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Nickel–zinc (Ni-Zn) secondary battery that is environmentally friendly and inexpensive has
been regarded as a promising rechargeable battery system. However, the generation of
deformation and dendrites of the traditional zinc anode during the cycling can cause
capacity degradation and impede its practical application. Herein, we design a hierarchical
ZnO nanosphere coated with an inherently derived ZIF-8 porous carbon shell (ZnO@CZIF-8)
using a simple controllable method. The conductive carbon shell and porous ZnO core can
provide more active sites, allow the fast transfer of electrons, and buffer the volume
expansion of the electrode effectively. Benefiting from the synergistic effect amid the
inherently ZIF-8–derived carbon shell and ZnO core, ZnO@CZIF-8 nanospheres exhibit a
satisfying capacity of 316mAh g−1 at a current density of 1 A g−1 after 50 cycles and an
outstanding rate capacity when acting as the anode for a Ni-Zn secondary battery with
merchant agglomerative Ni(OH)2 as the cathode. These results imply that the ZnO@CZIF-8

nanosphere is a hopeful anode for a high-energy Ni-Zn secondary battery.
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INTRODUCTION

Energy demand is increasing as societies continue to develop. Fossil fuels have caused severe pollution of
the environment, so the development of environmentally friendly and renewable rechargeable battery
systems is becoming increasingly important (Lund, 2007; Dunn et al., 2011; Wang et al., 2016).
Rechargeable battery systems such as lithium-ion and nickel–hydrogen have received extensive
attention because they are environment friendly and have considerable capacity (Yu et al., 2008; Lu
et al., 2015; Xu et al., 2016). However, most existing rechargeable battery systems have limitations that
hinder their further development. For example, the operating temperature range of the nickel–hydrogen
battery is limited, and it often confronts a low operating voltage (Li et al., 2018). Lithium-ion batteries have
highmanufacturing costs, and thematched organic electrolyte has serious safety problems, such as toxicity
and possibility of explosion (Stock et al., 2018; Yan et al., 2018). Compared with these battery systems, the
nickel–zinc (Ni-Zn) secondary battery is a better alternative energy storage system with great prospects
because of advantages such as cheap cost, safety, environmental friendliness, and outstanding specific
energy density (Li and Dai, 2014; Yuan et al., 2014; Sun et al., 2016).

The anode is an important part of the nickel–zinc battery. However, the traditional zinc anode
used in the Ni-Zn secondary battery suffers from deformation, dendrite, and corrosion during the
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charge and discharge processes. This results in capacity
degradation, which severely limits the development of the Ni-
Zn secondary battery (Lan et al., 2007; Wu et al., 2009; Nakata
et al., 2015; Guo et al., 2017; Chen et al., 2021). Researchers have
performed many studies to solve problems including surface
modification (Park et al., 2018; He et al., 2021), structural
optimization (Zeng et al., 2019a), and the use of active
additives to improve the performance of zinc anode (Xie et al.,
2015; Yi et al., 2021). Among them, carbon-shell–coated zinc
oxide (ZnO) materials have shown great application potential.
The carbon layer is coated on the surface of ZnO, which not only
inhibits the dissolution of ZnO but also improves the conductivity
of the base material and results in a symmetrical dispersion of
electrons on the surface of the ZnO particles (Feng et al., 2015; Xia
et al., 2019; Zhou et al., 2020). Long’s group prepared carbon-
coated ZnO through the ball-milling pattern using glucose as the
carbon source (Long et al., 2013). The material exhibited great
cycling performance when used as an anode for Ni-Zn secondary
battery. Other researchers prepared the ZnO/carbon nanotube
composites by controlling the vertical growth of ZnO on carbon
nanotubes (Cui et al., 2019). The unique heterostructure can
efficiently improve the contact surface between the electrode and
electrolyte to promote ion transport (Huang et al., 2014; Li et al.,
2017a; Zeng et al., 2020). However, these strategies are only
applied to modify the surface of ZnO by directly introducing
the carbon source, which decreases the contact surface between
the carbon material and ZnO and incompletely restrains the
growth of dendrites. Therefore, it is necessary to realize a carbon-
coating strategy that inherently evolves on the surface of ZnO to
further enhance the electrochemical performance of zinc anode
materials.

Zeolitic-imidazolate frameworks (ZIFs) are novel 3D
framework materials that have received wide attention due to
their well-designed morphology, ordered pore structure, and high
stability (Lin et al., 2020; Huo et al., 2021; Xu et al., 2022). The
pyrolysis product of ZIFs is a porous carbon material with a
considerable specific area and conductivity under anaerobic
conditions (Jiang et al., 2017; Li et al., 2020). Based on the
aforementioned summary, we successfully synthesized a
unique hierarchical ZnO nanosphere coated with ZIF-8
inherently derived porous carbon shell (ZnO@CZIF-8) by using
a simple hydrothermal method following pyrolysis. The
electrochemical properties of ZnO@CZIF-8 employed as an
anode for the Ni-Zn secondary battery were investigated.
Benefiting from the unique core-shell heterostructure
consisting of the ZIF-8 inherently derived carbon shell and
porous ZnO core with abundant active sites, the ZnO@CZIF-8

nanocomposites present a stable base structure and improved
cycling stability.

EXPERIMENT

Synthesis of ZIF-8
Zn (NO3)2·6H2O (1.1158 g) was dissolved in 30 ml methanol
under ultrasonic treatment. 2-Methylimidazole (1.2337 g) was
dissolved in 30 ml methanol. Then, the aforementioned solutions

were mixed. The mixed solution was continuously stirred for
20 h. After that, the white precipitate was washed with methanol
3 times and vacuum dried.

Synthesis of ZnO@ZIF-8
Zn (CH3COO)2 (6.5 g) was first hemolyzed in 300 ml diethylene
glycol under ultrasonication for half of an hour to obtain a clear
solution and then transferred into a flask. This mixture was
heated at 150°C in an oil slot with continuous stirring for
0.5 h. During this step, the solution gradually changed from
colorless to a milky white color. After the solution cooled to
indoor temperature, the ZnO nanospheres were obtained and
dried at 60°C for 10 h. The as-prepared ZnO nanospheres were
dispersed in 30 ml methanol with 1.2337 g 2-methylimidazole
and stirred for 0.5 h. The aforementioned mixture was poured
into a reaction still and held at 70°C for 20 h. Then, ZnO@ZIF-8
was obtained by centrifugation at 8,000 rpm for 5 min, washed
with methanol, and dried at 60°C.

Synthesis of ZnO@CZIF-8
The ZnO@ZIF-8 powders were annealed in an Ar atmosphere at
600°C for 3 h at a heating rate of 3°C min−1. After cooling to
indoor temperature, ZnO@CZIF-8 was obtained. For comparison,
ZnO was prepared by the same process using a single ZIF-8 as a
precursor, marked as ZnO (ZIF-8).

Material Characterization
The crystalline structural characterization of the samples was
investigated by X-ray diffraction (XRD, D8). Transmission
electron microscopy (TEM, FEI Talos-F200S) and scanning
electron microscopy (SEM, Zeiss Sigma 300) were used to
observe the morphology and microstructure of the samples.
Raman spectra were performed using an HR800
spectrophotometer with 633 nm laser excitation. The carbon
content in the product was confirmed with thermogravimetric
analysis (TGA) under an air atmosphere from 20 to 700°C. The
specific area and porous property were measured via N2

adsorption/desorption isotherms (Quantachrome Autosorb-
IQ3). The surface element component of the sample was
determined via X-ray photoelectron spectroscopy (XPS,
Thermo Scientific K-Alpha).

Electrochemical Measurements
The ZnO@CZIF-8 (active material, 80%), polyvinylidene fluoride
(PVDF, 10%), and conductive carbon (10%) in N-methyl-2-
pyrrolidone (NMP) solvent were mixed to obtain a mixed
slurry. The as-prepared mixture was pasted on tinfoil and
dried at 70°C in vacuum. The ZnO@CZIF-8 anode was
punched into a wafer (diameter of 10 mm). The loading mass
of the electrode was 0.8~1.0 mg. The electrochemical
performances of ZnO@CZIF-8 were determined by assembling
CR2032 coin cells using agglomerative Ni(OH)2 as the cathode
and a mixed solution (4 M KOH, 2 M K2CO3, and 2 M KF) as the
electrolyte. A galvanostatic charge and discharge test was
performed on the LAND-CT2001 batter-testing system. The
cell was charged to 1.9 V and discharged to 1.5 V for a certain
time. Cycle voltammogram (CV 1 mV s−1, voltage ambit between
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−1.9~−1.0 V), electrochemical impedance spectroscopy (EIS,
10 kHz to 0.1 Hz), and Tafel plots were obtained by using an
electrochemical workstation (CHI660D).

RESULTS AND DISCUSSION

The core-shell structural ZnO@CZIF-8 nanospheres were
prepared as shown schematically in Figure 1A. First, a ZnO
nanosphere precursor with a diameter range between 300 and
500 nm is synthesized by heating in an oil bath (Figures 1E,F).
Second, a shell layer of ZIF-8 is intrinsically grown and coated on
the surface of the nanosphere precursor by the solvothermal
method. It can be observed that the ZIF-8 layer forms a coating
shell on the nanosphere surface, and the obtained ZnO@ZIF-8 is
uniform with a diameter size of about 600 nm (Figures 1G,H).
Moreover, ZIF-8 and ZnO (pyrolysis treatment of ZIF-8) were
prepared, as presented in Figures 1B–D. The ZIF-8 nanoparticles
presented a rhombic dodecahedron morphology with a size of
about 100 nm, and the framework structure can be maintained

after the pyrolysis process. Finally, the well-designed carbon shell
derived from the ZIF-8 layer can be generated and coated on the
surface of the ZnO core. The inherently derived porous ZIF-8
carbon shell plays a vital role in the construction of ZnO@CZIF-8.
Figures 1I,J show the morphology of ZnO@CZIF-8. After
pyrolysis treatment, the spherical structure was preserved, and
the surface became rougher, which is ascribed to the
decomposition of the organic-functional groups in ZIF-8 (Li
et al., 2020). The average size of ZnO@CZIF-8 is about 600 nm.

In Figure 2A, the XRD pattern of ZIF-8 is consistent with the
ZIF-8 crystal reported in the literature (Zhang et al., 2017) and the
diffraction peaks are sharp, which indicate the high purity and
great crystallinity of the material. Furthermore, the characteristic
peaks of ZnO can be detected in the curve of ZnO@ZIF-8. This
result confirms that the ZIF-8 layer can inherently form on the
external surface of the ZnO nanosphere. All diffraction peaks of
ZnO (ZIF-8) and ZnO@CZIF-8 can be well matched to hexagonal
ZnO (PDF#70-2551). The peaks at 31.8°, 34.3°, 36.6°, 47.7°, 56.5°,
62.7°, and 68.1° for ZnO (ZIF-8) and ZnO@CZIF-8 were associated
with the (100), (002), (101), (102), (110), (103), and (112) planes

FIGURE 1 | (A) The preparation process of core-shell ZnO@CZIF-8. SEM images of (B) ZIF-8, (C,D) ZnO (ZIF-8), (E,F) ZnO nanosphere, (G,H) ZnO@ZIF-8, and (I,J)
ZnO@CZIF-8.
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of ZnO, respectively. The Zn species in ZIF-8 can be oxidized to
the metal oxide (ZnO) during pyrolysis. This is ascribed to the
oxygen released from the decomposition of organic-functional
groups in ZIF-8. In addition, the peaks of ZnO@CZIF-8 are
sharper than those of ZnO (ZIF-8), exhibiting the high
crystallinity of ZnO@CZIF-8.

To further inquire about the constituents and pore diameter
size of the samples, Raman, TGA, and BET tests were measured.
The Raman spectra for ZnO (ZIF-8) and ZnO@CZIF-8 both
present two distinct peaks at 1,322 cm−1 (D-band) and
1,575 cm−1 (G-band). These peaks are ascribed to disordered
carbon and graphitic carbon, respectively, confirming the
presence of a carbon shell (Li et al., 2017b). Figure 2A shows
the TGA curves of ZnO@CZIF-8 in an air atmosphere. For ZnO@
CZIF-8, a major weight loss appeared at 300°C due to the pyrolysis
of the coated carbon shell. The carbon content in ZnO@CZIF-8 is
estimated to be 29.7%. Figures 2E,F present the BET curves and
the pore diameter size of ZnO (ZIF-8) and ZnO@CZIF-8,
respectively. The specific surface areas for ZnO (ZIF-8) and
ZnO@CZIF-8 (Figure 2E) are estimated to be 30.5 and
69.6 m2g−1, respectively. As shown in Figure 2F, the pore
diameter distributions are mostly centered at 2~10 nm for
ZnO (ZIF-8) and ZnO@CZIF-8. The result indicates that the
samples mainly comprise a mesoporous structure (2–50 nm).
The formation of mesoporous structure for ZnO@CZIF-8 is
ascribed to the release of gas-phase compounds in the ZIF-8
during the carbonization (Li et al., 2020). The structural
characteristics of mesoporous are helpful for the
transportation of Li+ ions and the improvement of the active site.

The microstructure of the products were also investigated by
TEM. The ZIF-8 particles display a uniform rhombic
dodecahedron (Figure 3A). Compared with ZIF-8, the surface

of ZnO (ZIF-8) is sunken and shrunken after carbonization
(Figure 3B), and the particle size is slightly reduced.
Agglomeration occurs between the particles for both ZIF-8
and ZnO (ZIF-8). As presented in Figure 3C, ZnO@ZIF-8
exhibits a sphere-shaped heterostructure coated with a ~50 nm
inherent growth of the ZIF-8 shell, and the particle size of ZnO@
ZIF-8 is ~700 nm. Figures 3D,E show the TEM images of ZnO@
CZIF-8. The microsphere structure can be maintained after
carbonization. The carbon-shell–derived ZIF-8 layer is coated
on the external face of the ZnO core. Furthermore, the pyrolysis
of the coated ZIF-8 layer can cause volume contraction of ZnO@
CZIF-8. Thus, the external shell of ZnO@CZIF-8 becomes rough,
and the particle size decreases. Agglomeration can be controlled,
owing to the preservation of the carbon shell. The HRTEM image
of ZnO@CZIF-8 (Figure 3F) presents lattice fringes with an
interplanar spacing of 0.26 nm, matching the (002) plane of ZnO.

The surface element compositions and valences of the as-
prepared ZnO@CZIF-8 were analyzed using XPS. The full
spectrum in Figure 4A shows the presence of Zn, N, O, and
C elements in ZnO@CZIF-8. The Zn 2p spectrum of ZnO@CZIF-8

contains two characteristic peaks at 1,043.8 and 1,022.1 eV,
matching Zn 2p1/2 and Zn 2p2/3, respectively. This result
reveals the existence of a Zn (II) oxidation state in ZnO@CZIF-

8. For the O 1s spectrum of ZnO@CZIF-8 (Figure 4D), the peak is
fitted for three peaks at 533.1, 531.7, and 530.1 eV, respectively.
The characteristic peak at 530.1 eV is matched to the lattice
oxygen of ZnO, and the other two peaks at 533.1 and 531.7 eV are
derived from the C-OH and C=O in the carbon shell, respectively
(Zeng et al., 2019b). The N 1s spectrum of the ZnO@CZIF-8 is
presented in Figure 4D. The broadband is fitted into three peaks,
which are ascribed to graphitic-N (400.5 eV), pyrrolic-N
(399.7 eV), and pyridinic-N (298.1 eV), respectively, derived

FIGURE 2 | XRD patterns of (A) ZIF-8 and ZnO@ZIF-8, (B) ZnO (ZIF-8), and ZnO@CZIF-8. (C) The Raman spectra of ZnO (ZIF-8) and ZnO@CZIF-8. (D) The TGA
curve of ZnO@CZIF-8. (E) N2 adsorption–desorption isotherms and (F) pore size distribution curves of ZnO (ZIF-8) and ZnO@CZIF-8.
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from the splitting decomposition of the organic-functional group
in the ZIF-8 layer during carbonization. As is well known,
N-doped graphitized carbon can be used as additional active
sites to improve zinc storage (Xu et al., 2022). The C 1s spectrum
of ZnO@CZIF-8 is also given (Figure 4C). The C 1s spectrum can
be fitted into three spectral peaks, assigned to C-O (288.1 eV),
C-N (285.9 eV), and C-C (284.6 eV). The formation of C-N
bands reveals that N-atoms are anchored on the carbon shell.
Moreover, the existence of N-doped carbon can also enhance the
electrical conductivity of the base material (Xu et al., 2022).

The electrochemical performances of the as-prepared samples
were tested by constructing a button cell using commercial
sintered Ni (OH)2 as the cathode, as shown in Figure 5. To

confirm the related electrochemical behaviors during the
discharge–charge processes, a cycling voltammogram (CV) was
tested with a voltage window amid −1.9 and −1.0 V at a scan rate
of 1 mV s−1. It can be observed that all electrodes show similar CV
curves, which include the reduction peaks for ZnO@CZIF-8

(−1.37 V) and ZnO (ZIF-8) (−1.34 V) and the oxidation peaks
for ZnO@CZIF-8 (−1.35 V) and ZnO (ZIF-8) (−1.29 V). The
potential intervals between the oxidation peak and the
reduction peak of ZnO (ZIF-8) and ZnO@CZIF-8 are 0.046
and 0.03 V, respectively. The lower potential interval implies
that the ZnO@CZIF-8 anode presents better reversibility (Yan
et al., 2018). The electrochemical reactions can be presented as
follows:

FIGURE 3 | TEM images of (A) ZIF-8, (B) ZnO (ZIF-8), (C) ZnO@ZIF-8, (D,E) ZnO@CZIF-8, and (F) HRTEM of ZnO@CZIF-8.

FIGURE 4 | (A) The Survey XPS spectrum of ZnO@CZIF-8 microsphere. (B–E) High-resolution XPS spectra of Zn 2p, C 1s, O 1s, and N 1s.
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Charge process : ZnO + 2OH− +H2O → Zn(OH)2−4 , (1)
Zn(OH)2−4 + 2e− → Zn + 4OH−, (2)

Discharge process : Zn + 4OH− → Zn(OH)2−4 + 2e−, (3)
Zn(OH)2−4 → Zno + 2OH− +H2O. (4)

Figures 5B,C show the discharge and charge curves of ZnO
(ZIF-8) and ZnO@CZIF-8 at different cycles (1st, 3rd, and 10th
cycles). The discharge specific capacities of ZnO@CZIF-8 are 777,
820, and 601 mAh g−1 at the 1st, 3rd, and 10th cycles, respectively,
which are larger than those of ZnO (ZIF-8) (223, 507, and 401mAh
g−1 at the first, third, and 10th cycles). For comparison, the cycling
performances of ZnO@CZIF-8, ZnO (ZIF-8), and ZnO (nanosphere)
are presented in Figure 5D. The specific capacity of ZnO
(nanosphere) declined seriously and depleted after 20 cycles. The
ZnO (ZIF-8) anode suffers the same experience. In contrast, the
cycling performance of ZnO@CZIF-8 remained steady, and the
discharge capacity reached 316mAh g−1 after 50 cycles. This
benefit stemmed from the synergistic effect of the carbon shell
derived from the inherent ZIF-8 layer and ZnO nanoparticle core.

Figures 6A–C present the rate stabilities of ZnO (ZIF-8) and
ZnO@CZIF-8 at various current densities. The discharge
specific capacities of ZnO@CZIF-8 at 1, 1.5, and 2 A g−1 are
821, 562, and 396 mAh g−1, respectively, which are larger than
those of ZnO (ZIF-8) (536, 477, and 312 mAh g−1 at 1, 1.5, and
2 A g−1). Figure 6D displays the midpoint discharge voltage
charts of ZnO (ZIF-8) and ZnO@CZIF-8, which is also a
significant argument for rechargeable batteries. The better
the stability and higher the midpoint discharge voltage, the
higher the specific energy and the greater the electrochemical
property. ZnO@CZIF-8 exhibits a stable and high midpoint

discharge voltage during cycling. However, the midpoint
discharge voltage of ZnO (ZIF-8) markedly decreases after
18 cycles. The Tafel plot curves (Figure 6E) of ZnO (ZIF-8)
and ZnO@CZIF-8 are exhibited to investigate the anticorrosion
performance of the electrode in alkaline solution, assessed
using corrosion potential (Ecorr) (Li et al., 2017a). We observed
that the value of Ecorr for ZnO@CZIF-8 (−1.115) was more
positive than that of ZnO (ZIF-8) (−1.167). This indicates that
the ZnO@CZIF-8 electrode exhibits better corrosion resistance.
The mainspring was that the coated carbon shell can control
the corrosion of ZnO. Nyquist plots of the ZnO (ZIF-8) and
ZnO@CZIF-8 electrodes are exhibited in Figure 6F. All plots are
semi-circular in the high-frequency region and show an
oblique stroke in the low-frequency region. These are
related to charge transfer and ion diffusion in the electrode.
Obviously, the semi-circular diameter of ZnO@CZIF-8 is
smaller than that of ZnO (ZIF-8), implying that the coated
carbon shell enhances the electronic conductivity of the base
material. The morphological changes of ZnO and ZnO@CZIF-8

after the cycles are presented in Figure 6G. The ZnO (ZIF-8)
suffers an inevitable volume increase during cycling, causing
fracture of the material. By constructing the inherently derived
core-shell structure, the ZIF-8–derived carbon shell restricts
the volume expansion of the ZnO core during the cycling
process. This indicates that the inherently derived carbon shell clings
to the surface of ZnO and effectively ensnares the volume expansion
of the active material, thereby increasing the cycling performance.
The superior electrochemical performances of ZnO@CZIF-8 can be
ascribed to its unique hierarchical structure. First, the microsize of
ZnO@CZIF-8 guarantees more efficient infiltration between the
electrolyte and the electrode. Second, the existence of a carbon

FIGURE 5 | (A) Cyclic voltammogram curves of ZnO (ZIF-8) and ZnO@CZIF-8. Galvanostatic charge and discharge curves of (B) ZnO (ZIF-8) and (C) ZnO@CZIF-8 at
1st, 3rd, and 10th cycles. (D) Cycling performance of ZnO microsphere, ZnO (ZIF-8), and ZnO@CZIF-8 at 1 A g−1.
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shell derived from the inherent ZIF-8 layer can not only weaken the
dissolution of ZnOand be the detriment of zinc dendrites but can also
increase the electronic conductivity of the electrode.

CONCLUSION

In summary, a unique core-shell ZnO@CZIF-8 nanocomposite
was successfully synthesized using a ZnO nanosphere as the
core and an inherent ZIF-8 layer as the coated carbon source
by using a simple hydrothermal method and subsequent
pyrolysis process. The inherent ZIF-8–derived carbon shell
with N-doping can improve the electronic conductivity and
offer abundant active sites. Meanwhile, this hierarchical
structure provides an extreme self-adaptive framework that
can efficiently control the volume expansion of the electrode.

Benefiting from the unique hierarchical structure, the ZnO@
CZIF-8 nanocomposite exhibits superior electrochemical
properties when used as anode material in the Ni-Zn
secondary battery. In particular, the ZnO@CZIF-8 electrode
presents a discharge-specific capacity of 820mAh g−1, which is
larger than that of the ZnO (ZIF-8) (507mAh g−1) and ZnO
(nanosphere) precursor (410mAh g−1). In addition, the ZnO@
CZIF-8 presents remarkable cycling stability and outstanding rate
stability. The advanced electrochemical performances of the
ZnO@CZIF-8 electrode can be attributed to the conductivity
improvement, structure stability, anticorrosion property, and
reaction reversibility of the inherent combination between the
carbon shell and ZnO core. Therefore, this study offers a guide to
constructing hierarchical inherent carbon-coated ZnO with
outstanding electrochemical performances.

FIGURE 6 | Rate performance of ZnO (ZIF-8) and ZnO@CZIF-8 electrodes at different current densities: (A) 1 A g−1, (B) 1.5 A g−1, and (C) 2 A g−1. (D) Midpoint
discharge voltage curves of the Ni-Zn batteries with different anodes of ZnO (ZIF-8) and ZnO@CZIF-8. (E) The Tafel plot of ZnO (ZIF-8) and ZnO@CZIF-8 electrodes. (F)
Nyquist plots of ZnO (ZIF-8) and ZnO@CZIF-8 electrodes. (G) Morphological changes after the charge/discharge processes.
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