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This study synthesized a La2O3@snowflake-like Cu2S composite to fabricate an
electrochemical sensor for sensitively simultaneous detection of diclofenac and
chlorzoxazone exploiting an easy hydrothermal approach, followed by analysis with
XRD, FE-SEM, and EDX methods. According to voltammetric studies, the
electrocatalytic diclofenac and chlorzoxazone oxidations on the electrode modified
with La2O3@SF-L Cu2S composites were increased, with greater oxidation currents, as
well as the oxidation potential was significantly decreased due to synergetic impact of
La2O3@SF-L Cu2S composites when compared with the pure SF-L Cu2S NS-modified
electrode. The differential pulse voltammetry findings showed wide straight lines
(0.01–900.0 μM) for La2O3 NP@SF-L Cu2S NS-modified electrode with a limit of
detection (LOD) of 1.7 and 2.3 nM for the detection of diclofenac and
chlorzoxazone, respectively. In addition, the limit of quantification was calculated to
be 5.7 and 7.6 nM for diclofenac and chlorzoxazone, respectively. The diffusion
coefficient was calculated to be 1.16 × 10−5and 8.4 × 10−6 cm2/s for diclofenac
and chlorzoxazone oxidation on the modified electrode, respectively. Our proposed
electrode was examined for applicability by detecting diclofenac and chlorzoxazone in
real specimens.
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1 INTRODUCTION

The treatment of osteoarthritis and rheumatoid arthritis as well as the relief of painful symptoms
associated with musculoskeletal conditions are now possible with the simultaneous
administration of many drugs. Thus, single-pill combinations (SPCs) were formulated to
facilitate administration. This issue emphasizes the development of effective analytical
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approaches for the simultaneous detection of coadministered
drugs in the presence of associated agents and impurities. One
of the SPCs is a combination of diclofenac sodium and
chlorzoxazone (Ahmed et al., 2020).

Chlorzoxazone (5-chloro-3H-benzooxazol-2-one) as a potent
muscle relaxant is prescribed for painful musculoskeletal
conditions with central function. The drug primarily affects
the spinal cord and subcortical areas, thus inhibiting
multisynaptic reflex arcs implicated in the production and
maintenance of skeletal muscle spasms of various causes. The
reduction of muscle tone and tension, and thus relief of spasms
and pain associated with musculoskeletal disorders can occur
with this drug (Abbar and Nandibewoor, 2012a). Sodium [o-
(2,6-dichloroanilino) phenyl] acetate (diclofenac sodium or DS)
belongs to the nonsteroidal anti-inflammatory drug (NSAID),
which exhibits anti-inflammatory, analgesic, and antipyretic
activity (Eteya et al., 2019). It is prescribed to manage many
painful and inflammatory diseases, including renal colic,
rheumatoid arthritis, soft tissue disorders, osteoarthritis, acute
gout, migraine, and dysmenorrhea (Sweetman, 2005; Al-Turki
et al., 2010). Concomitant administration of diclofenac sodium
and chlorzoxazone is used to relieve moderate to severe pain

associated with musculoskeletal spasms. Despite all this, serious
side effects have been reported for this formulation such as heart
attack and stroke, especially in long-term administration. Other
reported side effects include gastrointestinal disorders, aplastic
anemia, renal dysfunction, and agranulocytosis (Sweetman,
2005). Accordingly, the detection of trace amounts of these
drugs in biological and pharmaceutical media is essential for
therapeutic purposes and drug production. Various techniques
were employed for the simultaneous detection of diclofenac and
chlorzoxazone, such as absorbance difference spectrophotometry
(Saheb et al., 2004), the spectrophotometric Q-absorbance ratio
method (Patel and Prajapati, 2013), and the HPLC technique
(Ahmed et al., 2020) exploiting CN-bonded phase column.
However, the disadvantages of these methods are the need for
derivatization and the time required for extraction (Zhang et al.,
2010; Jahani, 2018; Setoudeh et al., 2020).

Among these, voltammetry is the proposed method for bypassing
such problems due to its unique advantages such as rapid response,
inherent selectivity, great sensitivity, simplicity, cost-effectiveness, and
relatively short analysis time to determine organic molecules such as
drugs and relevant molecules in biological fluids and pharmaceutical
doses (Maaref et al., 2018; József et al., 2019; Salajegheh et al., 2019;

FIGURE 1 | FESEM images of the La2O3 NP@SF-L Cu2S NS composite under various reaction temperatures: (A) 70°C, (B,C) 80°C, and (D) 90°C.
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Sargazi et al., 2019; Shetti et al., 2019; Kulkarni et al., 2020; Malode
et al., 2020; Vakili Fathabadi et al., 2020; Liu et al., 2021a; Foroughi
et al., 2021; Obireddy and Lai, 2021; Obireddy and Lai, 2022). An
effective strategy to increase the electrochemical performance of
sensors is to design composites by integrating highly
electrocatalytic active materials with excellent conductivity
materials, resulting in the electrode surface modification (Zhang
et al., 2016; Foroughi and Ranjbar, 2017; Shetti et al., 2018; Fathi
et al., 2020; Azizabadi et al., 2021; Liu et al., 2021b; Li et al., 2021; Liang
et al., 2022; Qi et al., 2022).

Much research is currently being done on semiconductor
nanostructures as part of active and integrated
electrochemical nano-devices. Selecting a semiconductor
material possessing a suitable bandgap is the most basic
action in this research. In addition, if a material is
abundant, non-toxic, green, and recyclable, it can be easily
grown into various nanostructures using cost-effective
techniques on different substrates (Mousavi-Kamazani
et al., 2013; Guan et al., 2020). One of the suitable options
to meet the aforementioned conditions with a 1.21-eV
bandgap is copper (I) sulfide. Depending on the

stoichiometric properties, copper sulfides can take many
crystalline phases, from copper-rich Cu2S phases to
copper-poor CuS2 phases (Mousavi-Kamazani et al., 2016).
The pure production of each phase is of particular
importance, especially in the case of chalcocite copper (I)
sulfide (Cu2S) which is a widely used material in various fields
(Kristl et al., 2013; Brewer and Arnold, 2014).

Lanthanum oxide (La2O3) is one of the important oxides
belonging to the family of rare earth oxides. This p-type
semiconductor with a 5.5-eV bandgap has been previously
applied in different fields, such as in luminescence
equipment, electromagnetic devices, super-capacitors,
photoelectro-chemical cells, catalysts, gas sensors, and Li-
ion batteries (Larsen et al., 2003). In addition to these
advantages, La2O3 is a promising candidate as an
alternative to the production of green sensors in detecting
a variety of pollutants due to its unique properties such as
greater capacity, admirable chemical and thermal stability,
large dielectric constant (ε) of 27, less toxicity, broad voltage
range, and less oxide leakage current. A significant elevation
has been reported in the catalytic activity mediated by

FIGURE 2 | FESEM images of the La2O3 NP@SF-L Cu2S NS composite with different La2O3 loading amounts: (A) 10 wt% La2O3, (B–D) 20 wt% La2O3, and (E)
30 wt% La2O3. (F) The FESEM image of La2O3 NP.
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nanocomposites containing La2O3 loaded on various
nanoparticles (NPs) (Lee et al., 2015; Zhou et al., 2016; Li
et al., 2017; Yadav et al., 2017; Salinas et al., 2018; Jaffar et al.,
2019; Umar et al., 2020).

For the first time, we synthesized and characterized the effective
material, La2O3 nanoparticles (NPs)@snowflake(SF)-like Cu2S
nanostructure (La2O3 NP@SF-L Cu2S NS composite), to modify
the glassy carbon electrode. In addition, the literature review
showed no studies on the electroanalysis and simultaneous
detection of diclofenac and chlorzoxazone exploiting modified
electrodes with novel nanocomposites. Voltammetric peaks were
determined for diclofenac and chlorzoxazone on the proposed
modified electrode. Great sensitivity and low limit of detections
(LOD) were reported for these species because of the potent
electrocatalytic potentials of La2O3 NP@SF-L Cu2S NS. The
analytical behaviors of this sensor were examined for the
simultaneous detection of diclofenac and chlorzoxazone using
the voltammetric method. At last, the applicability of this
sensor was determined to detect these compounds in the real
samples.

2 EXPERIMENTAL

2.1 Solutions and Reagents
Sigma-Aldrich (Sigma-Aldrich, United States) was the
selected company to prepare diclofenac, chlorzoxazone,
ethylenediamine, thiourea ((NH2)2CS), lanthanum
chloride hexahydrate (LaCl3·6H2O), and copper(II)
chloride dihydrate (CuCl2·2H2O). Diclofenac and
chlorzoxazone solutions (1.0 × 10−2 M) were applied
freshly by pouring certain levels of diclofenac and
chlorzoxazone into distilled deionized water (100 ml) in a
volumetric flask, which was maintained in dark at cool
condition. The serial dilution was performed with
phosphate buffer solution (PBS) to prepare more dilute
solutions. The stock solutions of 0.1 M Na2HPO4 and
0.1 M NaH2PO4 were blended to prepare 0.1 M PBS and
then adjusted to the desired pH via NaOH or HCl. All
used reagents had analytical grade, and double distilled
deionized water was utilized to prepare the solutions. No
more purification was performed for any of the chemicals.

FIGURE 3 | EDX spectra and elemental mapping of the La2O3 NP@SF-L Cu2S NS composite.
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2.2 Equipment
X-ray diffractometer (Philips analytical PC-APD), radiation of
graphite mono-chromatic Cu (α1, λ1 = 1.54056 Å), and radiation
of Kα (α2, λ2 = 1.54439 Å) were used for X-ray powder diffraction
(XRD) performed for the structural analysis of the product. The
La2O3@SF-L Cu2S composite morphology was analyzed by using a
KYKY-EM3200 digital scanning electron microscope (SEM). The
chemical composition was determined by EDX spectrometry.
SAMA500 electroanalyzer (SAMA Research Center, Iran)
equipped with a personal computer was applied to carry out the
electrochemical measurements. The used three-electrode system
included an unmodified or modified glassy carbon electrode
(GCE) as the working electrode, a saturated calomel electrode
(SCE) as the reference electrode, and Pt wire as the auxiliary
electrode. All electrochemical measurements were under a pure
nitrogen atmosphere at an ambient temperature.

2.3 Fabrication of the Proposed La2O3@SF-L
Cu2S Composites
In the present study, a simple hydrothermal protocol was
performed to construct La2O3@SF-L Cu2S composites. Thus,
LaCl3·6H2O (0, 10, 20, and 30 wt%) and 170.48 mg of
CuCl2·2H2O were poured into 50 ml of ethylenediamine.
For this, 228.36 mg of (NH2)2CS was appended to obtain
well-dispersed reactants while constantly stirring for 2 h,
followed by placing a Teflon-lined stainless steel autoclave

(150 ml) at different temperatures of 70, 80, and 90°C for 8 h.
Next, the solutions were cooled down and the resulting
products were removed and washed several times with
distilled water and ethanol, followed by drying in an oven
at 80°C for 8 h and storing for further testing.

2.4 Fabrication of Modified Electrode
The pretreatment of the GCE was performed using 0.05 μm of
alumina slurry on a polishing cloth, and then washed with water
and sonicated for 5min in water. The matters adsorbed on the
electrode surface were removed through ultrasonication in ethanol
and double-distilled water for 5min. The bare GCE (BGCE)
modification was carried out by La2O3@SF-L Cu2S composites.
Then, La2O3@SF-L Cu2S composites (1mg) were distributed and
ultrasonicated for an hour for the collection of stock solution with
La2O3@SF-L Cu2S composites in 1ml of an aqueous solution. The
concentration of suspension is 1 mg/1ml. Next, an aliquot of La2O3@
SF-L Cu2S composites/H2O suspension solution (5 µl) was placed on
the carbon working electrode, and subsequently, the solvent was
evaporated at the ambient temperature.

FIGURE 4 | XRD pattern of (A) SF-L Cu2S NS, (B) La2O3 NP, and (C)
La2O3 NP@SF-L Cu2S NS composite (20 wt% La2O3).

FIGURE 5 | (A) CVs of (a) BGCE, (b) SF-L Cu2S/GCE, and (c) La2O3@
SF-L Cu2S/GCE in the presence of 0.4 mM [Fe(CN)6]3- solution in aqueous
0.1 M KCl. (B) EIS diagrams for 0.1 mM [Fe(CN)6]3- solution at (a) BGCE, (b)
SF-L Cu2S/GCE, and (c) La2O3@SF-L Cu2S/GCE in aqueous 0.1 M KCl.
Frequency range 100 KHz to 0.1 Hz.
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2.5 Electrochemical Approach
(Characterization and Testing)
Cyclic voltammetry (CV), chronoamperometry (CHA), and
differential pulse voltammetry (DPV) were applied for
electrochemical studies and quantification of diclofenac and
chlorzoxazone, respectively.

CV is performed to a phosphate buffer (0.1 M, pH = 7.0) with
and without the presence of diclofenac and chlorzoxazone
(275.0 μM), starting at the equilibrium potential in the anodic
direction using a potential window of 0.24–0.93 V at different
scan rates. Anodic peaks are analyzed in order to establish the
relation between the maximum current intensity of the anodic
peaks with the scan rate.

Under optimized conditions, CHA experiments were carried
out at an applied potential of 0.63 and 0.89 V versus SCE using
different concentrations of diclofenac and chlorzoxazone,
respectively.

In order to achieve the higher analytical response (anodic
current), the optimal conditions for DPV measurements were
as follows: PBS, pH 7.0, modulation amplitude of 0.02505 V,
modulation time of 30 ms, interval time of 200 ms, step
potential of 10 mV, initial potential = 200 mV, and end
potential of 940 mV. To achieve the DP voltammograms of

FIGURE 6 | (A) CVs of La2O3@SF-L Cu2S/GCE in the presence of
0.4 mM [Fe(CN)6]3- solution in aqueous 0.1 M KCl at various scan rates (from
inner to outer curve): 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400,
500, 600, 700, 800, 900, and 1000 mV/s. (B) The plot of peak currents
vs υ1/2.

FIGURE 8 | Effect of pH on the peak current for the oxidation of
diclofenac (275.0 µM) and chlorzoxazone (275.0 µM); pH = 4–8. In all cases,
the scan rate was 50 mV s−1.

FIGURE 7 | CVs of (A) BGCE, (B) SF-L Cu2S/GCE, and (C) La2O3@
SF-L Cu2S/GCE in the presence of diclofenac (275.0 µM) and
chlorzoxazone (275.0 µM) at a pH 7.0, respectively. In all cases, the scan
rate was 50 mV s−1.
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diclofenac and chlorzoxazone, appropriate volumes of the
stock solutions of drugs were added to the cell containing
supporting electrolytes on total bulk of 25 ml.

2.6 Analysis of Real Specimens
We procured the tablet solutions by completely powdering and
combining five diclofenac (labeled 100mg, Shafa Co., Tehran: Iran).
Then, we used the ultrasonic bath for 4min in order to dissolve a
sufficient volume of the resulting fine powders of diclofenac in 0.1M
phosphate buffer pH = 7.0. Consequently, various volumes of all
solutions have been transferred into a 25.0 ml voltammetric cell, and
a standard addition procedure has been used to analyze diclofenac.

The human samples (urine and blood serum) were collected
from healthy subjects and stored at −20°C for next testing. In
the experiments, 2.5 ml of samples were poured into PB
(22.5 ml)-containing vials, and then added with a certain
volume of diclofenac or chlorzoxazone stock solution and
subsequently poured into electrochemical cells.

3 RESULTS AND DISCUSSION

3.1 Characterization of La2O3 NP@SF-L
Cu2S NS Composite
The SF-L Cu2S NS formation was confirmed by the SEM
images. It was found that Cu2S is composed of one or more
dendrites at 70°C, as shown in Figure 1A. Figures 1B,C (SEM
images) show snowflake structures for the as-produced Cu2S
specimens at 80°C. Images of a snowflake with high
magnification (Figure 1C) reveal a pattern with 6x
symmetry so that different large ferns emerge from a
common center, which is branched in the center and along
an angle of 60° from the center. The six dendritic petals have a
length of approximately 2–3 µm. Further details obviously
show a long central backbone and highly symmetrical
secondary branches for each fern that grows preferably in
two distinct directions rather than randomly. Figure 1C shows
unprecedented six-branched dendrites and more branch
growth. SF-L Cu2S NS is broken down with increasing
reaction temperature up to 90°C and forms a sheet-like
morphology (Figure 1D). Different reaction temperatures
create significant differences in the morphology of Cu2S
owing to the degree of effective coordination of
ethylenediamine. The [Cu(En)2]

2+ complex is formed by
ethylenediamine via the copper cation at 80°C, which may

SCHEME 1 | Plausible mechanism of electrooxidation of diclofenac at
the modified electrode.

SCHEME 2 | Plausible mechanism of electrooxidation of chlorzoxazone
at the modified electrode.
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initially form the nucleus and crystalline growth of Cu2S, and
subsequently the snowflake structures. Because of the volatility
of ethylenediamine, the solution forms the reduced complex at
higher reaction temperatures up to 90°C. Therefore, the
morphology of the as-produced Cu2S specimens is
influenced by higher temperatures.

The SEM images taken from La2O3@SF-L Cu2S composites
in the presence of different loading levels of La2O3 are shown
in Figure 2. Limited NPs have been gathered onto the SF-L
Cu2S NS surface, for La2O3@SF-L Cu2S composites with 10 wt
% La2O3 (Figure 2A). According to Figures 2B–D showing the
SEM images taken from La2O3@SF-L Cu2S composites with
20 wt% La2O3, the SEM images display the limited-layered
La2O3 NP coating on the SF-L Cu2S NS surface in the case of
right amount of La2O3 loading, which means ultrathin La2O3

NPs similar to pure La2O3 NP as seen in Figure 2F. For
La2O3@SF-L Cu2S composites (30 wt% La2O3), the amount
of La2O3 precursors is critical as probably because of
aggregating to form NPs (Figure 2E), the snowflake-like
structure is completely destroyed and forms an amorphous
mass that suppresses the catalytic activity of the catalysts.
Hence, the optimal wt% was selected to be 20 wt% La2O3

for next electrochemical testing.

As seen in Figure 3, the EDS analysis and the mapping images
for the La2O3 NP@SF-L Cu2S NS composite with 20 wt% La2O3

confirmed uniform dispersion of each Cu, S, and La elements, and
also uniform aggregation of the La2O3 NPs on the SF-L Cu2S NS
surface.

Figure 4A shows the XRD spectra taken from the as-
produced SF-L Cu2S NS at 80°C. The positions of the XRD
peaks prepared from the specimens are well consistent with the
theoretical amounts of the orthorhombic stage of Cu2S (JCPDS
02–1294) (Chen et al., 2008). There were not any characteristic
peaks as a result of any impurity, highlighting the excellent
product purity. The intensity and sharpness of the peaks of
XRD show well-crystallized Cu2S, and therefore decreased
resistance of electron transfer. The XRD spectra from La2O3

NPs (La2O3 NP) are shown in Figure 4B. Based on the XRD
patterns, various diffraction peaks can be seen for La2O3 NP
with the polycrystalline morphology. Thus, each La2O3 NP
diffraction peak is fully indexed in the structure of the
quadrilateral crystal system (JCPDS Case No. 83–1348),
highlighting a pure phase for the powder with hexagonal
La2O3. Figure 4C attributes all sharp and obvious peaks at
La2O3 NP@SF-L Cu2S NS patterns containing various
amounts of La2O3 NP loading with 20 wt% La2O3 NP to
orthorhombic Cu2S (JCPDS 02–1294) and hexagonal La2O3

(JCPDS 83–1348) (Kabir et al., 2018), which means successful
fabrication of La2O3@SF-L Cu2S composites.

3.2 Electrochemical Characterization of the
La2O3@SF-L Cu2S/GCE Sensor
The CV curves for a bare GCE, SF-L Cu2S/GCE, and La2O3@SF-L
Cu2S/GCE in the redox probe were plotted for the characterization
of the modified GCE surface. As seen in Figure 5A, two reversible
redox peaks are observed for a bare GCE, SF-L Cu2S/GCE, and
La2O3@SF-L Cu2S/GCE, with a peak-to-peak difference (ΔEp) of
0.29, 0.24, and 0.17 V, respectively. The La2O3@SF-L Cu2S/GCE
had an enhancement in the peak current corresponding to greater
porosity of the La2O3@SF-L Cu2S composite-modified electrode
surface. The redox probe electron transfer on the modified
electrode surface can be facilitated by such excellent
morphology of La2O3@SF-L Cu2S composites. The properties
of La2O3@SF-L Cu2S composites were electrochemically
determined using the EIS approach. In this method, the
charge–transfer resistance (Rct) is a factor to monitor the
redox probe electron transfer kinetics at the electrode interface,
which means substrate attachment on the modified electrode
surface. Figure 5B shows Nyquist plots of the bare GCE, SF-L
Cu2S/GCE, and La2O3@SF-L Cu2S/GCE in the redox probe.
Figure 4B shows a large semicircular part for bare GCE at
high frequencies, as a great charge transfer resistance (Rct =
1248Ω) corresponding to low charge and mass transfer rate on
the bare GCE surface. Dramatically reduced Rcts (561 and 329Ω)
were calculated for SF-L Cu2S NS and La2O3@SF-L Cu2S
composites loaded on the GCE surface, probably due to the
potent ability of SF-L Cu2S NS and La2O3@SF-L Cu2S
composites to amplify the electron transfer and enhance the
electrode surface area.

FIGURE 9 | (A) CVs of La2O3@SF-L Cu2S/GCE in pH 7.0 in the
presence of diclofenac (275.0 µM) and chlorzoxazone (275.0 µM) at various
scan rates (from inner to outer curve): 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
200, 300, 400, 500, 600, 700, 800, 900, and 1000 mV/s. (B) The plots
of peak currents vs υ1/2.
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The Randles–Sevcik Eq. 1 was computed to analyze the
efficacy of the embedded sensor, the bare GCE, SF-L Cu2S/
GCE, and La2O3@SF-L Cu2S/GCE (Figure 6) (Bard and
Faulkner, 2001):

Ip � ± (2.69 × 105)n3/2AD1/2Cv1/2, (1)
where all symbols possess normal meaning. The A values are
0.082, 0.17, and 0.27 cm2 for the surfaces of the bare GCE, SF-L
Cu2S/GCE, and La2O3@SF-L Cu2S/GCE, respectively.

The electrode surface modification was evaluated by
calculating the standard heterogeneous rate constant (k0)
based on the EIS, Eq. 2 (Bard and Faulkner, 2001):

k0 � RT

F2RctAC
, (2)

where k0 stands for the rate constant for electron standard
transfer that is heterogeneous (cm/s), R for global gas
constant (squared with 8.314 J/K/mol), T for the
temperature of the thermodynamic process (298.15 K), F
for the Faraday constant values (96.485 C/mol), Rct for
electron transfer resistance (Ω), A for the electrode surface

area (cm2), and C for the concentration of 0.1 mM [Fe(CN)6]
3-/4- solution.

The k0 values were 2.6 × 10−2, 2.8 × 10−2, and 3.0 × 10−2 cm/s for
the bare GCE, SF-L Cu2S/GCE, and La2O3@SF-L Cu2S/GCE,
respectively. K0 values approach the redox couple’s kinetic
potential. Therefore, a system with a higher value of k0 balances
under lower time conditions compared to that with a lower value of
k0, so this will be a longer balance. Hence, a higher value of k0 would
be achieved than La2O3@SF-L Cu2S/GCE > SF-L Cu2S/GCE >GCE
as for the La2O3@SF-L Cu2S/GCE sensor, which means greater swift
electron transfer than the other electrodes.

3.3 Voltammetric Responses of Diclofenac
and Chlorzoxazone
Electrochemical responses of diclofenac and chlorzoxazone
(275.0 μM each) mixture in 0.1 M PBS (pH = 7) on the
La2O3@SF-L Cu2S/GCE, SF-L Cu2S/GCE, and bare GCE
(BGCE) surfaces were analyzed using the cyclic
voltammetry (CV) method. Based on Figure 7 (curve a),
the diclofenac and chlorzoxazone oxidation peaks merged
(0.73 V) with a very low peak current at the BGCE. On the

FIGURE 10 | (A) Chronoamperograms obtained at La2O3@SF-L Cu2S/GCE in 0.1 M PBS (pH 7.0) for different concentrations of diclofenac (from inner to outer
curve): 0.0, 0.1, 0.2, 0.3, and 0.4 mM. (B) Plots of I vs t−1/2 obtained from chronoamperograms 2–5. (C) The plot of the slope of the straight lines against diclofenac
concentration. (D) The plot of IC/IL vs. t1/2 obtained from chronoamperograms one and two. (E) Chronoamperograms obtained at the La2O3@SF-L Cu2S/GCE in 0.1 M
PBS (pH 7.0) for different concentrations of chlorzoxazone (from inner to outer curve): 0.0, 0.1, 0.2, 0.3, and 0.4 mM. (F) Plots of I vs t−1/2 obtained from
chronoamperograms 2–5. (G) The plot of the slope of the straight lines against chlorzoxazone concentration. (H) The plot of IC/IL vs. t1/2 obtained from
chronoamperograms one and two.
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other hand, two clear peaks were seen for diclofenac and
chlorzoxazone on the modified SF-L Cu2S/GCE at 0.64 and
0.86 V, respectively (Figure 7 (curve b)). According to
Figure 7 (curve b), the peak currents for diclofenac and
chlorzoxazone on SF-L Cu2S/GCE are many times higher
than BGCE due to the catalytic activity of SF-L Cu2S NS. In
addition, in Figure 7 (curve c), the potential of the peaks was
shifted to a less positive potential (0.59 and 0.84 V for
diclofenac and chlorzoxazone, respectively) than SF-L
Cu2S/GCE and BGCE. Figure 7 (curve c) shows an
elevation in the peak current following the augmentation
of La2O3 NP to the SF-L Cu2S NS due to the large surface area
and high conductivity of La2O3@SF-L Cu2S composites. The
separation rates of diclofenac–chlorzoxazone oxidation peak
potentials were estimated at 0.25 V, which were sufficient for
the simultaneous detection of these compounds.

3.4 The pH Effect on Diclofenac and
Chlorzoxazone Oxidation
The electrolyte pH significantly affects the electrooxidation of
diclofenac and chlorzoxazone due to the participation of
protons in the electrode reaction. The CV method was

performed to analyze the pH impact on the signal of
La2O3@SF-L Cu2S/GCE exploiting buffer solutions (0.1 M) at
different pH values of 4.0–8.0, and the results can be seen in
Figure 8. A slight elevation occurred in the peak currents of
diclofenac and chlorzoxazone by elevating the solution pH
until 7.0 and then reduction. The pH value of 7.0 resulted in
the greatest peak current for the two compounds. A gradual
increase in the solution pH caused the shift of peak oxidation
potential of diclofenac and chlorzoxazone to less positive
values, indicating the participation of protons in the
electrode reactions. The PBS at the pH value of 7.0 caused
the optimal reaction for peak current and peak shape, and
negatively shift, suggesting pH 7.0 as the best value for
subsequent tests. Figure 8B shows the plot of Ep versus pH
for diclofenac and chlorzoxazone in the working pH range.
There was a linear relationship between Ep values of two
compounds and buffer solution pH, as follows:

Diclofenac : Ep(V) � −0.048pH + 0.926 (R2 � 0.9983)
Chlorzoxazone : Ep(V) � −0.0498pH + 1.1884 (R2 � 0.9999)

FIGURE 11 | (A) and (C) DPVs of the La2O3@SF-L Cu2S/GCE in 0.1 M
(pH 7.0) containing different concentrations of diclofenac and chlorzoxazone,
respectively (from inner to outer curve): 0.01, 0.1, 1.0, 10.0, 20.0, 30.0, 40.0,
50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 200.0, 300.0, 400.0, 500.0, 600.0,
700.0, 800.0, and 900.0 µM. (B) and (D) Plots of the electrocatalytic peak
currents as a function of diclofenac and chlorzoxazone concentrations in the
range of 0.01–900.0 µM, respectively.

FIGURE 12 | (A) DPVs of La2O3@SF-L Cu2S/GCE in 0.1 M (pH 7.0)
containing different concentrations of diclofenac and chlorzoxazone (from
inner to outer curve): 0.01, 0.1, 1.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0,
80.0, 90.0, 100.0, 150.0, 200.0, 250.0, 300.0, 350.0, 400.0, 450.0,
500.0, 550.0, 600.0, 650.0, and 700.0 µM. (B) and (C) Plots of the
electrocatalytic peak currents as a function of diclofenac and chlorzoxazone
concentrations in the range of 0.01–700.0 µM, respectively.
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As for slopes of 0.048 and 0.0498 mV/pH for diclofenac and
chlorzoxazone, respectively, they were close to the predicted
Nernstian value for an equal electron and proton
electrochemical process (Bard and Faulkner, 2001). In
conclusion, equal numbers of protons and electrons play a
role in the electrode processes.

In the proposed method, the total involvement of protons
and electrons of diclofenac was found to be two. So, the
following Scheme S1 was predicted as a likely
electrooxidation mechanism of diclofenac. In addition,
chlorzoxazone oxidation is a one-electron one-proton
process, the possible product of oxidation is found to be 2-
amino-4-chloro-phenol with the liberation of carbon dioxide,
and the mechanism is as shown in Scheme S2. These
observations were in accordance with earlier reports (Abbar
and Nandibewoor, 2012a; Honakeri et al., 2020).

3.5 The Scan Rate Effect on
Electrochemical Responses of Diclofenac
and Chlorzoxazone
The CV method was employed to evaluate the scan rate effect
on the oxidation peak current of diclofenac and chlorzoxazone

on the La2O3@SF-L Cu2S/GCE. Figure 9A shows an elevation
in the intensity of peak current by raising the scan rate. Based
on Figure 9B, the current directly fitted the square root of scan
rates (10–1000 mV/s), strongly suggesting diffusion-
controlled redox reactions of diclofenac and chlorzoxazone.
At last, 50 mV/s was selected as the optimal scan rate to
achieve the best performance for peak currents and peak
separation.

3.6 The Chronoamperometric
Measurements
The chronoamperometric measurements of diclofenac and
chlorzoxazone on the La2O3@SF-L Cu2S/GCE were performed
in the working electrode potential at 0.63 and 0.89 V versus SCE
for different diclofenac and chlorzoxazone concentrations,
respectively, in PBS at the pH value of 7.0 (Figures 10A,E).
For an electrical agent with a certain diffusion coefficient (D), the
Cottrell equation was considered to describe the electrochemical
reaction current with a mass transport-limited rate (Bard and
Faulkner, 2001).

I � nFAD1/2Cbπ
−1/2t−1/2 (3).

FIGURE 13 | (A) DPVs of La2O3@SF-L Cu2S/GCE in 0.1 M (pH 7.0) containing 15.0 µM of chlorzoxazone, and different concentrations of diclofenac (from inner to
outer curve): 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, and 45.0 µM. (B) Analytical curve from diclofenac. (C) 15.0 µM of diclofenac, and different concentrations of
chlorzoxazone (from inner to outer curve): 15.0, 25.0, 35.0, 45.0, 55.0, 65.0, 75.0, and 85.0 µM. (D) Analytical curve from chlorzoxazone.
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A plot of I versus t−1/2 is linear under diffusion control (Figures
10B,F); the D value for diclofenac and chlorzoxazone can be
calculated on the basis of the linear region slope of Cottrell’s plot
(Figures 10C,G). The DDiclofenac and DChlorzoxazone values were,
respectively, 1.16 × 10−5 and 3.2 × 10−5 cm2/s.

Chronoamperometry was recruited to compute the constant
of the catalytic rate (k) for the reaction of the La2O3@SF-L Cu2S/
GCE with diclofenac and chlorzoxazone based on the Galus
method (Galus, 1976):

IC
IL

� γ
1 /

2⎡⎣P1 /

2 erf(γ1 /2) + exp(−γ)
γ
1 /

2

⎤⎦, (4)

where IC stands for diclofenac and chlorzoxazone catalytic
currents on the La2O3@SF-L Cu2S/GCE, IL for limiting current
without diclofenac and chlorzoxazone, and γ = kCbt (Cb for bulk
diclofenac and chlorzoxazone concentration, the argument of
error function. If the value of γ is greater than 2, the error function
will be approximately equal to 1, so the aforementioned equation
is decreased to

IC
IL

� π
1 /

2γ
1 /

2 � π
1 /

2(KCbt)1

/

2, (5)

where t stands for elapsed time (in seconds). Accordingly, the
slope from the plot of IC/IL versus t

1/2 is recruited to compute the
catalytic process constant (k) for the concentrations of diclofenac
and chlorzoxazone. Figures 10E,H show the plots from
chronoamperograms in Figures 10A,E. Based on the slopes,
the mean values of k were 8.1×103 and 1.8 × 103 M−1 s−1. The
k value can explain the sharp property of the catalytic peak for
diclofenac and chlorzoxazone catalytic oxidation on the La2O3@
SF-L Cu2S/GCE surface.

3.7 Quantification of Diclofenac and
Chlorzoxazone
Diclofenac and chlorzoxazone quantifications were performed
using differential pulse voltammetry (DPV) (Figures 11A,C).
One clear linear segment with varied slopes can be observed on
voltammograms related to the plot of diclofenac and

TABLE 1 | Application of La2O3@SF-L Cu2S/GCE for concurrent determination of diclofenac and chlorzoxazone in diclofenac tablets, human blood serum, and urine
samples. All concentrations are in µM.

Sample Spiked Founda Recovery (%)

Diclofenac Chlorzoxazone Diclofenac Chlorzoxazone Diclofenac Chlorzoxazone

Diclofenac tablets - NDb 3.8 ± 2.3 - - -
5.0 5.0 9.0 ± 2.2 4.9 ± 1.8 102.3 98.0
10.0 10.0 9.9 ± 1.9 10.1 ± 3.2 99.0 101.0

Human blood serum NDb NDb - - - -
7.5 15.0 7.4 ± 3.1 14.7 ± 2.2 98.6 98.0
12.5 20.0 12.8 ± 2.1 20.1 ± 2.9 102.4 100.5

Urine NDb NDb - - - -
15.5 15.0 15.1 ± 2.7 15.2 ± 1.9 97.4 101.3
17.5 25.0 17.7 ± 2.8 24.8 ± 1.6 101.1 99.2

aMean ± standard deviation for n = 5.
bNot detect.

TABLE 2 | Performance comparison of La2O3@SF-L Cu2S/GCE for the simultaneous determination of diclofenac and chlorzoxazone with other electroanalytical methods.

Electrode Linear range (µM) Detection limit References

Diclofenac

ZnO@Cu nanoparticles/GCE 0.01–300.0 0.0341 µM Honakeri et al. (2020)
Plane pyrolytic graphite electrode 0.01–10.0 6.2 nM Goyal et al. (2010)
Zeolite imidazolate framework-67/graphitic carbon nitride/GCE 0.2–2.2 0.071 µM Ngoc Hoa et al. (2021)
Tyrosine/carbon paste electrode 10.0–140.0 3.28 µM Chethana et al. (2012)
Boron doped diamond electrode 0.31–31.1 0.03 µM Ihos et al. (2012)
Multiwalled carbon nanotube and ionic liquid/carbon ceramic electrode 0.005–20.0 27.0 nM Razmi et al. (2013)
La2O3@SF-L Cu2S/GCE 0.01–900.0 1.7 nM This study

Chlorzoxazone

GCE 0.8–10.0 0.0441 µM Abbar and Nandibewoor, (2012a)
Gold electrode 5.0–100.0 4.5 µM Abbar and Nandibewoor, (2012b)
Nanostructured Au/graphene/GCE 0.1–100.0 0.012 µM Meti et al. (2021)
Carbon paste electrode 0.17–1.68 μg/ml 0.05 μg/ml Zayed and Issa, (2020)
La2O3@SF-L Cu2S 0.01–900.0 2.3 nM This study
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chlorzoxazone concentration versus peak current, as seen in
Figures 11B,D. Electrocatalytic peak currents from the
oxidation of diclofenac and chlorzoxazone on the La2O3@
SF-L Cu2S/GCE surface had a linear correlation with
different concentrations of diclofenac and chlorzoxazone
(0.01–900.0 μM). The limit of detections (LOD, 3Sb/m) were
computed to be 1.7 and 2.3 nM for diclofenac and
chlorzoxazone, respectively, where Sb stands for the
standard deviation of blank and m for the slope of
calibration plot. In addition, the limit of quantifications
(LOQ, 3Sb/m) were calculated to be 5.7 and 7.6 nM for
diclofenac and chlorzoxazone, respectively.

3.8 Simultaneous Detection of Diclofenac
and Chlorzoxazone
According to Figure 12A, we found two well-separated peaks
and two peak currents increased linearly with the increase of
the concentrations of diclofenac and chlorzoxazone. This
demonstrates the feasibility of the simultaneous
determination of the aforementioned species in the
mixture solution applying DPV. The sensitivity of the
modified electrode toward the oxidation of diclofenac and
chlorzoxazone was found to be 0.082 μA μM−1 and
0.1789 μA μM−1, respectively, which is very close to the
values obtained in the absence of another one’s
(0.0828 μA μM−1 and 0.1785 μA μM−1, see Section 3.7)
(Figures 12B,C). These results are indicative that the
oxidation processes of these compounds at the La2O3@SF-
L Cu2S/GCE are independent, and therefore, simultaneous
determination of their mixtures is possible without
significant interferences. Five consecutive detections of
diclofenac and chlorzoxazone (100.0 μM) showed a
relative standard deviation (RSD%) of 1.8 and 2.2,
respectively, confirming the effectiveness of the proposed
electrode for the simultaneous detection of diclofenac and
chlorzoxazone.

3.9 Interference Measurements
The coexistence of diclofenac and chlorzoxazone in real
samples emphasizes the necessity of examining their
interference for the selective determination of one species.
In each test, the concentration of a species was variable while
keeping constant another one’s concentrations, and the results
of which are shown in Figures 13A,C. Figure 13A shows an
elevation in the diclofenac oxidation peak current by
increasing its concentration, while the chlorzoxazone
oxidation peak current was constant. Figure 13B shows that
the voltammetric peak of diclofenac oxidation elevated linearly
in line by increasing their concentration, but the oxidation
peak current of chlorzoxazone was constant. According to the
results, peak currents were linearly correlated with diclofenac
(or chlorzoxazone) concentrations, while no change occurred
in the other compound; this demonstrates the independent
implementation of diclofenac and chlorzoxazone oxidation on
the La2O3@SF-L Cu2S/GCE.

3.10 Analysis of Real Specimens
Diclofenac tablets, human blood serum, and urine samples were
analyzed to assess the analytical applicability of the proposed
method for simultaneous detection of diclofenac and
chlorzoxazone. Thus, the diclofenac and chlorzoxazone levels
were measured in these specimens. The samples spiked with a
certain level of diclofenac and chlorzoxazone were analyzed to
examine the method’s reliability (Table 1). The obtained recovery
was between 97.4% and 102.4% for diclofenac and chlorzoxazone,
confirming the applicability of the proposed electrode for
simultaneous detection of diclofenac and chlorzoxazone.

3.11 Reproducibility, Repeatability, and
Stability
The DPV method was used to study the stability, reproducibility,
and repeatability of the electrochemically fabricated sensor under
optimized conditions. After six consecutive applications of the
La2O3@SF-L Cu2S/GCE tomeasure the 10.0 µM of diclofenac and
chlorzoxazone solution, no distinct change was found in the DPV
response. The relative standard deviation (RSD%) of 0.94%
confirmed the satisfactory repeatability of the proposed sensor.
The DPV method was performed additionally to assess the
electrode reproducibility. Six consecutive measurements were
carried out to evaluate reproducibility, followed by calculating
RSD%. The intra-electrode and interelectrode RSD% was about
1.25% and 2.83%, respectively. The stability of the modified
electrochemical sensor was analyzed as well. The electrodes
were left in an ambient room for 3 weeks, and there was no
significant fluctuation in peak current (2.6%), confirming the
appropriate stability of the La2O3@SF-L Cu2S/GCE under
optimized conditions. The selectivity of the method was
evaluated by testing the 10.0 µM diclofenac and chlorzoxazone
solution in exposure to several compounds with potential
interferents containing 100-fold sucrose, ascorbic acid, citric
acid, dopamine, vitamin B6, uric acid, vitamin B2, glucose, and
starch. According to the results (the signal change of less than
3%), no significant interference was seen between those
compounds and diclofenac and chlorzoxazone detection. The
proposed method subsequently demonstrated a considerable
selectivity for diclofenac and chlorzoxazone detection.

3.12 Comparison of Our Method With
Others in the Literature
The comparison of analytical efficacy between the as-fabricated
electrode and other electrochemical methods was performed
individually for each of diclofenac and chlorzoxazone (Tables 2).
Based onTable 2, the performance of our proposed electrochemical
electrode for sensing diclofenac and chlorzoxazone displayed a
comparable linear range, and better detection limit and
sensitivity than other methods (Goyal et al., 2010; Abbar and
Nandibewoor, 2012a; Abbar and Nandibewoor, 2012b; Chethana
et al., 2012; Ihos et al., 2012; Razmi et al., 2013; Honakeri et al., 2020;
Zayed and Issa, 2020; Meti et al., 2021; Ngoc Hoa et al., 2021).
Accordingly, the as-fabricated sensor is potentially able to
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determine the trace amounts of studied drugs in various media.
Moreover, the electrode used for sensor fabrication is a GCE that
has various advantages like cost-effectiveness, facile modification,
admirable accessibility, and lower background current when
compared with other electrodes such as diamond and carbon
paste electrodes. As seen in Table 2, the electrode as-fabricated
for electrochemically sensing diclofenac and chlorzoxazone
generally showed admirable properties for measurement speed,
sensitivity, detection limit, linear range, and sensitivity when
compared with other electrochemical methods reported in the
literature.

4 CONCLUSION

The current study aimed to develop a La2O3@SF-L Cu2S
composite-modified glassy carbon electrode for simultaneous
detection of diclofenac and chlorzoxazone in biological and
pharmaceutical specimens. An excellent electrocatalytic
potential was obtained for the proposed electrochemical sensor
toward the oxidations of diclofenac and chlorzoxazone because of
the synergetic activity of La2O3 and SF-L Cu2S on the electrode
surface. The applicability of our modified electrode was examined
for successful simultaneous detection of diclofenac and
chlorzoxazone in drug tablets and urine specimens.
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