated task with reasonable
accuracy.

In previous papers on chemical database classifiers
Gruenert et al. (2015); Gizynski and Gorecki (2017a);
Gizynski et al. (2016); Gizynski and Gorecki (2016) an
oversimplified event-based-model reflecting the basic
features of the oscillator time evolution and of interactions
between oscillators coupled by mutual activations was used.
The event-based-model divides an oscillation cycle into three
phases: excitation, refractory and responsive phase. It also
assumes a sharp difference between these phases. An
oscillator in the refractory phase is not susceptible to
stimulations by interacting oscillations. However, the event-
based-model allows for the excitation of an oscillator in the
responsive phase that is in contact with an excited oscillator. In
this paper, we consider a more realistic model. We represent
the time evolution of an individual oscillator using the two-
variable Oregonator model I. R. Epstein and Pojman (1994);
Field and Noyes (1974) of the photosensitive Belousov-
Zhabotinsky (BZ) reaction.

FIGURE 1 | Illumination ϕj(t) (blue curve) and time evolution of u1(t) (red
curve) in the time interval [0,99.3] predicted by Eqs 2, 3 with the considered
Oregonator parameters and tillum (1)=28.4.

FIGURE 2 | Geometries of oscillator networks considered for the
schizophrenia diagnosis. The disks represent individual oscillators that can act
as input oscillators or normal ones. Arrows show interactions among the
oscillators. The numbers are used to mark individual oscillators in the
following description of results. (A) 3-oscillator network, (B) 4-oscillator
network, (C) 5-oscillator network, (D) 6-oscillator network.
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If we neglect interactions with the other oscillators of the
network, then equations describing the time evolution of jth
oscillator are:

duj

dt
� 1

ε
(uj − u2

j − fvj + ϕj t( )( ) uj − q

uj + q
) (2)

dvj
dt

� uj − vj (3)

Where the variables uj and vj represent concentrations of
an activator (Uj) and an inhibitor (Vj) for proceeding
reactions. The parameter ε sets up the ratio of time scales
for variables u and v, q is a scaling constant, and f is the

stoichiometric coefficient. We used the same values of model
parameters for all oscillators in the network in our
simulations: ε = 0.2, q = 0.0002, and f = 1.1. The
parameters of the Oregonator model were fixed and did not
undergo optimization.

If we assume that the time evolution of oscillators is described
by a model of photosensitive BZ-reaction, then oscillators can be
individually controlled by illumination, and we include this
feature into the considered model as the time-dependent
function ϕj(t) in Eq. 2. The time-dependent function ϕj(t) that
describes the influence of illumination on an oscillator is
proportional to the light intensity. We considered ϕj(t) in the
form:

FIGURE 3 | Schematic representation of positions of different electrodes used for recording EEG potentials. The potentials derived from the marked red channels
were used to generate predictors in the training dataset TS.
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ϕj t( ) � 0.1 · 1.001 + tanh −10 · t − tillum j( )( )( )( (4)
In this definition tillum(j) > 0 defines illumination of the jth

oscillator. In the time interval [0, tillum(j) − δ] (δ = 0.1) the value
of ϕj(t) is high (~ 0.2). The Oregonator model with parameters
given above predicts a stable steady state corresponding to uj =
0.0002 and vj = 0.0002. For long times (t > tillum(j) + δ) the value
of ϕj(t) approaches 0.0001 what corresponds to oscillations with
the period of approximately 10.8 time units. The value of δ
describing the speed of transition between the steady state and
oscillations can be reduced by increasing the multiplier under
tanh () function. In order to extract the answer of a classifier we
consider the number of activator maxima within the time
interval Z = [0, tmax]. It can be noticed that Eq. (4) has a
physical meaning for any value of tillum(j). If tillum(i) < 0 then
ϕi(t) is small and the oscillator #i is active during the whole
observation interval. When tillum(k) > tmax than ϕk(t) is large and
the oscillator #k is blocked within Z and does not oscillate.
Figure 1 shows the time evolution of activator u1(t) predicted by
Eqs 2 and 3 with tmax = 99.3 and tillum (1) = 28.4 (cf. Table 3). As
seen for such parameters, oscillations restart just after tillum (1),
and the system produces seven activator maxima within the
observation time interval.

In the investigated networks the values of tillum(j) for normal
oscillators were fixed. On the other hand, if an oscillator was
considered as the input of pi (i = 1, 2) then tillum(j) was an affine
function of pi (cf. Eq. 7). Such function is defined by two
parameters tstart and tend and it has the form:

tillum j( ) � tstart + tend − tstart( ) · pi (5)
We assumed that tstart and tend are the same for all predictors in

the considered schizophrenia records (p1 and p2).
It was demonstrated that even a small network composed of 16

or fewer oscillators, with the time evolution of mutual excitations
described by the event-based-model could be used to diagnose if a
cancer cell is malignant or benign Gizynski and Gorecki (2017a).
In this report, we concentrate on designing a network of
oscillators that can determine whether the patient has
schizophrenia. Schizophrenia is one of the most common
forms of psychotic behavior. The patients experience
hallucinations, delusion, or disorganized speech. However,
schizophrenia is difficult to detect Siebenhuhner et al. (2013).
It is believed that the analysis of EEG signals recording brain
activity can help to verify if a patient is ill or healthy Ben
et al. (2007). The relevant EEG signals were recorded from
electrodes placed in different parts of the scalp (see Figure 3).
We postulate that a network of interacting chemical
oscillators in the form presented in Figure 2 can process the
information extracted from the EEG signals and help diagnose
schizophrenia. Preliminary results obtained using the network
illustrated in Figure 2D were reported in the extended abstract
of the ASPAI 2020 Conference Bose and Gorecki (2020). For
the database TA, available on the web EEG (n. d.) containing
signals recorded on N = 84 patients, out of which Nh = 39
were healthy and the other had symptoms of schizophrenia
(Ns = 45) the optimized classifier returned 82% correct answers.

FIGURE 4 | The distribution of records in the TS database in the (p1, p2) coordinates. Blue and red crosses correspond to schizophrenic and healthy cases,
respectively.
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The extended study on the schizophrenia classifier in the
network’s pentagon geometry (Figure 2D) was published in
the International Journal of Unconventional Computing
(IJUC) Bose and Gorecki (2021). In this IJUC paper, we also
studied if the classification accuracy can be improved by
dividing the whole recorded signal into 3 shorter (20 s long)
parts and processing these shorter signals separately. Separated
networks with Figure 2D geometry were optimized for each
time subinterval within 500 generations of evolution. Next, the
majority procedure was applied to obtain the final classification
results. Such a method increased the classification accuracy of
records in TA to 90%. In the current report, we investigate if the
classification accuracy can be improved by the network
geometry. The results of schizophrenia diagnosis using
classifiers with geometries illustrated in Figures 2A–C are

new and have not been previously reported. Moreover, the
presented results for the pentagon geometry differ from those
published because the genetic optimization was performed for
260 more steps than in Bose and Gorecki (2021) and a new
maximum of fitness was achieved during these additional steps.
Therefore the pentagon-shaped classifier has a different
structure than previously reported.

The manuscript is organized as follows. Transformation of
EEG Signals Into the Input Data describes how the input data are
extracted from the EEG signals. In Numerical Model of
Information Processing Network, we present a numerical model
for the simulation of network time evolution. Network
Optimization and Results gives details of network
optimization. The conclusions and suggestions for the future
development of the networks for schizophrenia diagnosis are
presented in the following Conclusion and Discussion.

2 TRANSFORMATION OF EEG SIGNALS
INTO THE INPUT DATA

The considered networks were small, and there was no room
for too many input variables because each predictor requires
its input oscillator. We used the signals recorded from F7 and
F8 channels marked red in Figure 3 as the inputs for
schizophrenia detecting networks described below. Such
choice is motivated by previous studies indicating that the
signals obtained from the frontal lobe of the brain reveal the
difference in the brain activity between a schizophrenic patient
and a healthy subject Ben et al. (2007).

The EEG signals were recorded with a sampling rate of
128 Hz for 1 min. The medical EEG test of each patient
produced 16 data files corresponding to signals recorded on
different electrodes. Each data file contained K = 7,680 values of
recorded potential (in μV). The time between consecutive
potential values is Δt = 7.812 5ms. Let Vl (n, k) denote the
potential recorded for nth patient, on the lth electrode and at the
time tk = k ·Δt. To reduce the size of input data, we averaged the
recorded signals. Therefore, each signal was trimmed to a single
number. We assumed that time average signals provide us with a
sufficient amount of information to diagnose schizophrenia.
The averaged potentials were defined as:

xl
n � ∑K

k�0
Vl n, k( ) (6)

FIGURE 5 | Results for 3-oscillator network (cf. Figure 2A): (A) The
progress of optimization; the Fitness as a function of generation number. (B)
The structure of the optimized network. The disk within a black circle is the
normal oscillator. The ratio between the surface of the red shaded part
and the disk surface represents the ratio between tjillum and tmax. In1 and In2
mark inputs for p1 and p2. The disk with the green circle inside is the output
oscillator. (C) The mutual information I (G; Oj) for j ∈{1,2,3}. The mutual
information has the maximum at the oscillator #3. (D) The distribution of the
numbers of cases for which a given number of activator maximawas observed
on oscillator #3. Colors indicate records representing schizophrenic and
healthy patients.

TABLE 1 | Parameters of the optimized 3-oscillator network.

Parameter Value

tmax 99.8
tstart 42.5
tend 6.3
α 0.89
β 0.36
tillum (1) 92.5
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Next, the time averaged potentials recorded for the whole set
of patients were normalized. We introduced:

μl � 1
N

∑N
n�1

xl
n

and

σ l �

																
1

N − 1
∑N
i�1

xl
n − μl( )2√√

The values of predictors p1
n and p2

n for the patient n were
defined as:

p1
n �

xF7
n − μF7

σF7
, p2

n �
xF8
n − μF8

σF8
(7)

In the above equations μF7 = 7.724 μV, μF8 = 2.46 μV, σF7 =
20.3 μV and σF8 = 15.10 μV.

As a result, the problem of schizophrenia diagnosis is
reduced to the best classification of the training dataset:
TS � {(p1

n, p
2
n, qn), n � 1, N}where the record type qn = 0 for a

schizophrenic patient and qn = 1 for a healthy subject.
The distribution of records in the Ts database in the (p1,
p2) coordinates is illustrated in Figure 4. Blue and red
crosses correspond to schizophrenic and healthy cases,
respectively. It can be seen that the points corresponding

to different cases are not separated, which makes their
classification difficult.

In our study, we also considered predictors generated using
combinations of signals recorded on other electrodes, but for
those, the classification accuracies on corresponding datasets
were lower.

3 NUMERICAL MODEL OF INFORMATION
PROCESSING NETWORK

The time evolution of reactions proceeding in a single
oscillator was described by the two-variable Oregonator
model (Eqs 2 and 3). We assumed that interactions
between the oscillators #k and #j appeared as the results of
reactions involving the activators Uk and Uj of these
oscillators:

Uj + Bj → Uk + Ck (8)
Uk + Bk → Uj + Cj (9)

with identical reaction rate constant kB.
We also assumed that the activator of each reaction could

spontaneously decay in the binary reaction:

Uj +Dj → products (10)

FIGURE 6 | The distribution of correctly and incorrectly classified cases for 3-oscillator network (cf. Figure 2A) in the phase space (p1, p2).
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with the rate constant kD. In the equations above symbols
B, C and D denote other molecules involved in these
reactions. Reactions (8–10) involving species B, C and D are
formally introduced to explain chemical communication
between nodes and to justify the mathematical description
of it.

Therefore, the changes in concentrations of Uk and Uj as the
result of reactions (8 and 9) are:

duj

dt
� −kBbjuj (11)

duk

dt
� −kBbkuk (12)

and the changes in concentration ofUj as the result of reaction (10) is:

duj

dt
� −kDdjuj (13)

In Eqs 11–13 bj, bk and dj denote concentrations of Bj, Bk
and Dj, respectively. We assume that these concentrations

were high with respect to concentrations of activators
involved and the same for all oscillators. Therefore, the
concentrations of B, C, and D were regarded as constant
during the network evolution, and there is no need to
include them in the model of network evolution. Let us
introduce symbols α and β defined as: α = kDdj and β = kBbj.
Keeping in mind that values of α and β can be modified by
concentrations of Bj andDj, we can treat them as free parameters
that can be easily adjusted. Therefore, the values of α and β can
be included in the optimization procedure. The same
mathematical description of interactions between nodes
applies for controlled exchange of reaction mixtures between
nodes and outflow of activator in a system with immobilized
catalyst.

Within our model the time evolution of the network is
described by the following set of kinetic equations:

duj

dt
� 1
ε

uj − u2
j − fvj + ϕj t( )( ) uj − q

uj + q
( )

−(α + β ∑
i�1,m

sj,i)uj + β( ∑
i�1,m

sj,iui)
(14)

dvj
dt

� uj − vj (15)

The last two terms in Eq. 14 represent the coupling in between ith
and jth oscillators and the activator decay. The symbols sj,i are
defined as:

sj,i = 0 if j = i or if j ≠ i and oscillators #j and #i do not interact,
sj,i = 1 if j ≠ i and oscillators #j and #i do interact.
The set of Eqs 14 and 15 describes the network evolution after

all parameters characterizing the medium including tillum for all
oscillators are known.

A classifier is supposed to produce an answer within a
finite time. However we do not know it. Therefore, the time
tmax that defines the interval of time for which the network
evolution is observed [Z = (0, tmax)] is one of the optimized
parameters of a classifier. We postulate that information
about patient health is extracted from the number of
activator maxima recorded on a selected oscillator of the
network, during the time interval Z. In order to find which
oscillator should be used as the output one we calculate the
mutual information I (G; Oj) Cover and Thomas (2006)
between the discrete random variable G of record types in
the training dataset TS (G = {qn, n = 1, N}) and the discrete
random variable Oj of the number of activator uj maxima
oj(n) observed on the jth oscillator in the network when the
predictors of nth database record are used as the network

FIGURE 7 | Results for 4-oscillator network (cf. Figure 2B): (A) The
progress of optimization; the Fitness as a function of generation number. (B)
The structure of the optimized network. Notation as in Figure 5B. (C) The
mutual information I (G; Oj) for j ∈{1,2,3,4}. The function j → I (G; Oj) has
the maximum at j =1. (D) The distribution of the numbers of cases for which a
given number of activator maxima was observed on oscillator #1 for records
representing schizophrenic and healthy patients.

TABLE 2 | Parameters of the optimized 4-oscillator network.

Parameter Value

tmax 94.1
tstart 57.7
tend 11.5
α 0.61
β 0.36
tillum (1) 59.6
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input (Oj = {oj(n), n = 1, N}). The mutual information I (G;
Oj) can be calculated as:

I G;Oj( ) � H G( ) +H Oj( ) −H G,Oj( ) (16)
where H () is the Shannon information entropy Shannon
(1948) and the discrete random variable (G, Oj) = {(qn,
oj(n)), n = 1, N}. The oscillator #i for which the mutual
information between G and Oi is maximal is used as the
network output. The mutual information calculated for the
output oscillator was considered as the measure of network
fitness:

Fitness � maxjI G;Oj( ) (17)
It can be expected that in the majority of cases the optimization
based on the mutual information leads to a classifier with the
highest accuracy Gorecki (2020).

4 NETWORK OPTIMIZATION AND
RESULTS

4.1 Network Optimization
The network parameters as locations of input and normal
oscillators, tmax, tstart, tend, the values of tillum(j) for normal
oscillators and the rates α, β were subject of optimization.

Following the idea of information coded in spikes Quiroga
et al. (2009); Ghosh-Dastidar and Adeli (2009); Vidybida
(2011) and the design of chemical classifiers described in
Gruenert et al (2015) we optimized the system parameters
using an evolutionary algorithm Koza (1989); Fogel (1994). In
our calculations, the population of 200 networks was
considered. In the beginning, the population of networks
was randomly generated. The fitness of each network was
calculated using the whole training dataset TS as defined in
Eq. 17.

The next generation of classifiers also consisted of 200
elements. It included 2% of the fittest networks from
the previous generation that were copied without changes.
The remaining 98% elements of the next generation were
offsprings created by recombination and mutation
operations applied to oscillators from the top 40% networks
of the previous population. For recombination, two networks
were selected and randomly separated into two parts. The
separation into parts was identical for both networks. Next, an
offspring was generated by combining one part of the first
network with the other part of the second one. At this step, the
function of an oscillator (input, normal) and illumination
times of normal oscillators were copied to the offspring.
The values of tmax, tstart, tend, α and β were randomly
selected from the parent oscillators and copied to the
offspring.

FIGURE 8 | The distribution of correctly and incorrectly classified cases for 4-oscillator network (cf. Figure 2B) in the phase space (p1, p2).
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As the next step, mutation of the parameters of the newborn
offspring was considered. We allowed for mutation on the rate of
coupling between oscillators (β) and the rate of formation of
product(α). The probability of mutation rate was 0.5 per step. The
mutated values of α and β were the sum of a half of their old
values and a random number.

We introduced no constraints on the oscillator types.
The recombination procedure could produce an offspring
without any input oscillators. It was also possible there
were no normal oscillators in the offspring. The fate of
such pathological offsprings was decided by its Fitness.
If it was lower, then the offspring did not qualify into
the 40% of networks, and the information about it was

not used when the next generation of the networks was
created.

The procedure described above was repeated for 1,000
generations. The classifiers discussed in the following were the
fittest ones after completing the optimization.

4.2 Optimized Networks With Different
Numbers of Chemical Oscillators for
Schizophrenia Diagnosis
Now, let us present the optimized classifiers of geometries
illustrated in Figure 2. We studied the time evolution of
the networks by numerical solution of Eqs 14 and 15 using
Cash-Karp R-K45 method William press et al (1992) with
h = 10–3 time steps. The number of activator maxima oj(n)
was calculated as the number of uj(t) maxima larger than
0.05, observed when the predictors p1

n, p
2
n were used as

the input.
Figure 5A shows the progress of optimization as the function

of number of generations for the network composed of three
oscillators. The increase in Fitness is fast for the first few
generations. Next, it changes into randomly distributed
jumps with decreasing amplitude and frequency. Such
dependence of the Fitness is typical for genetic optimization
of classifiers Gruenert et al. (2015); Gizynski and Gorecki
(2017a). The Fitness observed after 1,000 optimization steps
was 0.417 bit. The parameters describing the best classifier are
given in Table 1.

Figure 5B illustrates the structure of the optimized
classifier. It is interesting to notice that the normal
oscillator remained non-active for the majority of the time
when the network evolution was observed. This feature is
reflected by the values of I (G; Oj) shown in Figure 5C. The
value of I (G; O1) is very small, which means that the activity of
the oscillator #1 gives little information about the patient
health. The value of I (G; O3) = 0.417 is the maximum one;
thus, the oscillator #3 was selected as the output one.
Figure 5D shows the distribution of numbers of activator
maxima observed on the oscillator #3 for schizophrenic and
healthy patients. This result suggests the following
classification rule: a patient is healthy if the number of

FIGURE 9 | Results for 5-oscillator network (cf. Figure 2C): (A) The
progress of optimization; the Fitness as a function of generation number.
(B) The structure of the optimized network. Notation as in Figure 5B. (C)
The mutual information I (G; Oj) for j ∈{1,2,3,4,5}. The function j →
I (G; Oj) has the maximum at j =3. (D) The distribution of the numbers
of cases for which a given number of activator maxima was observed
on oscillator #3 for records representing schizophrenic and healthy
patients.

TABLE 3 | Parameters of the optimized 5-oscillator network.

Parameter Value

tmax 99.3
tstart 72.5
tend 13.8
α 1.11
β 0.23
tillum (1) 28.4
tillum (3) 4.64
tillum (4) 4.64
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activator maxima is six or seven. The observation of any other
number of maxima diagnoses schizophrenia. The application
of this rule gives 15 errors for 84 cases included in TS (82%
accuracy). Only three schizophrenic patients (of 45) are
diagnosed as the healthy ones. It gives over 93% accuracy
in detecting the illness. On the other hand, 12 healthy people
(of 39) are diagnosed as schizophrenic ones (30% error). If
these results are confirmed using a large dataset of cases, then
the 3-oscillator classifier can detect healthy people with high
accuracy, because the “healthy” answer of the classifier is
incorrect in three of the total 30 answers (10%). On the
other hand, if a person is diagnosed as “ill”, then such
diagnosis can be wrong in 12 of 54 answers (over 22%).
Therefore, the “ill” diagnosis requires further investigation.
Positions of correctly and incorrectly classified cases for 3-
oscillator network (cf.1a) in the phase space (p1, p2) are shown
in Figure 6.

Similar results for optimization of the 4-oscillator classifier are
illustrated in Figure 7A. The Fitness observed after 1,000
optimization steps was 0.409 bit. The parameters describing
the best classifier are given in Table 2.

Figure 7B illustrates the structure of the optimized classifier.
There are two oscillators that act as inputs of the predictor p1

and a single input for predictor p2. Due to the network
symmetry I (G; O1) = I (G; O4) (Figure 7C). These values
(0.409 bit) are the maximum ones; thus, both oscillators #1 and
#4 can be selected as the output one. In Figure 7B, we marked

the first of them. Figure 7D shows the distribution of numbers
of activator maxima observed on the oscillator #1 for
schizophrenic and healthy patients. The classification rule
based on the majority of cases for a given number of
activator maxima is: a patient is healthy if the number of
activator maxima is five or six. The observation of any other
number of maxima diagnoses schizophrenia. The application of
this rule gives 19 errors for 84 cases included in TS (77%
accuracy). All incorrectly diagnosed patients are the healthy
ones who are diagnosed as being schizophrenic. On the other
hand, ALL schizophrenic patients were correctly diagnosed.
Figure 8 presents locations of correctly and incorrectly
classified cases for 4-oscillator network in the phase space
(p1, p2).

The results for optimization of the 5-oscillator classifier are
illustrated in Figure 9A. The Fitness observed after 1,000
optimization steps was 0.407 bit. The parameters describing
the best classifier are given in Table 3. Figure 9B illustrates
the structure of the optimized classifier. It is highly
asymmetric and includes three normal oscillators. There
are two oscillators that act as inputs of the predictor p1

and a single input for predictor p2. The highest value of I
(G; Oj) was observed for the oscillator #3 (Figure 9C) that has
no direct contact with the input of predictor p2. Figure 9D
shows the distribution of numbers of activator maxima
observed on the oscillator #3. As for the three- and four-
oscillator cases the output oscillator does not generate small

FIGURE 10 | The distribution of correctly and incorrectly classified cases for 5-oscillator network (cf. Figure 2C) in the phase space (p1, p2).
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nor large numbers of activator maxima for healthy patients.
The 5-oscillator network diagnoses a patient as a healthy one
if the number of activator maxima is 2, 4, 5, or 6. The
observation of any other number of maxima diagnoses
schizophrenia. The application of this rule gives 15 errors
for 84 cases included in TS (82% accuracy). The schizophrenic
patients are diagnosed with very similar accuracy as the
healthy ones (82.2 vs. 82.1%). Correctly and incorrectly
classified cases for 5-oscillator network are located in the
phase space (p1, p2), as shown if Figure 10.

The classifier made of six oscillators arranged in the
geometry illustrated in Figure 2D was discussed in our
abstract for the ASPAI 2020 Conference Bose and Gorecki
(2020) and in Bose and Gorecki (2021). In both publications,
the classifier was optimized for 740 generations, and the
maximum Fitness was 0.416 bit. Figure 11 shows the
results of optimization for 1,000 generations. The Fitness
observed after 1,000 optimization steps was 0.422 bit. The

parameters of the best classifier are given in Table 4.
Figure 11B illustrates the structure of the optimized
classifier. It is similar to that of the classifier reported in
Bose and Gorecki (2020, 2021). In all optimized classifiers,
there are two normal oscillators, two oscillators that act as
inputs of the predictor p1, and two oscillators representing
inputs of p2. In all classifiers, the input of p2 was also the
classifier output. Moreover, in the central oscillator was the
input of p1. However, there are also differences. In previously
reported classifiers, inputs of p2 were directly interconnected.
In the structure shown in Figure 11B, they are separated by
inputs of p1. Figure 11D shows the distribution of numbers of
activator maxima observed on the oscillator #1. On its basis,
we can deduce the following classification rule: a patient is
healthy if the number of activator maxima is 1, 3, 4, or 5. The
observation of any other number of activator maxima
indicates that the patient is ill. Application of this rule
gives 15 errors for 84 cases included in TS (82% accuracy);
thus, the accuracy is exactly the same as for the classifier
reported in Bose and Gorecki (2021). For both classifiers, the
structures of errors were similar. The previously reported
classifier diagnosed incorrectly 12 of 39 healthy patients
and three schizophrenic ones. The classifier reported in this
paper diagnosed incorrectly 13 of 39 healthy patients and two
who were ill. It is worth noticing that for the majority of
schizophrenic cases, the optimized classifier in the geometry
in Figure 11D did not produce a single activator maximum at
the output oscillator. Figure 12 illustrates the positions of
correctly and incorrectly classified cases for 6-oscillator
network in the phase space (p1, p2).

Using our optimization method, we could not increase the
classification accuracy above 82% for any considered
geometry within 1,000 optimization steps. However, the
accuracy can be increased if one combines answers of
different classifiers using the voting strategy. We
considered three classifiers that showed the highest
accuracy. They were based on 3, 5, and 6 oscillators. The
same record was processed by all classifiers, and the majority
verdict was taken as the answer. Such a method gave only one
mistakenly diagnosed case for 45 schizophrenic records from
TS. The classification accuracy for healthy patients (39 records
in TS) was lower, and 10 such cases were misdiagnosed.
Therefore, the overall accuracy of classification increased
to 86.9%.

TABLE 4 | Parameters of the optimized 6-oscillator network.

Parameter Value

tmax 79.5
tstart 72.1
tend 4.9
α 0.25
β 0.77
tillum (2) 22.5
tillum (3) 0.57

FIGURE 11 | Results for 6-oscillator network (cf. Figure 2D): (A) The
progress of optimization; the Fitness as a function of generation number. (B)
The structure of the optimized network. Notation as in Figure 5B. (C) The
mutual information I (G; Oj) for j ∈{1,2,3,4,5,6}.The function j → I (G; Oj)
has the maximum at j =1. (D) The distribution of the numbers of cases for
which a given number of activator maxima was observed on oscillator #1 for
records representing schizophrenic and healthy patients.
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5 CONCLUSION AND DISCUSSION

One of the most significant challenges of civilization is how to use
Artificial Intelligence (AI) for various life-inspired problems AI
(2022). AI techniques can be beneficial for medical applications
where the knowledge is accumulated as information on
previously cured cases. To diagnose a new patient, one should
search for similarities with the previous ones. Here we presented
an application of AI methods for designing a system that can help
to diagnose schizophrenia. We assumed that schizophrenia could
be detected by a chemical oscillator network that analyses EEG
signals recorded from electrodes located on a patient scalp.

We considered a few information processing networks
characterized by different numbers of nodes (c.f. Figure 2).
We think that networks of interacting chemical oscillators
represent more realistic models of biological neural computing
than typical artificial neural networks with arbitrarily selected
activity rules Kay (2003). Their time evolution is described by
realistic kinetic equations that model specific nonlinear chemical
reactions. Here we used the Oregonator model for the Belousov-
Zhabotinsky reaction. We believe that other, more realistic
models Vanag and Epstein (2009) of chemical evolution lead
to qualitatively similar results. It seems that oscillator networks
require a smaller number of nodes than standard neural networks
to achieve the same accuracy. The results presented in Gorecki
and Bose (2020) indicate that just three oscillators can solve a
geometrical problem of how a point from a unit square is located
with respect to a disk placed at the square center with 95%
accuracy. The fact that just a few oscillators can perform a

complex information processing function, confirmed by the
results for schizophrenia diagnostics reported in this paper,
opens the door for experimental realization of chemical
instant machines with systems of interacting oscillators
reported in the literature Juan Manuel et al. (2020); Vanag
and Yasuk (2018); Vanag. (2019a); Proskurkin et al. (2019);
Gizynski and Gorecki (2017b).

We expected that the schizophrenia diagnosis accuracy
increases with the network size. However, the networks
formed of 3, 5, and 6 oscillators gave 82% of correct answers
for cases included in the training dataset. On the other hand, this
number is much higher than given by standard classification
methods included as options in the Clasiffy procedure of the
Mathematica program Mathematica (2021). If we apply this
procedure to the training dataset TS, the highest classification
accuracy (76.2%) is obtained for the GradientBoostedTrees
method, whereas the NeuralNetwork option leads to 73.8%
accuracy. The accuracy of schizophrenia diagnosis using
chemical oscillator networks increased to 86.9% if three
networks process a case and the majority rule is used to select
the final answer. The fact that larger networks did not produce
better results than the small ones could be related to inefficient
optimization for a large number of parameters that were taken
into account. The problem can be overcome by a larger
population of classifiers and a larger number of optimization
steps. However, both methods increase the numerical complexity
of the optimization. It is also worth mentioning that the recent
study on the application of machine learning methods for
schizophrenia detection from textual input Wawer et al.

FIGURE 12 | The distribution of correctly and incorrectly classified cases for 6-oscillator network (cf. Figure 2D) in the phase space (p1, p2).
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(2022) reported ~ 80% accuracy on a sample of 94 people (47 ill
and 47 healthy).

Although the presented results are encouraging, datasets
with a larger number of patient data are important for further
studies. A dataset with a large number of patient records can be
separated into a training dataset of a few thousand cases and
much larger testing ones Gorecki and Bose (2020) that is
independent of the training one. The separation of records
between the training and the testing datasets can be done in
many different ways. By selecting different training datasets,
one can verify the stability of the schizophrenia diagnostic
classifier with respect to different training. The observation
that classifiers with similar parameters are obtained for
different training datasets confirms that the diagnostics are
unbiased by selecting a training dataset.

The presented classification method is based on many
assumptions. All of them can be lifted in search of the best
network for the schizophrenia diagnosis.

The optimization of interactions in the medium can be
directly included in the optimization program. The presented
results were obtained assuming that interactions between
oscillators were fixed, as shown in Figure 2. The
information about interactions was included in equations
describing the time evolution of oscillators as the binary
parameters si,j in Eq. 14. The values of these parameters can
be included in classifier optimization. The network model
includes the activatory coupling between oscillators. It
means that an excited oscillator can speed up the
excitations of the other oscillators that interact with it. Such
coupling is observed, for example, in droplets containing
reagents of BZ reaction. Alternatively, one can consider a
medium with inhibitory coupling where excitation of one
oscillator slows down the activity of those oscillators that
interact with it Vanag and Yasuk (2018); Vanag. (2019b);
Proskurkin et al. (2019). Allowing for different types of
coupling within a single network can help to identify the
best medium for a given computing task.

We assumed that the output could be related to the number of
activator maxima observed at a specific oscillator. However, one
can consider alternative methods of extracting information from
network evolution Borst and Theunissen (1999); Zhang et al.
(2014). For example, the output can be related to a pair of
numbers of activator excitations recorded on two selected
oscillators Gorecki (2020).

It is anticipated that the accuracy of diagnosis should improve
if the information on signals recorded on more than two
electrodes is included in the input. The presented optimization

algorithm can be easily modified to do this if one includes input
oscillators of any important signal into the network. If additional
signals do not increase the Fitness, then networks with the inputs
of irrelevant signals will vanish from the population. Moreover, to
improve the accuracy of a large oscillator network, one should
consider different decay rates α at different oscillators and
different activator transfer rates β for individual couplings. Of
course, it results in a significant increase in the number of
parameters undergoing optimization.

Future studies should reveal if the generalizations of
classifiers as described above can significantly increase their
accuracy of schizophrenia diagnosis if compared with the
classifiers presented in this paper. After a successful
classifier optimization is completed, its application does not
require significant computing power. There are just two steps
of the algorithm: 1) normalization of patient data with
parameters (μ, σ) obtained for the training dataset and 2)
numerical solution of differential Eqs 14 and 15 and activator
maxima counting. A modern laptop needs a few seconds to
execute these tasks. The whole procedure can be incorporated
into EEG equipment software or distributed as a laptop or
smartphone application.
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