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Graphene and its derivatives have been a burning issue in the last 10 years. Althoughmany
reviews described its application in electrochemical detection, few were focused on food
detection. Herein, we reviewed the recent progress in applying graphene and composite
materials in food detection during the past 10 years. We pay attention to food coloring
materials, pesticides, antibiotics, heavy metal ion residues, and other common hazards.
The advantages of graphene composites in electrochemical detection are described in
detail. The differences between electrochemical detection involving graphene and
traditional inherent food detection are analyzed and compared in depth. The results
proved that electrochemical food detection based on graphene composites is more
beneficial. The current defects and deficiencies in graphene composite modified
electrode development are discussed, and the application prospects and direction of
graphene in future food detection are forecasted.
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GRAPHENE AND ITS DERIVATIVES

Graphene is a single-atom 2D layer crystal atom with sp2 hybridization of carbon atoms, with a
thickness of only 0.34 nm (Figure 1). The inner carbon atoms are arranged in a honeycomb lattice
structure. According to different application requirements, the mechanical peeling method, SiC
epitaxial growth method, Hummers’ method, and chemical vapor deposition (CVD) method are
commonly used in carbon fabrication. The advantages and disadvantages of the methods mentioned
previously vary. Graphene has remarkable physical and chemical properties such as high mechanical
strength, excellent thermal and electrical conductivity, and a high specific surface area (theoretically,
2,630 m2/g for single-layer graphene) (Alwarappan et al., 2009; Balandin, 2011; Neto et al., 2009; Wang
et al., 2009). It has significant application prospects in numerous fields, including the food industry,
material manufacturing, energy, chemical industry, biological science, and medical medicine delivery.

Graphene oxide (GO), an oxygen-containing derivative of graphene, belongs to a branch of
graphene research. Generally, graphene oxide is a material obtained by the multistep chemical or
thermal reduction of graphene (Figure 2) (Dikin et al., 2007; Stankovich et al., 2007). Chemically
synthesized GO is suitable for mass production, and the GO surface contains abundant oxygen-
containing groups, which gives it greater thickness than graphene. Due to these functional groups,
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the GO surface is easily modified, with a fast electron transfer rate
and good hydrophilic and biocompatibility properties (Dreyer
et al., 2010; Liu et al., 2010; Zhou et al., 2009). The abundant
oxygen-containing groups (such as -OH and -COOH) provide
GOwith strong hydrophilic ability. It can be dispersed in water or
other organic solvents to form a stable suspension. It is also easy
to modify GO through covalent or noncovalent interactions with
organic small-molecule polymers (Wang et al., 2011). Recently,
GO-based materials have gained increasing interest due to their
excellent attributes.

Reduced graphene oxide (rGO) is an ideal support material for
metal nanoparticles, which can be produced at a low cost and

large scale. rGO sheets possess higher conductivity than GO
sheets due to restoring the conjugated network in the rGO sheets.
The oxygen-containing functional groups on rGO render it with
an extremely high specific surface area, superior electronic
conductivity, excellent mechanical strength, and elasticity
(Sahoo et al., 2012; Kong et al., 2009). rGO is considered a
promising material in the fabrication of electrochemical
biosensors (Zhang L. et al., 2012; Kuila et al., 2011; Lu et al., 2012).

Graphene quantum dots (GQDs) are attractive nanomaterials
consisting of a monolayer, or a few layers, of graphene with excellent
and unique properties. Unlike graphene sheets, GQDs are 0D
graphene segments that exhibit bandgap responsible for their
unique optical and electrical properties. Due to their small size,
GQDs display a quantum effect when produced using carbon-rich
precursors such as fullerene, glucose, graphite, graphene oxide (GO),
CNTs, and carbon fibers (CFs). Two main GQD synthesis methods
are followed, namely, top–down and bottom–upmethods, as shown
in Figure 3 (Zhu et al., 2017). Such techniques are too complicated
for the synthesis of conventional semiconductor quantum dots.

PREPARATION OF GRAPHENE AND ITS
DERIVATIVE

Mechanical Peeling Method
Graphene sheets are removed directly from the surface of large
graphite crystals by mechanical force and transferred to carriers
such as silica. Monolayer graphene sheets can be obtained on
substrates such as silica. This is the first known method to

FIGURE 1 | Basic structure of graphene (YARRIS et al., 2007).

FIGURE 2 | Structure of graphene oxide (Zhou et al., 2011).
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synthesize graphene using a top–down technique, by which
layered graphene is split into several layered graphene sheets
through repeated peeling. The obtained flakes varied greatly in
size and thickness, and the product size could not be controlled.
Therefore, it could not meet the industrial requirements of
graphene. Entani et al. developed and modified these methods
by synthesizing graphene on a SiO2 substrate. Their research
showed that the resulting graphene structure was more
homogenous than when using other methods.

Epitaxy Growth Method
Under high vapor pressure, high temperature (usually >1400°C),
and ultra-high vacuum pressure (usually <106 Pa), silica atoms
are volatilized, and the residual carbon atoms are arranged on the
SiC surface to form graphene layers throughout the structure.

This method can result in large amounts of high-quality single
graphene, but the SiC crystal is expensive, and the transfer of the
produced graphene is challenging (Dreyer et al., 2010). Therefore,
this method is mainly used to prepare graphene devices with SiC
as the substrate.

Hummers’ Method
The key idea of this method is forcibly damaging π and
introducing oxygen-containing functional groups made of O
and C atoms, such as COOH, -OH, and C–O–C.
Subsequently, graphene experiences chemical, thermal, or
electrochemical reduction to remove the oxygen-containing
functional groups to obtain reduced graphene oxide (reduced
graphene oxide, rGO) (Zhou et al., 2009; Zhou et al., 2011).

Currently, the most used chemical oxidation method is
Hummers’ method. In this method, inorganic strong protic
acids (such as concentrated sulfuric acid, concentrated HNO3,
or a mixture) are used to treat the raw graphite. Small molecules
of a strong acid are inserted in between the graphite layers,
followed by strong oxidants such as KMnO4 and KCIO4 (Lee
et al., 2016). Finally, hydrogen peroxide is used to remove any
excess KMnO4. After filtration, diluted hydrochloric acid and
ultra-pure water are used to clean the products and obtain GO
(Dreyer et al., 2010). The degree of graphite oxidation depends on
the selected method and reaction conditions. This method is
currently the most commonly used in laboratory GO preparation,
but it often fails to obtain high-quality graphene (Liu et al., 2010).

Chemical Vapor Deposition
The graphene prepared viaCVD is of high quality and is expected
to meet the application requirements of transparent conductive
films. It is widely used in the large-scale industrial preparation of
semiconductor materials for thin-film transistors.

APPLICATION OF GRAPHENE IN FOOD
DETECTION

As a branch of chemistry, electrochemical analysis has been
verified by many practical and theoretical experiments. It is an
analytical method to determine the composition and content of
an object by directly measuring different electrical signal
parameters, such as the current potential conductance,

FIGURE 3 | Two approaches to synthesizing GQDs: the “top-down” splitting from large molecules and “bottom–up” from small molecules (Zhu et al., 2017).
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TABLE 1 | Applications of graphene in detecting pigments and heavy metal ions.

Food Colorants Material/electrode
used

Method Limit of
detection

Linear range Reference

Sunset yellow MnO2 NRs-ERGO- GCE CV and SDLSV 2.0 nM 0.01–2.0 µM, 2.0–10.0 µM
and 10.0–100.0 µM

Ding et al., 2019

Sunset yellow;
tartrazine

Carbon-ceramic electrode of
graphene nanoplatelet

DPV 7.3 × 10–8 M; 8.1 ×
10–8 M

1 × 10−7–1.5 × 10–5 M; 1 ×
10−7–2×10–5 M

Majidi et al. (2015)

Sunset yellow Cv ILRGO-Au/GCE 5.2 × 10−10M 4.0 × 10−9–2×10−6 M Wang et al. (2015)
Sunset yellow DPV rGO/CPE 27 nM 0.05–10 µM Elham et al. (2020)
SY, Tz GN/TiO2-CPE Square wave

voltammetry (swv)
6.0 nM, 8.0 nM 0.02–2.05 µM,

0.02–1.18 µM
Gan et al. (2013b)

Sudan I (graphene/β-CD/PtNPscomposite
modified electrode); graphene/β-CD/
PtNP modified electrode

DPV 1.6 nM 0.005–68.68 μM Palanisamy et al.
(2017)

Sudan I Ag-CuNP/rGO/GCE CV 0.4 nM 1.0 nM-10 µM Yao et al. (2016)
Sudan I GMGCE New voltammetric

method
4.0 × 10−8mol L−1 7.50 × 10-8 mol L−1–7.50 ×

10−6 mol L−1
Ma et al. (2013a)

Allura red CV and DPV PDDA-Gr-Ni/GCE 8.0 nmol/L 0.05–10.0 mmol/L Yu et al. (2016)
Allura red CV SWSV IL-GO-MWCNT-GCE 5.0 × 10−10 mol/L; 3.0 ×

10−9 mol/L
8.0 × 10–10–5.0 × 10−7 mol/

L; 5.0 × 10−9–4.5 ×
10−7 mol/L

Wang et al. (2015)

Allura red CV and DPV PDDA-Gr-Ni/GCE 8.0 nmol/L 0.05–10.0 mmol/L Yu et al. (2016)
Amaranth GNM/GCE CV 7.0 × 10–10 M 5.0 × 10–9–1.0 × 10–6 M Wang et al. (2018b)
Amaranth DPV Fe3O4/rGO 50 nM 0.05–50 µM Han et al. (2014)
Heavy metal ions
Pb(II), Cd(II), Zn(II),

Cr(III), and Mn(II) and
Fe(III)

DMSPE/ICP-OES GO Pb(II)-0.25 ng ml−1 — Feist and Sitko,
(2019)Cd(II)-0.06 ng ml−1

Zn(II)-0.16 ng ml−1

Cr(III)-0.06 ng ml−1

Mn(II)-0.12 ng ml−1

Fe(III)-0.21 ng ml−1

Pb(II) BGO-SLPE/FAAS BGO 0.84 μg L−1 — Wang et al. (2018a)
Hg(II) ICP-OES Fe3O4@GO/2-PTSC 0.0079 μg L−1 — Keramat and

Zare-Dorabeni
(2017)

Pb2+; Cd2+ DPASV GC–O–GO Pb2+-0.25 pM; Cd2+-
0.28 pM。

— Yavuz et al. (2016)

Heavy metals FAAS Amine-functionalized
graphene nanosheet

Cd(II)-0.03, Cu(II)-0.05,
Ni(II)-0.2, Zn(II)-0.1, Pb(II)-

1 μg L−1

— Behbahani et al.
(2014)

Cd(II) FAAS Dipyridyl-
functionalized
graphene nano-sheet

0.19 ng ml −1 — Karimi et al. (2014)

Mn(II) Fe(III) FAAS MPPC chelates on GO Mn(II)-145 ng.L−1 Fe(III)-
162 ng. L−1

— Pourjavid et al.
(2014)

Pb2+ SWASV rGO-SPCE 1 ppb (S/N = 3) — Jian et al. (2013)
Trace heavy

metals
SWASV RGO-N/Si Cd2+-1.69 nM, Pb2+-0.39

nM, Cu2+-2.16 nM
— Lee et al. (2016)

Toxic heavy
metals (Cd, Hg,
and Pb)

DPASV PG/GCE Cu2+-0.024 µM, Cd2+-
0.015 µM

— Yi et al. (2019)

Hg2+- 0.032 µM, -S/N ≥ 3)
Pb(II) SWV PGA/rGO 0.06 μg/L — Feminus and Deepa,

(2019)
Pb(II) SWV NG-PTCA-Thi-Au 0.42 pM (S/N = 3) — Ma et al. (2019)
Cd(II); Pb(II) SWASV GC/ErGO Cd(II)-15 μg/L; Pb(II)-

15 μg/L
— Pizarro et al. (2019)

Cu(II) FAAS AF-Fe3O4– GO-based
MSPE

0.9 μg L−1 — Bahar and Karami,
(2015)

Zn(II) FAAS IIP-GO/Chm 0.09 μg L−1 — Kazemi et al. (2017)
Cd2+ ICP-OES. (MGO@Azo-phenol 0.4 μg L−1 — Sa’adi and Es

haghiet al. (2019)

CV, cyclic voltammetry; DPV, different pulse voltammetry; LSV, linear sweep voltammetry; FAAS, flame atomic absorption spectrometry; ICP-OES, inductively coupled plasma optical
emission spectrometer; SWV, Schutz–Werke–Verzeichnis; DPASV, differential pulse anodic stripping voltammetry; SWASV, square wave stripping voltammetry.
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according to the electrochemical characteristics of different
substances. Electrochemical detection methods have the
advantages of low cost, small working space, fast speed, high
sensitivity, and high accuracy when compared with other food
detection methods. Therefore, the research, application, and
promotion of electrochemical detection in food quality and
related areas can play an essential role in promoting future
food quality detection and standards. As an eminent factor in
materials science in the 21st century, graphene has been widely
used according to its excellent properties (Novoselov et al., 2012).
Applying single graphene or graphene-based composite materials
in the chemical modification of electrodes also shows significant
development and research value. In addition, graphene and some
of its derivatives, including graphene oxide (GO) and reduced
graphene oxide (rGO), have been applied to detect substances in
different food samples. These include colorants in food and
drinks (He et al., 2018a; Qiu et al., 2016), heavy metal ions
(Xia et al., 2015), antibiotic residues (Liu et al., 2017), dopamine,
rutin from human samples (Yang and Li, 2014; He et al., 2018b;
He et al., 2019a), pesticide residues (Liu et al., 2011), and 4-
nitrophenol (He et al., 2019b) from environmental contaminants.
GO and rGO showed great promise in developing chemically
modified electrodes (Shao et al., 2010).

Detection of Food Coloring
The synthetic pigments that commonly appear in food are azo
pigments (tartrazine, Allura Red, amaranth, carmine, and sunset
Yellow). Azo dyes account for more than half of the global
synthetic dye production. Azo pigments exhibit excellent color
performance, and desired colors can be obtained by adjusting the
type and proportion of the azo components, creating a wide
variety of colors. The excessive intake of azo dyes may be harmful
to human health. For example, sunset yellow and tartrazine
contain groups such as azo and aromatic rings in their
structure, which can induce allergies, asthma, migraines, and
cancers (Somasundaram, 2014; Ye et al., 2013). Existing analytical
methods for the detection of azo pigments mainly involve high-
performance liquid chromatography (HPLC–MS) (Qiu et al.,
2016), capillary electrophoresis (Zhao et al., 2014), surface-
enhanced Raman spectroscopy (SERS) sensors (Xie et al.,
2012), fluorescence (Yuan et al., 2016), and thin-layer
chromatography (Soponar et al., 2008). Some of these
methods are complex and do not meet economic, efficient,
and convenient detection demands. Presently, electrochemical
analysis methods using modified electrodes have been used to
detect food additives such as citron yellow and sunset yellow as
they are convenient, fast, sensitive, and highly selective (Table 1)
(Qiu et al., 2016; Gan et al., 2013a; Wang and Zhao, 2015a; Wang
and Zhao, 2015b).

Gan et al. used a carbon paste electrode, modified by graphene
and mesoporous TiO2, to develop a rapid and low-cost method
without any sample pre-treatment required to detect sunset
yellow and tartrazine yellow colorants, with the detection
limits of 6.0 and 8.0 nM(Gan et al., 2013b), respectively. Ding
et al. (2019) studied electrochemically reduced graphene oxide
(ERGO) nanoflake-decorated MnO2 nanorods (MnO2 NRs) with
a modified glassy carbon electrode (GCE) surface. When

compared with standard GCE, a well-defined sunset yellow
(SY) oxidation peak was observed at the MnO2 NR-ERGO/
GCE. It had a detection limit of 2.0 nM and a good linear
response to the SY in the ranges of 0.01–2.0 µM, 2.0–10.0 µM,
and 10.0–100.0 µM. This method was applied to detect SY in soft
drinks and obtained satisfactory results (Ding et al., 2019).
Vatandost et al. used natural tea extracts to obtain modified
rGO on a carbon paste electrode surface (rGO/CPE). Since rGO/
CPE has a large surface area, it has a strong enhancement effect
on the electrochemical oxidation of SY, with a wide linear
response range of 0.05–10 M and a detection limit of 27 nM
(Elham et al., 2020). Wang et al. used a graphene nanometer
material (GNM)–modified electrode, which exhibited a
significantly enhanced electrochemical amaranth signal. It
showed a wider linear response range from 5.0 × 10–9 to 1.0 ×
10–6 M. It also possessed a low detection limit of 7.0 × 10–10 M at a
signal-to-noise ratio of 3 (Wang et al., 2018). Palanisamy et al.
fabricated graphene/β-CD/PtNP-modified electrodes through
platinum nanoparticles (PtNPs) decorated with graphene-β-
cyclodextrin (graphene/β-CD)–modified electrodes. Studies on
the electrode cyclic voltammetry determination of different
modified electrodes on the electrochemical behavior of Sudan
I indicated that the electric catalytic activity of graphene/β-CD/
PtNP-modified electrodes on Sudan I was higher than that of
other modified electrodes. With a detection linear response range
of 0.005–68.68 µM and a detection limit of 1.6 nM, the sensor was
used for monitoring Sudan I–adulterated food samples (chili
powder, chili sauce, and tomato sauce) and achieved
satisfactory results in practical tests (Palanisamy et al., 2017).

Detection of Heavy Metals in Food
The excessive toxic heavy metal content is hazardous to human
health, causing illnesses such as renal dysfunction, cancer,
cardiovascular, and cerebrovascular diseases (Kadıoğlu et al.,
2010). With industrial development, the frequent pollution
accidents in the environment make food unsafe, and excessive
toxic heavy metals have become one of the most severe threats to
human health. Therefore, it is essential to develop a rapid,
sensitive, and simple method for detecting heavy metal ions
using analytical techniques, such as atomic fluorescence
spectroscopy, inductively coupled plasma optical emission
spectrometry (Ozbek and Akman, 2016), and induced plasma-
atomic emission spectrometry (Feist and Mikula, 2014).

Graphene and its derivatives with fast electron transmission
power, strong adsorption performance, and easy chemical
modification are used for the electrochemical detection of
heavy metals (Table 1) (Li et al., 2013). This operating
instrument has attracted wide attention due to its low cost,
small footprint, fast detection speed, high sensitivity, and high
accuracy (Aragay and Merkoci, 2012; Zhu et al., 2014). GO
possesses abundant active functional groups (such as carboxyl,
hydroxyl, and epoxy), making it an excellent adsorbent for
environmental applications. Despite the excellent properties of
GO, its high hydrophilic nature, extensive agglomeration, and
difficulty in separation from treated wastewater are considered
drawbacks. In addition, the oxygen atom in the carboxyl group is
categorized as a hard ligand group with less affinity for pollutants
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such as heavy metals (Chen et al., 2015; Zhao et al., 2016; Cui
et al., 2015b). Consequently, the modification of GO through the
introduction of other functional groups is the subject of ongoing
research. The detection and adsorption of heavy metals were
altered by modifying GO by introducing organic functional
groups from multifunctional materials (Hu et al., 2015). This
functionalization enhances the excellent properties of GO and
increases its adsorption capacity for the removal of heavy metal
ions (Gul et al., 2016).

Although zinc is one of the most important essential trace
elements, a lack in the human body will lead to various diseases.
However, excessive zinc intake is toxic and harmful to the body,
causing various adverse reactions. Therefore, it is of great
significance to determine the sensitivity of zinc in different
food matrices (Feist and Mikula, 2014). Kazemi et al.
proposed an innovative method for the selective extraction
and determination of zinc. A novel zinc-imprinted polymer
was synthesized by the co-precipitation of graphene oxide/
magnetic chitosan nanocomposites. After optimizing the
extraction process’s technical parameters, the adsorbent’s
maximum adsorption capacity was 71.4 mg g−1, and the
detection limit was 0.09 μg L−1 (Kazemi et al., 2017).

During the past decade, many researchers have combined
other materials to form new graphene-based nanomaterials that
can be used to detect heavy metal concentrations (Table 1).
Palisoc et al. prepared graphene/gold nanoparticles (AuNPs)/
hexamine mineral acid [Ru(NH3)6] 3+/Nafion via the drop
coating method on a glassy carbon electrode (GCE), which
successfully determined trace amounts of Pb(II), Cu(I), Cu(II),
Sn(IV), and Hg(II) in canned food samples. Pb2+, Cd2+, and
Cu2+ exhibited the highest sensitivity by anodic stripping
voltammetry (ASV). There was an excellent linear
relationship between heavy metal concentration and peak
current, and the detection limit of Pb2+ was 0.74 ppb, that of
Cd2+ was 37 ppb, and that of Cu2+ was 945 ppb (Palisoc et al.,
2019). Wang et al. improved the extraction efficiency of Pb(II)
in food samples through the synergistic effect of the BGO
membrane (solid extraction) and organic solvent (liquid
extraction). After optimizing the BGO membrane
composition parameters, pH, elution agent types, elution
time, sample volume, and other experimental conditions
showed no obvious influences on different competitive ions.
Under the optimal experimental conditions, the minimum
detection limit was 0.84 μg L−1 and the precision was 4.65%.
The method has been successfully verified based on the analysis
of detecting Pb(II) added to food samples. Karthik used electron
microscopy (HR-SEM), transmission electron microscopy
(TEM), X-ray diffraction (XRD), and UV–Vis-NIR Fourier-
transform infrared spectroscopy (FT-IR) to analyze cobalt-
doped zinc oxide/reduced GO (Co: ZnO/RGO) nanorods,
obtained by chemical co-precipitation (Wang J. et al., 2018).
It was found that the electrode prepared with Co: ZnO/RGO
nanorods had good sensitivity to Cd(II) and Pb(II) ions with
excellent electrocatalytic oxidation performance, and the
detection limit was 0.94 g/L (Cd(II)) and 0.83 g/L (Pb(II)),
with concentrations ranging from 10 to 90 g/L (Karthik and
Thambidurai, 2017).

Detection of Food Pesticides
Organophosphate pesticides (OPs) have been widely used in
agricultural production due to their wide control range, low
cost, and high insecticidal efficiency. Organophosphates are
neurotoxins that inhibit acetylcholinesterase activity, causing
acetylcholine accumulation and neurotoxicity (Gu et al., 2012).
In the European Union, it is already banned from being used on
crops and is only allowed under strict limitations. Taking the
organophosphate insecticide phoxim as an example (Chao and
Chen, 2014), it is mainly used to prevent underground pests,
particularly the Lepidoptera pests affecting peanuts, vegetables,
and other crops. Various methods have been developed to
identify phoxim, such as high-performance liquid
chromatography (HPLC) (Hamscher et al., 2007; Liang et al.,
2005; Liang et al., 2006; Liu et al., 2009; Lv et al., 2009), liquid
chromatography (Guo et al., 2005; Lee et al., 2010), gas
chromatography (Qu et al., 1997), near-infrared spectroscopy
(Gu et al., 2012; Shen et al., 2009), and spectrophotometry (Ni
et al., 2007). These methods require expensive equipment, large
amounts of organic solvents, or are time-consuming.
Electrochemical sensors have attracted increasing attention in
recent years due to their convenience, speed, high sensitivity, and
selectivity (Table 2) (Huang et al., 2011; Jin et al., 2011; Keawkim
et al., 2013; Wang et al., 2014). Using graphene-modified glassy
carbon electrodes, Chao and Chen established an electrochemical
method to directly determine phoxim traces in vegetables, meat,
and egg samples. The Gr/GCE combined with linear scanning
voltammetry (LSV) was successfully applied to determine
phoxim in food samples such as cauliflower, lamb, and quail
eggs. This method has a very sensitive nanomolar detection limit
for phoxim, providing an important detection tool (Chao and
Chen, 2014). Mani et al. reported an effective electrochemical
sensor using NbC@Mo nanocomposite for various pesticides
(i.e., fenitrothion). This study proved that NbC@Mo holds a
higher electrochemical active area and improved electrocatalytic
property toward FTN. A DPV-sensing platform displayed
eminent electroanalytical parameters, such as a wide linear
range (0.01–1889 µM) and low detection limit (0.15 nM)
(Govindasamy et al., 2018). Furthermore, Mani et al. described
a reproducible and reliable screen-printed carbon electrode
(SPCE) modified with graphene oxide nanoribbons (GONRs)
for sensitive determination of methyl parathion. The sensor
exhibited two linear ranges: (1) 100 nM–100 μM, with a
sensitivity of 1.804 μAμM−1 cm2, and (2) 100–2,500 μM, with a
sensitivity of 0.8587 μAμM−1 cm2. The detection limit was 0.5 nM
(S/N = 3). The method successfully determined methyl parathion
in ugli and tomato fruits, beetroot, and broccoli, indicating its
practical applicability (Govindasamy et al., 2017a).

In the early 1950s, methylcarbamate was introduced as a
pesticide and is still used today (Wong et al., 2014). This is
one of the most toxic carbamate insecticides used to control
insects on various field crops, including potatoes, corn, carrots,
and soybeans. Methylcarbamate is a systemic pesticide absorbed
through plant roots and distributed to their organs, where the
pesticides accumulate over time (Otieno et al., 2010). Classical
analytical techniques such as gas chromatography (GC), high-
pressure liquid chromatography (HPLC), and mass spectrometry
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(MS) are known to be sensitive and standardized techniques for
the detection of carbofuran (Filho et al., 2010; Vera-Avila et al.,
2012; Atrache et al., 2013). Electrochemical sensors, specifically
chemically modified electrodes, have become of interest to
researchers due to their portability, simplicity, minimal cost,
and short analysis time (Table 2) (Wong et al., 2013; Zen
et al., 2003). Wong et al. (2014) developed a technique for the
sensitive and selective analysis of carbofuran pesticides based on a
carbon paste electrode modified with hemin complex and
graphene oxide. The selective detection of carbofuran was
confirmed, and when the sensor was applied to food samples,
the recovery results were close to 100%, similar to the HPLC
method (Wong et al., 2014).

Methyl paraoxon (MOX) is a highly toxic organophosphate
pesticide. It has been recently reported that MOX can enter the
human body through ingestion, inhalation, or dermal
penetration. Due to its high nondegradability, it can bind to
fruits and vegetables. When consumed, it can impose sub-chronic
and chronic diseases by inhibiting acetylcholinesterase in human
metabolism. Umamaheswari et al. reported the detection of non-
enzymatic electrochemical sensors based on the 3D porous phase
graphene oxide sheet–encapsulated chalcopyrite (GOS@CuFeS2)
nanocomposite. As-synthesized GOS@CuFeS2 nanocomposite
film screen-printed carbon-modified electrode (SPCE) displays
excellent electrocatalytic ability toward MOX. Under optimized
working conditions, the modified electrode provides a linear
response range from 0.073 to 801.5 µM. The detection limit
was obtained as 4.5 nM. The sensor displayed outstanding
sensitivity at 17.97 μA μM−1 cm−2 35. The GOS@CuFeS2
nanocomposite–modified electrode shows greater real-time
practicality in actual vegetable samples (Rajaji et al., 2019a).

Detection of Food Toxins
One of the most harmful food contaminants is aflatoxin (AFT)
(Conradt et al., 2015). Aflatoxin mainly exists in corn, soybean,
peanut, grain, wheat, and other agricultural products and
seriously affects food safety. AFB1 is classified as a group I
carcinogenic compound according to the International Agency
for Research on Cancer (IARC) (Liu et al., 2006). Bhardwaj et al.

deposited GQDs via chemical synthesis on indium tin oxide
(ITO)–coated glass substrates through electrophoretic
deposition. The AFB1 monoclonal antibody was covalently
fixed on the deposition electrode GQDs/ITO (Table 3). The
detection limits of the standard and contaminated samples
were 0.03 ng ml−1 and 0.05 ng g−1, respectively, which falls
below the maximum acceptable limit stipulated by the
European Union. This suggests that this method possesses a
potential application value in detecting AFB1 in food (Bhardwaj
et al., 2018). Srivastava et al. studied the fabrication of a highly
sensitive label-free biosensor based on a graphene oxide platform
to detect aflatoxin B1 (AFB1). Electrochemical impedance
spectroscopy (EIS) detected the AFB1 concentration range.
The impedimetric sensing response of immunoelectrodes as a
function of AFB1 concentration demonstrated a wide linear
detection range (0.5–5 ng/ml), high sensitivity (639Ω ng−1 ml),
improved detection limit (0.23 ng ml−1), and good stability
(5 weeks) in label-free detection (Srivastava et al., 2014).
Pumera described the application of graphene in biosensors
used as biomolecular labels, including a bio-field effect
transistor (Pumera, 2011). Reduced GO (rGO) is a promising
electrochemical biosensor material due to its biocompatibility
and the presence of oxygen-containing functional groups
(especially carboxyl groups) (Pumera, 2010; Zhang C. et al.,
2012; Kuila et al., 2011; Lu et al., 2012). Srivastava et al.
(2013) synthesized chemically active rGO and deposited it
onto an indium tin oxide (ITO)–coated glass substrate via
electrophoretic deposition. The sensing results of the anti-
AFB1/RGO/ITO––based immunoelectrode obtained as a
function of aflatoxin concentration showed high sensitivity
(68 mA ng−1 ml cm2) and an improved detection limit
(0.12 ng ml−1) (Srivastava S Kumar et al., 2013).

Maltol, chemically known as 3-hydroxy-2-methyl-4H-pyran-
4-one, is a natural flavor enhancer widely used in food (cake, beer,
and drinks). Maltol is banned in children’s food by both the FDA
and China’s national food safety standards because of its potential
to harm health and is also banned in Europe (Ma et al., 2014).
Therefore, the detection of maltol in food is crucial. Ma et al.
(2014) set up a rapid method of detecting maltol, where the

TABLE 2 | Applications of graphene in detecting pesticides.

Pesticide Type Linearity range LOD Example Ref

Phoxim Gr/GCE sensor 5.97–5,966 μg L−1 2.39 μg L−1 Vegetable, meat, and eggs Lv et al. (2009)
Phoxim LC–MS 0.02–1.0 mg kg−1 Not available Eggs Lv et al. (2009)
Phoxim Near-infrared spectrometry 1–100 mg L−1 1 mg L−1 Water Gu et al. (2012)
Phoxim Chi/AChE/SnSe2/GCE

biosensor
8–5,120 μg L−1 4 μg L−1 No real sample analyzed Zhang et al., 2012a

Carbofuran Hemin-complex/graphene 5.6 × 10−6–9.5 ×
10−5 mol/L

9 × 10−9 mol/L Carrots Wong et al. (2014)

Carbofuran ECV (AChE/Fe3O4) 5.0 × 10−9–9.0 ×
10−8 mol/L

3.6 × 10−9 mol/L — Jeyapragasam and Saraswathi.
(2014)

Carbofuran CNPPE 0.5 × 10−7–4.4 ×
10−7 mol/L

0.5 × 10−7 — Samphao et al. (2013)

Carbofuran (TPN/Fe3O4 0.5–500 μg L−1 0.17 μg L−1 Cucumber, tomato, and tap
water

Shahrebabak et al. (2019)
NPs/GO

Neonicotinoid
pesticides

HPLC–DAD 0.5–100 μg L−1 0.08–0.1 μg L−1 Pear and tomato Ma et al. (2013b)
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electrochemical behavior of maltol at the modified electrode was
studied by cyclic voltammetry (Table 3). The method performed
well in terms of linearity (r = 0.9981 and 0.9955), recovery
(97.99.3%), reproducibility (relative standard deviation 3.1%,
n = 6), and stability. Subsequently, it has been successfully
applied in maltol analysis in various foods (Ma et al., 2014).
Gan’s study proposed an ideal cheap voltammetric method to
determine maltol in complex food matrices. SnO2@C@Go
nanocomposite is a novel electrochemical reinforced material
used to prepare maltol in food electrochemical detection
platforms, with an excellent linear range (0.08–10 µM) and
low detection limit (12 nM). This detection method extends
the application range of semiconductor materials and sheds
some light on the fusion of electrochemical technology and
analytical methods (Gan et al., 2017).

For highly carcinogenic nitrites (Absalan et al., 2015), it is
essential to develop a simple method to detect and monitor their
levels in drinking water, cured food, and environmental systems
(Wang et al., 2017; Schierenbeck and Smith, 2017). Zhao et al.
(2017) synthesized a Pd/Fe3O4/polyDOPA/RGO composite
material using a green method, and its electrocatalytic activity
on nitrite oxidation was excellent (Table 3). A modified glassy
carbon electrode measured the nitrite, and the amperometric
response results demonstrated a wide linear range of

2.5–6470 µM and a low detection limit of 0.5 µM. Moreover,
the sensor could effectively monitor the change in the nitrite
content in the rapid decay of cabbage. In addition, the monitoring
results showed that the nitrite content reached its peak within
1 day of corrosion and decreased to a lower level after 3 days,
which was consistent with the ion chromatography trend (Zhao
et al., 2017).

Acrylamide (2-propenamide) is found in carbohydrate-rich
food cooked under high temperatures. Nodeh et al. (2018)
successfully cleaned and measured acrylamide in various foods
using a Fe3O4@G-TEOS-MTMOS RP-MSPE method and
compared it with previous TEOS-MTMOS d-SPE and other
published works. The Fe3O4@G-TEOS-MTMOS RPMSPE
method showed low LODs (0.061–2.89 μg kg−1) and high
relative recovery (82.70–105.97%) (Table 3) (Nodeh et al., 2018).

Rajaji et al. (2020) synthesized a super-active electrocatalyst of
Bi2Te3@g-C3N4 BNs to quantify food toxic chemicals in meat
samples. As modified, the Bi2Te3/g-C3N4 BN-modified electrode
exhibits excellent electrochemical activity toward food toxic
ractopamine (RAC) with high-sensitive (L.R: 0.015–456.4) and
nanomolar detection limit (LOD: 1.77 nM) (Rajaji et al., 2020).

Govindasamy et al. (2019) developed a sensitive
electrochemical (voltammetric; DPV) sensor for the
determination of coccidiostat drug (roxarsone) based on the

TABLE 3 | Applications of graphene in detecting toxins.

Toxin Material type Method Limit of
detection (LOD)

Example Ref

AFB1 BSA/anti-AFB1/
GQDs/ITO

EIS 0.05 ng g−1 Corn Bhardwaj et al.
(2018)

Acrylamide Fe3O4@G-TEOS-
MTMOS RP-MSPE

GC–MS 0.061–2.89 mg kg−1 Boiled potato and fried potato with bright-fleshed,
sweet potato, snack, banana chips, eggplant, and
potato chips

Nodeh et al. (2018)

RP-MSPE clean-up
using
Fe3O4@G-TEOS-
MTMOS

Nitrites Pd/Fe3O4/
polyDOPA/RGO

CV 0.5 µM Yellow Zhao et al. (2017)
River water and sausage extract

Kanamycin RGO-based
fluorescent aptasensor

Fluorescence 1.0 × 10−12 M Blood serum and milk Ha et al. (2017)

Hydrazine and nitrite CoHCF-rGO/GCE DPV 0.27 µM-nitrite; 0.069 µM-
hydrazine

Pickled food; water, and well water Luo et al. (2015)

AFB1 GO/Au EIS 0.23 ng ml−1 — Srivastava et al.
(2014)

AFB1 BSA-anti-AFB1/
RGO/ITO

CV 0.15 ng ml−1 — Srivastava S Kumar
et al. (2013)

Maltol SnO2@C@GO/GCE SWV 12 nM Biscuits, beer, wine, and juice Gan et al. (2017)
Maltol PMB/Gr/GCE CV 6.50 × 10–8 mol L−1 Cake, beer, and cola Ma et al. (2014)
AFB1 CdTe QODS

(fluorescence-based)
6.25 × 10−3ng ml−1 — Zekavati et al.

(2013)
OTC, TC, DC,
and CTC

E-spun-GO/
PANCMA-NFs

HPLC–FLD 20.4–44.8 μg/kg Chicken muscle, liver, and kidney Weng et al. (2019)

NSAIDs Fe3O4-G LC–MS/MS) 0.1–50 μg L−1 Swine, chicken, and bovine Wang et al. (2019)
Chloramphenicol
(CAP)

Eu2O3/GO Amperometry 1.32 nM Milk and honey Rajaji et al. (2019b)

Sulfadiazine MIP/NiCo2O4/3D
graphene

DPV 0.169 ng/ml Milk Wei et al. (2019)
Sulfadimidine
FQs Magnetic

graphene (MG)
HPLC-UV 0.05–0.3 ng/g Bovine milk, chicken muscle, and egg He et al. (2017)

FQs Graphene oxide HPLC–FLD 0.0045–0.0079 ng/g Chicken samples Fan et al. (2015)
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use of an SPCE (screen-printed carbon electrode) modified with
tungsten disulfide nanosheets (WS2 NSs). Features including (a) a
wider linear range (0.05–490 μM), (b) a nanomolar detection
limit (0.03 μM), and (c) high sensitivity (29 μA μM−1 cm−2) have
been recorded. It also yields high accuracy and good recovery
(Govindasamy et al., 2019).

Detection of Food Antibiotics
Abuse of antibiotics will lead to excessive amounts in livestock,
poultry, meat, and eggs. Excessive drug and antibiotic residue in
livestock and poultry products threatens public health and
restricts the breeding industry’s sustainable development (Hao
et al., 2014; Liu et al., 2017). There are significant differences
between countries and species regarding the maximum residue
limits of some veterinary drugs. Developing a reliable, highly
sensitive detection method for antibiotics is conducive to better
food quality supervision and guaranteed human food safety and
benefits the country’s export trade in agricultural products. The
SP–HPLC–FLD method of E-spun GO/pancma-NF proposed by
Weng et al. has been successfully applied to TC analysis in
chicken tissue samples (Table 3). The adsorption of
tetracycline antibiotics (TCs) in chicken samples was studied
by electrospun graphene oxide–doped poly (acrylonitrile-co-
maleic acid) nanofibers (E-spun-GO-PANCMA-NFs), as a
new adsorbent for solid-phase extraction (SPE). The results
showed good linearity in the range of 5–500 ng/ml, the
correlation coefficient was higher than 0.9990, the detection
limit was 20.4–44.8 μg/kg, and the quantitation limit was
69.7–115.5 μg/kg. The recovery rate of TCs added to the
chicken muscle samples was 84.7–106.3%, and that of RSDs
was 0.4–4.5% (Weng et al., 2019). Rajaji and Chen prepared a
chloramphenicol (CAP) amperometric sensor using Eu2O3

NPS-@rGO. The sensor can be used in honey and fresh milk
samples, with a high recovery rate. It possesses high sensitivity
and repeatability and can detect concentrations as low as 1.32 nM
(Rajaji et al., 2019b). Main and Chen prepared a chloramphenicol
(CAP) amperometric sensor using MoS2/f MWCNT
nanocomposite. The sensor can be used in milk, honey, and
powdered milk, with a high recovery rate. Under optimized
working conditions, the nanocomposite film–modified
electrode responds linearly to CAP in the concentration range
of 0.08–1392 μM. The detection limit was obtained as 0.015 μM
(±0.003). The electrode has a high level of selectivity in the large
excess concentrations of interfering species. In addition, the
modified electrode offers satisfactory repeatability,
reproducibility, and stability (Govindasamy et al., 2017b).
Vinoth et al. developed an almond-like structured SrMoO4

embedded on sulfur-doped–graphitic carbon nitride
composites (SrMoO4/SGCN) using green methods for the
electrochemical detection of CAP. The sensor can be used in
river water samples, urine, and human blood serum with a high
recovery rate. SrMoO4/SGCN/GCE impedance shows a lower
resistance charge transfer (Rct), which helps favor the superior
electrochemical detection of CAP. The SrMoO4/SGCN/GCE
exhibits an ultralow detection limit of 1.5 nM for an extensive
concentration range of 0.005 1316.8 M and high sensitivity is
9.619 AM/cm2 using the amperometric method (Vinoth et al.,

2021). Govindasamy et al.developed a novel core-shell Bi2S3@
GCN electrode material–modified SPCE using green methods for
a highly sensitive and selective electrocatalytic detection of
antibiotics. Under the optimal conditions of electrochemical
analysis, the CPL sensor exhibited responses directly
proportional to concentrations (a toxic chemical) over a range
of 0.02 374.4 μM, with a nanomolar detection limit of 1.2 nM
(signal-to-noise ratio S/N = 3) (Govindasamy et al., 2021). Wei’s
study provides an effective tool for the selective and rapid
detection of SM2 in food. A three-dimensional molecularly
imprinted polymer (MIP) array electrochemical sensor was
used to detect sulfadiazine (SM2) residues in food. Under
optimized conditions, a wide linear range of 0.2–1000 ng/ml
and a detection limit of 0.169 ng/ml (S/N = 3) were obtained.
The recovery rate of the sensor is 92.3–102.23%, and the relative
standard deviation is 2.27–4.10% (Wei et al., 2019). He andWang
developed a simple and sensitive tool for detecting
fluoroquinolone residues in animal-derived foods. An
MG–DSPE–HPLC method was used to extract seven types of
FQ animal–derived food. The extraction method exhibited a high
adsorption capacity (6800 ng) and enrichment coefficient (6879
times) for seven fluoroquinolones. The absorbent can be reused at
least 40 times, the detection limit was within the range of
0.05–0.3 ng/g, and the recovery rate of the test samples (milk,
chicken muscle, and egg) was 82.4–108.5% (He et al., 2017).

Detection of Other Food Additives
Rajaji et al. developed a rapid detection of the feed additive drug
(salbutamol) using bismuth telluride (Bi2Te3) decorated graphitic
carbon nitride (GCN) nanostructures as a modified electrode for
electrochemical sensing. A nanomolar limit of detection
(1.36 nM) was calculated in a 0.05-M phosphate buffer (PB)
supporting electrolyte (pH 7.0) using differential pulse
voltammetry. The linear dynamic ranges concerning
salbutamol concentration were 0.01 892.5 μM, and the sensor’s
sensitivity was 36.277 μA μM−1cm2(Rajaji et al., 2021).

Umamaheswari et al. synthesized zinc sulfide nanospheres
(ZnS NPs) encapsulated on reduced graphene oxide (RGO)
hybrid by an ultrasonic bath (50 kHz/60 W). As-prepared ZnS
NPs@RGO hybrid was applied toward the electrochemical
determination of caffeic acid (CA) in various food samples.
The sensor can be used in red wine and soft drink samples
with a high recovery rate. The proposed electrochemical caffeic
acid sensor produces a wide linear range of 0.015–671.7 µM with
a nanomolar level detection limit (3.29 nM) (Vinoth et al., 2021).

DISADVANTAGES

Graphene is an excellent new 2D material with an extensive
application range (Yu et al., 2017; Zhang et al., 2014; Dresselhaus
and Araujo, 2010). However, some disadvantages do exist. For
example, the electrode material is limited by some application
aspects when the graphene is separated from the dispersion
liquid. Due to the influence of van der Waals forces, it tends
to aggregate and accumulate during the drying process. This
reduces the specific surface area. In addition, graphene
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hydrophobicity also limits the adsorption effect when detecting
heavy metal ions in food. However, irreversible aggregation and
repetition of graphene sheets limit their application on modified
detection electrodes (Kim et al., 2010; Fan et al., 2010). Although
multiple studies have shown that graphene has good
biocompatibility, others have found that graphene possesses
some biotoxicity. Graphene has a small particle size and
quickly penetrates human skin, where it can interact with
biological macromolecules such as proteins, lipids, and nucleic
acids, generating certain biotoxicity (Singh et al., 2009;
Makarucha et al., 2011). Consequently, graphene biosafety
should be the focus of significant attention.

At present, the biodegradation of graphene materials mainly
focuses on enzyme degradation. During body metabolic processes,
the biological effect of hydrogen peroxide during substance oxidative
decomposition is combined with active enzymes in the body to
achieve the biodegradation of graphene materials. Differences in
graphene (and its derivatives) structure, properties, and composition
affect their degradation behavior. Using polyphase atom doping and
surface functionalization, the physical and chemical properties of the
materials are changed to affect the degradation process to regulate
the enzymatic degradation of graphene materials. Some methods of
obtaining graphene cannot meet research specifications due to
dangerous pollution levels and low purity. Therefore, the
development of green and environmentally friendly preparation
methods is needed.

PROSPECTS

Based on existing electrochemical detectionmodels, addingmodified
functional graphene-like materials to develop new, more reliable,
rapid, and accurate detection methods and improving detection
stability and limits has always been an essential topic in food

detection. Although the commercialization of graphene materials
is still in its infancy, the related long-term safety and environmental
issues still need to be addressed. The physical and chemical
properties of graphene have a decisive influence on biological
outcomes, such as the effects of size, shape, surface charge,
chemical composition, and surface modification on the toxicity of
biofilm, which are still unknown. Furthermore, the active
mechanisms are still unclear. Research on the mechanisms and
biology of graphene interaction is still in its infancy at home and
abroad. The physiological and biochemical processes caused by
graphene’s impact on organisms have not been thoroughly
studied. Therefore, it is urgent to study further the toxic effects
and functional mechanisms of graphene biofilms.
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