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The organic small molecule fuel battery has attracted wild attention in recent years.
Unfortunately, the inherent catalyst poisoning phenomenon hinders its commercialization.
Exploring the anodic catalytic reaction mechanism is urgent. This article investigates the
nucleation mechanism of HCOOH on the catalyst electrode surface. The electrochemical
results indicate that the HCOOH oxidation conforms to the two-dimensional instantaneous
nucleation process. The corresponding adsorption model of CO on the catalyst surface
was finally established.
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INTRODUCTION

Developing clean energy is the key to solving environmental pollution and energy crisis
problems (Xu et al., 2020a; Shuai et al., 2020; Xu et al.,, 2021). The organic small molecule
fuel battery has attracted wild attention in recent years due to its high efficiency, friendly
environment and so on (Xu et al., 2020b). However, the electrochemical oxidation process and
the catalyst poisoning phenomenon of organic molecules are unclear, severely restricting its
development. Thus, it is necessary to develop research on the anodic reaction mechanism of
organic small molecules on the catalyst electrode surface, which can provide a new idea to
improve the fuel battery efficiency.

The electrocatalytic oxidation reaction of formic acid (HCOOH) on the metal surface is
often used as a reaction model to study the structure-performance relationship of other
complex catalytic systems due to its simple molecular structure and favorable sensitivity on the
electrocatalyst surface (Chen et al., 2006a). In recent years, various electrochemical techniques
have been used to study the effect of different factors on the electrocatalytic oxidation
mechanism of HCOOH (Samjeské et al., 2005; Chen et al., 2006b; Mukouyama et al,
2006; Osawa et al., 2011). In addition, the calculation of HCOOH oxidation based on DFT
theory has also been developed rapidly (Wang and Liu, 2015). Parson proposed that the
oxidation of formic acid on the catalyst electrode surface may follow a dual pathway
mechanism, namely, the indirect pathway and the direct pathway (Capon and Parsons,
1973). In the direct pathway, formic acid removes H atomic to produce CO,. In the
indirect pathway, formic acid first dehydrates to produce CO toxic intermediate, closely
adsorbed on the electrode surface, and CO is oxidized to CO, with the increase in the electric
potential (Watanabe and Motoo, 1975).

Although there are many studies on the electrochemical oxidation mechanism of HCOOH
on the catalyst electrode surface, they mainly focus on detecting the dissociation of adsorbed
species of organic small molecules on the electrode surface. The reports of nucleation/growth
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SCHEME 1 | Multi-potential step parameter.

dynamics are very few, which can provide abundant
information about the molecular mechanism with the
electrode surface. The phenomenon of the solid-phase
transition is widespread in the electrode surface, such as
metal electrodeposition, Ag,O and AgO transformation,
and adsorption-desorption process (Gomez et al, 1992).
Sun et al. obtained the i-t transient current curves of
HCOOH oxidation on catalyst electrode surface at
different adsorption times using the electrical step
experiment. However, they did not discuss the nucleation
and growth kinetics of adsorptive species on the catalyst
electrode surface (Sun et al, 1992). Therefore, it is
necessary and significant to explore the nucleation
mechanism and kinetic process of HCOOH on the catalyst
electrode surface. The dimensionless processed transient
curves confirmed that the nucleation/growth process of
HCOOH on the catalyst electrode surface followed the
diffusion-controlled two-dimensional (2D) instantaneous
nucleation model. This groundbreaking research can help
us understand the redox process mechanism of HCOOH and
provide a theoretical basis for choosing high-performance
fuel battery catalysts.

EXPERIMENT

All chemicals were of analytical grade. The testing solution is
0.5 mmol/L HCOOH + 0.1 mmol/L HCIO,. The electrochemical
measurements were conducted using CHI 660E electrochemical
workstation at room temperature. A conventional three-electrode
system was conducted with catalyst as the counter electrode, Ag/
AgCl as the reference electrode, and catalyst electrode as the
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working electrode. The electric step parameters are as shown in
Scheme 1.

RESULTS AND DISCUSSION

Adsorption Curve Analysis

Figure 1 shows the i-t curves of HCOOH on the catalyze
electrode surface, which can reflect the dissociation and
adsorption process of the intermediate HCOOH reaction. The
net current curves were obtained by subtracting the background
current; namely, the adsorption time was 0 ms, which can reflect
the oxidation current of the adsorbed CO. It can be found that the
oxidation peak became more obvious and the peak type changed
from high and thin to low and fat with the increase in the
adsorption time. In addition, all oxidation processes were
completed within 100 ms, which was related to the low
HCOOH concentration.

Determination of Nucleation Model

Figure 2 shows that the it curves display a typical
electrocrystallization nucleation characteristic, which is the
appearance of the maximum peak current in the transient curves.
Although the mathematical expression models of the metal
nucleation are abundant, the most widely used is the
dimensionless expression with undetermined parameters in the
research process of electrocrystallization mechanism using i-t
transient curves, which can be expressed as follows (Fleiu et al., 1994):

2 2
]L,Zn = 1;22 {1 - exp[ - 1.2546(t/tm)H» (1)

12254 1 2.3367( ¢ 2 )
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where I,,, and t,,, denote the maximum current density (A'em™)
and its corresponding time, respectively. Comparing the
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FIGURE 1 | The /-t net current curves of HCOOH on a single crystal
catalyst electrode surface at different adsorption times.
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FIGURE 2| The dimensionless (///,, ~ t/t,,) curves at different adsorption times: (A) 2D and 3D instantaneous model; (B) 2D instantaneous and continuous model.
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FIGURE 3| The In (1/t) ~t? curves of HCOOH on a single crystal catalyst
electrode.

obtained I/I,,-t/t,, curves with the theoretical nucleation curves
obtained in Eqs 1, 2 and confirming the solid phase nucleation
mode of CO on the catalyst electrode surface, the experimental
results show that the nucleation process of the oxidation
intermediates of HCOOH (CO) on the single crystal catalyst
electrode surface conforms to the 2D instantaneous nucleation
model at any testing time. It is worth noting that the coincidence
degree of the obtained curves with the 2D instantaneous
nucleation curve is higher with the extension of testing time.

Dimensionless Curve Fitting
The dimensionless expressions of 2D instantaneous nucleation
can be further arranged as follows (Bewick et al., 1962):
I 2
ln<;) = Al - Blt (3)
To further verify the above experimental conclusion, the
experimental data were further processed according to

Formula 3, and the results are shown in Figure 3. It can be
seen that the In (I/t) ~t*> curves under different adsorption times

FIGURE 4 | Scheme of the CO adsorption model.

-

]
OHads

Frontiers in Chemistry | www.frontiersin.org

June 2022 | Volume 10 | Article 914699


https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Hu et al.

displayed a good linear relationship with the obtained theoretical
curves.

The results further confirmed that the CO oxidation process of
HCOOH hydrolysis and adsorption on the surface of the single crystal
catalyst electrode was a 2D instantaneous nucleation process, and the
curve fitting degree increased with the increase of adsorption time.

CO Adsorption Model

According to the above experimental results, the adsorption
model of the HCOOH oxidation intermediate CO at the
catalyst electrode surface is shown in Figure 4. Based on the
definition of 2D instantaneous nucleation, assuming that the
adsorbed CO on the catalyst electrode surface can be seen as the
independent island, the small islands could collide fusion and
gradually occupy the electrode surface with the extension of
adsorption time. Finally, the catalyst electrode surface was
completely dominated by CO molecules and lost the catalytic
activity, namely, the catalyst poisoning. CO was oxidized to CO,
when the applied signal reached oxidation potential, and the
catalyst electrode was exposed again to restore the catalytic
activity. Moreover, atoms can promote the activation of H,O
molecules to form OH,4, and reaction with CO to form CO, and
further promote the HCOOH oxidation on the electrode surface.
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CONCLUSION

In conclusion, the experimental result indicated that the adsorption
of HCOOH oxidation intermediates (CO) on the catalyst electrode
surface conformed to the 2D instantaneous nucleation mechanism
at any testing adsorption time and the corresponding nucleation
model was established. This research can help us understand the
redox process mechanism of HCOOH and provide a theoretical
basis for choose of high-performance fuel battery catalysts.
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